Research article Special Issues

Weighted Lp boundedness of maximal operators with rough kernels

  • Received: 20 July 2024 Revised: 22 August 2024 Accepted: 27 August 2024 Published: 06 September 2024
  • MSC : 42B20, 42B25

  • In this paper, we study the weighted spaces $ L^p(\omega, \mathbb{R}^d) $ boundedness of certain class of maximal operators when their kernels belong to the space $ L^{q}(\mathbb{S} ^{d-1}) $, $ q > 1 $. Our results in this paper are improvements and extensions of some previously known results.

    Citation: Hussain Al-Qassem, Mohammed Ali. Weighted Lp boundedness of maximal operators with rough kernels[J]. AIMS Mathematics, 2024, 9(9): 25966-25978. doi: 10.3934/math.20241269

    Related Papers:

  • In this paper, we study the weighted spaces $ L^p(\omega, \mathbb{R}^d) $ boundedness of certain class of maximal operators when their kernels belong to the space $ L^{q}(\mathbb{S} ^{d-1}) $, $ q > 1 $. Our results in this paper are improvements and extensions of some previously known results.



    加载中


    [1] L. Chen, H. Lin, A maximal operator related to a class of singular integral, Illinois J. Math., 34 (1990), 120–126. https://doi.org/10.1215/IJM/1255988497 doi: 10.1215/IJM/1255988497
    [2] A. Al-Salman, On maximal functions with rough kernels in $L(\log L)^{1/2}(\mathbb{S}^{n-1})$, Collect. Math., 56 (2005), 47–56.
    [3] H. M. Al-Qassem, Maximal operators related to block spaces, Kodai Math. J., 28 (2005), 494–510. https://doi.org/10.2996/kmj/1134397763 doi: 10.2996/kmj/1134397763
    [4] A. Al-Salman, A unifying approach for certain class of maximal functions, J. Inequal. Appl., 2006 (2006), 1–17. https://doi.org/10.1155/JIA/2006/56272 doi: 10.1155/JIA/2006/56272
    [5] P. Sjolin, Convolution with oscillating kernels, Indiana U. Math. J., 30 (1981), 47–55.
    [6] F. Ricci, E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals Ⅰ. Oscillatory integrals, J. Func. Anal., 73 (1987), 179–194. https://doi.org/10.1016/0022-1236(87)90064-4 doi: 10.1016/0022-1236(87)90064-4
    [7] S. Z. Lu, Y. Zhang, Criterion on Lp-boundedness for a class of oscillatory singular integrals with rough kernels, Revista Matem. Iber., 8 (1992), 201–219. https://eudml.org/doc/39425
    [8] Y. Pan, $L^{2}$ estimates for convolution operators with oscillating kernels, Math. Proc. Cambridge Phil. Soc., 113 (1993), 179–193.
    [9] D. S. Fan, Y. B. Pan, Boundedness of certain oscillatory singular integrals, Studia Math., 114 (1995), 105–116.
    [10] M. Ali, Q. Katatbeh, $L^p$ bounds for rough parabolic maximal operators, Heliyon, 6 (2020), e05153. https://doi.org/10.1016/j.heliyon.2020.e05153 doi: 10.1016/j.heliyon.2020.e05153
    [11] A. Al-Salman, Rough oscillatory singular integral operators of nonconvolution type, J. Math. Anal. Appl., 299 (2004), 72–88. https://doi.org/10.1016/j.jmaa.2004.06.006 doi: 10.1016/j.jmaa.2004.06.006
    [12] S. G. Shi, Z. W. Fu, Q. Y. Wu, On the average operators, oscillatory integrals, singulars, singular integrals and their applications, J. Appl. Anal. Comput., 14 (2024), 334–378. https://doi.org/10.11948/20230225 doi: 10.11948/20230225
    [13] Z. W. Fu, E. Pozzi, Q. Y. Wu, Commutators of maximal functions on spaces of homogeneous type and their weighted, local versions, Front. Math. China, 17 (2022), 625–652. https://doi.org/10.1007/s11464-021-0912-y doi: 10.1007/s11464-021-0912-y
    [14] Y. Ding, Q. Z. He, Weighted boundedness of a rough maximal operator, Acta Math. Sci., 20 (2000), 417–422. https://doi.org/10.1016/S0252-9602(17)30649-5 doi: 10.1016/S0252-9602(17)30649-5
    [15] H. M. Al-Qassem, Weighted $L^p$ estimates for a rough maximal operator, Kyungpook Math. J., 45 (2005), 255–272.
    [16] H. M. Al-Bataineh, M. Ali, Boundedness of maximal operators with mixed homogeneity associated to surfaces of revolution, Int. J. Pure Appl. Math., 119 (2018), 705–716.
    [17] H. M. Al-Qassem, On the boundedness of maximal operators and singular operators with kernels in $L(\log L)^{\alpha }(\mathbb{S}^{n-1})$, J. Inequal. Appl., 2006 (2006), 96732. https://doi.org/10.1155/JIA/2006/96732 doi: 10.1155/JIA/2006/96732
    [18] M. Ali, O. Al-Mohammed, Boundedness of a class of rough maximal functions. J. Inequal. Appl., 305 (2018). https://doi.org/10.1186/s13660-018-1900-y
    [19] A. P. Calderön, A. Zygmund, On the existence of certain singular integrals, Acta Math., 88 (1952), 85–139. https://doi.org/10.1007/BF02392130 doi: 10.1007/BF02392130
    [20] A. P. Calderön, A. Zygmund, On singular integrals, Am. J. Math., 78 (1956), 289–309. https://doi.org/10.2307/2372517 doi: 10.2307/2372517
    [21] R. Fefferman, A note on singular integrals, Proc. Amer, Math. Soc., 74 (1979), 266–270. https://doi.org/10.2307/2043145 doi: 10.2307/2043145
    [22] J. Duoandikoetxea, J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math., 84 (1986), 541–561. https://doi.org/10.1007/BF01388746 doi: 10.1007/BF01388746
    [23] J. Namazi, A singular integral, Proc. Amer. Math. Soc., 96 (1986), 421–424. https://doi.org/10.2307/2046587 doi: 10.2307/2046587
    [24] S. G. Shi, L. Zhang, Norm inequalities for higher-order commutators of one-sided oscillatory singular integrals, J. Inequal. Appl., 2016 (2016), 1–12. https://doi.org/10.1186/s13660-016-1025-0 doi: 10.1186/s13660-016-1025-0
    [25] E. M. Stein, On the functions of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc., 88 (1958), 430–466. https://doi.org/10.2307/1993226 doi: 10.2307/1993226
    [26] H. Al-Qassem, L. Cheng, Y. Pan, On rough generalized parametric Marcinkiewicz integrals, J. Math. Ineq., 11 (2017), 763–780. https://doi.org/10.7153/jmi-2017-11-60 doi: 10.7153/jmi-2017-11-60
    [27] A. Benedek, A. P. Calderön, R. Panzone, Convolution operators on Banach space valued functions, Mathematics, 48 (1962), 356–365. https://doi.org/10.1073/pnas.48.3.356 doi: 10.1073/pnas.48.3.356
    [28] Y. Ding, D. S. Fan, Y. B. Pan, Lp-boundedness of Marcinkiewicz integrals with Hardy space function kernels, Acta Math. Sinica, 16 (2000), 593–600. https://doi.org/10.1007/s101140000015 doi: 10.1007/s101140000015
    [29] Y. Ding, S. Z. Lu, K. Yabuta, A problem on rough parametric Marcinkiewicz functions, J. Aust. Math. Soc., 72 (2002), 13–22. https://doi.org/10.1017/S1446788700003542 doi: 10.1017/S1446788700003542
    [30] M. Ali, H. Al-Qassem, Estimates for certain class of rough generalized Marcinkiewicz functions along submanifolds, Open Math., 21 (2023), 1–13. https://doi.org/10.1515/math-2022-0603 doi: 10.1515/math-2022-0603
    [31] E. M. Stein, G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc., 87 (1958), 159–172. https://doi.org/10.1090/s0002-9947-1958-0092943-6 doi: 10.1090/s0002-9947-1958-0092943-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(375) PDF downloads(52) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog