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1. Introduction and statement of results

Let Sd−1 be the unit sphere in the d-dimensional Euclidean space Rd(d ≥ 2) which is equipped with
the normalized Lebesgue surface measure dσ = dσ(·).

Let h : R+ → C be a radial function satisfying

‖h‖L2(R+, ds
s ) =

(∫ ∞

0
|h(s)|2

ds
s

)1/2

≤ 1,

and let f be a homogeneous function of degree zero on Rd with f ∈ L1(Sd−1) and∫
Sd−1
f(x′)dσ(x′) = 0, (1.1)

where x′ = x/|x| for x ∈ Rd \ {0}.
For a Schwartz function f ∈ (Rd), we consider the maximal operatorMf,P given by

Mf,P( f )(x) = sup
h∈L2(R+, ds

s )

∣∣∣∣∣∣
∫
Rd

eiP(u) f (x − u)
f(u)h(|u|)
|u|d

du

∣∣∣∣∣∣ , (1.2)
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where P : Rd → R is a real-valued polynomial.

We notice that if P(y) ≡ 0, then the operator Mf,P is reduced to be the classical maximal operator
denoted by Mf, which was introduced by Chen and Lin in [1]. The authors of [1] proved the
boundedness of Mf on Lp(Rd) for 2d/(2d − 1) < p < ∞ if f ∈ C(Sd−1), and they showed that the
range of p is the best possible. This result was extended in [2] in which the author confirmed the
Lp boundedness of Mf for all p ∈ [2,∞) whenever f ∈ L(log L)1/2(Sd−1), and that the condition
f ∈ L(log L)1/2(Sd−1) is optimal in the sense that the operator Mf may fail to be bounded on L2(Rd)
when f ∈ L(log L)r(Sd−1) for any r ∈ (0, 1/2). On the other hand, the author of [3] proved that Mf
is bounded on Lp(Rd) for p ≥ 2 if f lies in the block spaces B(0,−1/2)

q (Sd−1) with q > 1, and they
also proved that if the kernel f belongs to B(0,r)

q (Sd−1) for some r ∈ (−1,−1/2), then Mf may not be
bounded in L2(Rd). In [4], the author generalized the above results. In fact, he proved that Mf,P is
bounded on Lp(Rd) for all p ≥ 2 provided thatf ∈ B(0,−1/2)

q (Sd−1)∪L(log L)1/2(Sd−1). Subsequently, the
investigation of the boundedness ofMf,P on Lp(Rd) under various conditions has attracted the attention
of many authors: For background information [5–8], importance and the development [9–11], and
recent advances and studies [12, 13].

On the other hand, in [14] Y. Ding and H. Qingzheng proved the weighted Lp boundedness ofMf
as described in the following theorem.

Theorem A. Let d ≥ 2. Assume f ∈ L2(Sd−1) satisfies (1.1). Then,

‖Mf( f )‖Lp(ω, Rd) ≤ Cp ‖ f ‖Lp(ω, Rd) , (1.3)

if p and ω satisfy one of the following conditions:
(a) 2 ≤ p < ∞ and ω ∈ Ap/2(Rd);
(b) 2d/(2d − 1) < p < 2, ω(x) = |x|α , and 1

2 (1 − d)(2 − p) < α < 1
2 (2dp − 2d − p), where Ap is the

Muckenhoupt’s weight class, and the weighted Lp( ω,Rd) with ω ≥ 0 is defined by

Lp( ω,Rd) =

 f : ‖ f ‖Lp(ω,Rd) =

(∫
Rd
| f (y)|p ω(y)dy

)1/p

< ∞

 .
Subsequently, Al-Qassem in [15] generalized the above result as in the following theorem:

Theorem B. Suppose that f ∈ Lq(Sd−1) for some q > 1 and it satisfies (1.1). Then,

‖Mf( f )‖Lp(ω,Rd) ≤ Cp ‖ f ‖Lp(ω,Rd) ,

if p and ω satisfy one of the following conditions:
(a) δ ≤ p < ∞ and ω ∈ Ap/δ;
(b) 2dδ/(2d + dδ − 2) < p < 2, ω(x) = |x|α , 1

2 (1 − d)(2 − p) < α < 1
2 (2dp − 2d − p), where

δ = max{2, q′} and q′ is the dual exponent of q.

In view of the results in [4] concerning the Lp boundedness of Mf,P and of the results in [15]
concerning the weighted Lp boundedness of Mf, it is natural to ask wether the weighted Lp

boundedness of Mf,P holds under the same conditions as assumed in Theorem B. We shall obtain
an answer to this question in the affirmative as described in the following theorem.
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Theorem 1.1. Letf ∈ Lq(Sd−1) with q > 1. Suppose that P : Rd → R is a polynomial of degree k, then
the estimate ∥∥∥Mf,P( f )

∥∥∥
Lp(ω,Rd)

≤ Cp ‖ f ‖Lp(ω,Rd) (1.4)

holds for δ ≤ p < ∞ and ω ∈ Ap/δ, where δ = max{2, q′}.

Now let us give some results which follow as a consequence of Theorem 1.1. For γ ∈ (1,∞), we let
Lγ(R+, ds

s ) be the set of all measurable functions h : R+ → R such that

‖h‖Lγ(R+, ds
s ) =

(∫ ∞

0
|h(s)|γ

ds
s

)1/γ

≤ 1.

Consider the maximal operatorM(γ)
f,P given by

M
(γ)
f,P( f )(x) = sup

h∈Lγ(R+, ds
s )

∣∣∣∣∣∣
∫
Rd

eiP(u) f (x − u)
f(u)h(|u|)
|u|d

du

∣∣∣∣∣∣ , (1.5)

where P : Rd → R is a real-valued polynomial, f ∈ S(Rd) and 1 ≤ γ ≤ 2.

The study of the boundedness of the operatorM(γ)
f,P started in [1] in which the authors proved that if

f ∈ C(Sd−1) and h ∈ Lγ(R+, ds
s ) for some 1 ≤ γ ≤ 2, then the Lp(Rd) boundedness of the operatorM(γ)

f,0

is satisfied for (γd)′ < p < ∞. For more information about the investigation of M(γ)
f,P, under various

conditions and some past studies, readers are referred to see [16–18] and the references therein. In this
work, an extension and improvement over the result in [1] shall be obtained by proving the weighted
Lp of M(γ)

f,P when the condition f ∈ C(Sd−1) is replaced by the weaker condition f ∈ Lq(Sd−1) with
q > 1. Precisely, we have the following:

Theorem 1.2. Let f ∈ Lq(Sd−1) with q > 1. Let ω ∈ Ap/δ and h ∈ Lγ(R+, ds
s ) with 1 ≤ γ ≤ 2. Then,

we have ∥∥∥M(γ)
f,P( f )

∥∥∥
Lp(ω,Rd)

≤ Cp ‖ f ‖Lp(ω,Rd) (1.6)

for (δγ′)/2 ≤ p < ∞.

Concerning the boundedness of a certain class of oscillatory singular integrals, we have
the following:

Theorem 1.3. Assume that f ∈ Lq(Sd−1) with q > 1. Let ω ∈ Ap/δ and h ∈ Lγ(R+, ds
s ) for some

1 < γ ≤ 2. Then, the oscillatory singular integral operator T (γ)
f,P given by

T (γ)
f,P( f )(x) = p.v.

∫
Rd

eiP(u) f (x − u)
f(u)h(|u|)
|u|d

du,

is bounded on Lp(ω,Rd) for (δγ′)/2 ≤ p < ∞, and it is bounded on Lp(ω,Rd) for 1 < p ≤ ( δγ
′

2 )′ and
ω1−p′ ∈ Ap′/δ.

For background information and related work about the operator, see [19–24].
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We point out that the generalized Marcinkiewicz operator concerning the operatorM(γ)
f,P is given by

M
(γ)
f,P( f )(x) =

∫
R+

∣∣∣∣∣∣ 1
s

∫
|u|≤s

eiP(u) f (x − u)f(u)|u|−d+1du

∣∣∣∣∣∣γ
′

ds
s

1/γ′

. (1.7)

As an immediate consequence of the fact

M
(γ)
f,P( f )(x) ≤ CM(γ)

f,P( f )(x)

for 1 ≤ γ ≤ 2, we obtain the following result:

Theorem 1.4. Let f, ω, P, and γ be given as in Theorem 1.2. Then, the generalized Marcinkiewicz
integralM(γ)

f,P is bounded on Lp(ω,Rd) for (δγ′)/2 ≤ p < ∞ with 1 < γ ≤ 2.

It is clear that for the special case P = 0 and γ = 2, the operator M(2)
f,0 reduces to the classical

Marcinkiewicz integral operator, which was introduced in [25], in which the author proved that the
operator is bounded on Lp(Rd) only for 1 < p ≤ 2 whenever f ∈ Lipη(Sd−1) for some 0 < η ≤

2. Thereafter, the study of the operator M(γ)
f,P under several conditions has been discussed by many

mathematicians (see, for instance [4, 26–30]).

Throughout the rest of the paper, the letter C stands for a positive constant which is independent of
the essential variables and its value is not necessary the same at each occurrence.

2. Preliminary lemmas

In this section, we give some preliminary lemmas to prove our main results. Let us start with the
following lemma, which is found in [4].

Lemma 2.1. Let f ∈ Lq(Sd−1), q > 1 be a homogeneous function of degree zero. Suppose that

P(x) =
∑
|η|≤k

ληxη,

is a polynomial of degree k > 1 such that |u|k is not one of its terms. For j ∈ Z, define I j,f : Rd → R by

I j,f(ξ) =

∫ 2−( j−1)

2−( j+1)

∣∣∣∣∣ ∫
Sd−1
f(u)e−i[P(su)+su·ξ]dσ(u)

∣∣∣∣∣2 ds
s
. (2.1)

Then, there exist constants C > 0 and 0 < ε < 1 such that

sup
ξ∈Rd

I j,f(ξ) ≤ C 2( j+1)/4q′

∑
|η|=m

∣∣∣λη∣∣∣
−ε/q′

.

We need the following lemma from [15].
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Lemma 2.2. Let f ∈ Lq(Sd−1) for some q > 1 and ω ∈ Ap/q′(R+) with 1 < p < ∞. Assume that the
maximal function Mf is given by

Mf f (x) = sup
j∈Z

∫
2 j≤|u|≤2( j+1)

| f (x − u)|
|f(u)|
|u|d

du.

Then there exists a positive constant Cp such that

‖Mf( f )‖Lp(ω,Rd) ≤ Cp ‖ f ‖Lp(ω,Rd)

for any f ∈ Lp(ω,Rd) with q′ ≤ p < ∞.

The next lemma can be proved by employing the same argument as in the proof of Theorem 1.1
in [15].

Lemma 2.3. Let ω ∈ Ap/δ and f ∈ Lq(Sd−1) with q > 1. Then, there is a constant Cp > 0 such that

‖Mf( f )‖Lp(ω,Rd) ≤ Cp ‖ f ‖Lp(ω,Rd) (2.2)

for all δ ≤ p < ∞.

Proof. Let
{
ψ j

}
j∈Z

be a smooth partition of unity in (0,∞) with the following properties:

ψ j ∈ C
∞, supp ψ j ⊆

[
2−( j+1), 2−( j−1)

]
, 0 ≤ ψ j ≤ 1,∑

j∈Z

ψ j (s) = 1, and

∣∣∣∣∣∣dkψ j (s)
dsk

∣∣∣∣∣∣ ≤ Ck

sk . (2.3)

For j ∈ Z, define the operator Υ j in Rd by

̂(Υ j( f ))(ξ) = ψ j(|ξ|)) f̂ (ξ) for ξ ∈ Rd.

Then, for f ∈ S(Rd), we have that

Mf( f )(x) ≤
∑
k∈Z

Gf,k( f )(x), (2.4)

where

Gf,k( f )(x) =

∑
j∈Z

∫ 2−( j−1)

2−( j+1)

∣∣∣∣∣∫
Sd−1

(Υk+ j f )(x − su)f(u)dσ(u))
∣∣∣∣∣2 ds

s


1/2

.

By following the same argument utilized in the proof of Theorem 1.1 in [15], along with invoking
Lemma 2.1, we obtain that ∥∥∥Gf,k( f )

∥∥∥
Lp(ω,Rd)

≤ Cp2−τ|k| ‖ f ‖Lp(ω,Rd) , (2.5)

for some constant τ ∈ (0, 1) and for all δ ≤ p < ∞. Consequently, by (2.4) and (2.5), we get (2.2) for
all δ ≤ p < ∞. �
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3. Proof of the main results

Proof of Theorem 1.1. We shall use some of the ideas from [4]. Precisely, we use the induction on the
degree of the polynomial P. It is clear that if the degree of P is 0, then by Lemma 2.3 we get∥∥∥Mf,P( f )

∥∥∥
Lp(ω,Rd)

≤ Cp ‖ f ‖Lp(ω,Rd) (3.1)

for all δ ≤ p < ∞. Now, if the degree of P is 1, then we deduce that there is −→c ∈ Rd so that P(u) = −→c ·u.
Hence, if we set g(u) = e−iP(u) f (u), then by (3.1) we get that∥∥∥Mf,P( f )

∥∥∥
Lp(ω,Rd)

≤
∥∥∥Mf,P(g)

∥∥∥
Lp(ω,Rd)

≤ Cp ‖ f ‖Lp(ω,Rd) .

Next, suppose that (1.4) holds for any polynomial P whose degree is less than or equal to k ≥ 1. We
need to prove that the inequality (1.4) is also satisfied for any polynomial of degree k + 1. Let

P(u) =
∑
|η|≤k+1

ληuη

be a polynomial of degree k + 1. Without loss of generality, we may assume that P does not contain
|u|k+1 as one of its terms, and

∑
|η|=k+1

∣∣∣λη∣∣∣ = 1.

For j ∈ Z, let
{
ψ j

}
and Υ j be chosen as those in (2.3). Set

Γ∞(s) =

0∑
j=−∞

ψ j(s) and Γ0(s) =

∞∑
j=1

ψ j(s).

Then, Γ∞(s) + Γ0(s) = 1, supp(Γ∞(s)) ⊆ [2−1,∞), and supp(Γ0(s)) ⊆ (0, 1]. Hence, we get by
Minkowski’s inequality that

Mf,P( f )(x) ≤ Mf,P,∞( f )(x) +Mf,P,0( f )(x), (3.2)

where

Mf,P,∞( f )(x) =


∞∫

2−1

∣∣∣∣∣ Γ∞(s)
∫
Sd−1

eiP(su) f (x − su)f(u)dσ(u)
∣∣∣∣∣2 ds

s


1/2

,

and

Mf,P,0( f )(x) =


1∫

0

∣∣∣∣∣ Γ0(s)
∫
Sd−1

eiP(su) f (x − su)f(u)dσ(u)
∣∣∣∣∣2 ds

s


1/2

.

Let us estimate
∥∥∥Mf,P,∞( f )

∥∥∥
Lp(ω,Rd)

. Define

Mf,P,∞, j( f )(x) =


2−( j−1)∫

2−( j+1)

∣∣∣∣∣ ∫
Sd−1

eiP(su) f (x − su)f(u)dσ(u)
∣∣∣∣∣2 ds

s


1/2

.
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Then, by the generalized Minkowski’s inequality, we have

Mf,P,∞( f )(x) ≤
0∑

j=−∞

Mf,P,∞, j( f )(x). (3.3)

Case 1. When q ≥ 2. In this case, we have 2 ≤ p < ∞ and ω ∈ Ap/2. Let us consider first the case
p > 2. By duality, there is g ∈ L(p/2)′(ω1−(p/2)′ ,Rd) such that ‖g‖L(p/2)′ (ω1−(p/2)′ ,Rd) ≤ 1 and∥∥∥Mf,P,∞, j( f )

∥∥∥2

Lp(ω,Rd)

=

∫
Rd

∫ 4

1

∣∣∣∣∣ ∫
Sd−1

e−iP(2−( j+1) su)f(u) f (x − 2−( j+1)su)dσ(u)
∣∣∣∣∣2 ds

s
|g(x)| dx

≤ ‖f‖2Lq(Sd−1)

∫
Rd

∫ 4

1

(∫
Sd−1

∣∣∣ f (x − 2−( j+1)su)
∣∣∣q′ dσ(u)

)2/q′ ds
s
|g(x)| dx

≤ ‖f‖2Lq(Sd−1)

∫
Rd

∫ 4

1

(∫
Sd−1

∣∣∣ f (x − 2−( j+1)su)
∣∣∣2 dσ(u)

)
ds
s
|g(x)| dx.

Hence, by Hölder’s inequality, we get

∥∥∥Mf,P,a, j( f )
∥∥∥2

Lp(ω,Rd)
≤ C

∫
Rd
| f (y)|2

∫ 4

1

∫
Sd−1

∣∣∣g(y + 2−( j+1)su)
∣∣∣ dσ(u)

ds
s

dy

≤ Cp

∥∥∥| f |2∥∥∥
L(p/2)(ω,Rd) ‖M

∗(̃g)‖L(p/2)′ (ω1−(p/2)′ ,Rd)

≤ Cp ‖ f ‖2Lp(ω,Rd) ‖̃g‖L(p/2)′ (ω1−(p/2)′ ,Rd) ,

where g̃(y) = g(−y) and M∗( f ) is the Hardy-Littlewood maximal function. Thus,∥∥∥Mf,P,∞, j( f )
∥∥∥

Lp(ω,Rd)
≤ Cp ‖ f ‖Lp(ω,Rd) , (3.4)

for 2 < p < ∞ and ω ∈ Ap/2.
Now, for the case p = 2 and ω ∈ A1, we have

∥∥∥Mf,P,∞, j( f )
∥∥∥2

L2(ω,Rd) =

∫
Rd

∫ 4

1

∣∣∣∣∣ ∫
Sd−1

e−iP(2−( j+1) su)f(u) f (x − 2−( j+1)su)dσ(u)
∣∣∣∣∣2 ds

s
ω(x)dx

≤ ‖f‖2q

∫
Rn
| f (x)|2

(∫ 4

1

∫
Sd−1

ω(x + 2−( j+1)su)dσ(u)
ds
s

)
ω(x)dx

≤ C
∫
Rn
| f (x)|2 M∗(ω̃)(−x)dx, with ω̃(x) = ω(−x)

≤ C
∫
Rn
| f (x)|2 ω(x)dx = C ‖ f ‖2L2(ω,Rd) , (3.5)

where the last inequality is obtained by the fact that M∗ω(x) ≤ Cω(x) for a.e. x ∈ Rd.
Since for any ω ∈ Ap/2 there exists α > 0 such that ω1+α ∈ Ap/2, by (3.4) and (3.5), we get that∥∥∥Mf,P,∞, j( f )

∥∥∥
Lp(ω1+α,Rd)

≤ Cp ‖ f ‖Lp(ω1+α,Rd) , (3.6)

for 2 < p < ∞ and ω ∈ Ap/2.
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Now we will obtain a sharp unweighted L2 estimate ofMf,P,∞, j( f ). By Fubini’s theorem, Plancherel’s
theorem and Lemma 2.1 we get∥∥∥Mf,P,∞, j( f )

∥∥∥
L2(Rd)

=

( ∫
Rd

∣∣∣∣ f̂ (ξ)
∣∣∣∣2 I j,f(ξ)dξ

)1/2

≤ C 2
( j+1)
8q′ ‖ f ‖L2(Rd) . (3.7)

Thus, using the Stein-Weiss interpolation theorem with change of measure [31], we may interpolate
between (3.6) and (3.7) to obtain∥∥∥Mf,P,∞, j( f )

∥∥∥
Lp(ω,Rd)

≤ Cp2
ε( j+1)

8q′ ‖ f ‖Lp(ω,Rd) (3.8)

for 2 ≤ p < ∞, ω ∈ Ap/2, and for some ε ∈ (0, 1). Consequently, by (3.3) and (3.8), we conclude that∥∥∥Mf,P,∞( f )
∥∥∥

Lp(ω,Rd)
≤ Cp ‖ f ‖Lp(ω,Rd) (3.9)

for 2 ≤ p < ∞ and ω ∈ Ap/2.
Case 2. When 1 < q < 2. In this case, we have q′ ≤ p < ∞ and ω ∈ Ap/q′ . Since p > 2, by duality,
there exists F ∈ L(p/2)′(ω1−(p/2)′ ,Rd) such that ‖F‖L(p/2)′ (ω1−(p/2)′ ,Rd) ≤ 1 and∥∥∥Mf,P,∞, j( f )

∥∥∥2

Lp(ω,Rd)

=

∫
Rd

∫ 4

1

∣∣∣∣∣ ∫
Sd−1

e−iP(2−( j+1) su)f(u) f (x − 2−( j+1)su)dσ(u)
∣∣∣∣∣2 ds

s
|F(x)| dx

≤ ‖f‖
q
Lq(Sd−1)

∫
Rd

∫ 4

1

(∫
Sd−1
|f(u)|2−q

∣∣∣ f (x − 2−( j+1)su)
∣∣∣2 dσ(u)

)
ds
s
|F(x)| dx.

Hence, by Hölder’s inequality, we get∥∥∥Mf,P,∞, j( f )
∥∥∥2

Lp(ω,Rd)
≤ C

∫
Rd
| f (y)|2

∫ 4

1

∫
Sd−1
|f(u)|2−q

∣∣∣F(y + 2−( j+1)su)
∣∣∣ dσ(u)

ds
s

dy

≤ C
∥∥∥| f |2∥∥∥

L(p/2)(ω,Rd)

∥∥∥Mf(2−q)(F̃)
∥∥∥

L(p/2)′ (ω1−(p/2)′ ,Rd)

≤ Cp ‖ f ‖2Lp(ω,Rd)

∥∥∥F̃
∥∥∥

L(p/2)′ (ω1−(p/2)′ ,Rd)
,

where F̃(y) = F(−y). The last inequality holds since (p/2)′ > q/(2 − q) and by invoking Lemma 2.2.
Therefore, we have ∥∥∥Mf,P,∞, j( f )

∥∥∥
Lp(ω,Rd)

≤ Cp ‖ f ‖Lp(ω,Rd) (3.10)

for q′ ≤ p < ∞ and ω ∈ Ap/q′ . By the last inequality and (3.3), we have that∥∥∥Mf,P,∞( f )
∥∥∥

Lp(ω,Rd)
≤ Cp ‖ f ‖Lp(ω,Rd) (3.11)

for δ ≤ p < ∞ and ω ∈ Ap/δ.
Now, let us estimate the

∥∥∥Mf,P,0( f )
∥∥∥

Lp(ω,Rd)
. Take Q(x) =

∑
|η|≤k

ληxη, and letMf,Q,0( f ) andMf,P,Q,0( f )

be given by

Mf,Q,0( f )(x) =


1∫

0

∣∣∣∣∣ ∫
Sd−1

eiQ(sw) f (x − su)f(u)dσ(u)
∣∣∣∣∣2 ds

s


1/2

,

AIMS Mathematics Volume 9, Issue 9, 25966–25978.



25974

and

Mf,P,Q,0( f )(x) =


1∫

0

∣∣∣∣∣ ∫
Sd−1

(
eiP(su) − eiQ(su)

)
f (x − su)f(u)dσ(u)

∣∣∣∣∣2 ds
s


1/2

.

By Minkowski’s inequality, we deduce that

Mf,P,0( f )(x) ≤ Mf,Q,0( f )(x) +Mf,P,Q,0( f )(x). (3.12)

Since the degree of the polynomial Q is less than or equal to k, we have that∥∥∥Mf,Q,0( f )
∥∥∥

Lp(ω,Rd)
≤ Cp ‖ f ‖Lp(ω,Rd) (3.13)

for all δ ≤ p < ∞ and ω ∈ Ap/δ. By noticing that

∣∣∣eiP(su) − eiQ(su)
∣∣∣ ≤ s(d+1)

∣∣∣∣∣∣∣∣
∑
|η|=d+1

ληuη

∣∣∣∣∣∣∣∣ ≤ s(d+1)

and using the Cauchy-Schwartz inequality, we obtain

Mf,P,Q,0( f )(x) ≤ C


1∫

0

∫
Sd−1

s2(k+1) |f(u) f (x − su)|2 dσ(u)
ds
s


1/2

≤


∞∑
`=1

2− j`2(k+1))

2−`+1∫
2−`

∫
Sd−1
|f(u) f (x − su)|2 dσ(u)

ds
s


1/2

.

Therefore, by following the same arguments as above, we obtain that∥∥∥Mf,P,Q,0( f )
∥∥∥

Lp(ω,Rd)
≤ Cp ‖ f ‖Lp(ω,Rd) (3.14)

for all δ ≤ p < ∞ and ω ∈ Ap/δ. Hence, by (3.13) and (3.14), we deduce that∥∥∥Mf,P,0( f )
∥∥∥

Lp(ω,Rd)
≤ Cp ‖ f ‖Lp(ω,Rd) . (3.15)

Consequently, by (3.2), (3.9), (3.11) and (3.15), the proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. By duality, it is easy to get that

M
(γ)
f,P( f )(x) =

( ∫ ∞

0

∣∣∣∣∣ ∫
Sd−1

eiP(sv) f (x − sv)f(v)dσ(v)
∣∣∣∣∣γ′ ds

s

)1/γ′

for all 1 < γ ≤ 2. Hence, ∥∥∥M(γ)
f,P( f )

∥∥∥
Lp(ω,Rd)

= ‖S ( f )‖Lp(Lγ′ (R+, ds
s ),ω,Rd) ,

where S : Lp(ω,Rd)→ Lp(Lγ
′

(R+, ds
s ), ω,Rd) is a linear operator given by

S ( f )(x, s) =

∫
Sd−1

eiP(sv) f (x − sv)f(v)dσ(v).
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Now, if γ = 1, f ∈ L∞(Rd) and h ∈ L1(R+, ds
s ), then we have that∣∣∣∣∣ ∫ ∞

0

∫
Sd−1

eiP(su) f (x − su)f(u)h(s)dσ(u)
ds
s

∣∣∣∣∣ ≤ ‖ f ‖L∞(Rd) ‖f‖L1(Sd−1) ‖h‖L1(R+, ds
s ) ,

and, hence, ∥∥∥M(1)
f,P( f )

∥∥∥
L∞(Rd)

≤ C ‖ f ‖L∞(Rd)

which, in turn, implies ∥∥∥M(1)
f,P( f )

∥∥∥
L∞(Rd)

= ‖S ( f )‖L∞(L∞(R+, ds
s ),Rd) ≤ C ‖ f ‖L∞(Rd) .

Since L∞(Rd, ω) = L∞(Rd), we have∥∥∥M(1)
f,P( f )

∥∥∥
L∞(ω,Rd)

= ‖S ( f )‖L∞(L∞(R+, ds
s ),ω,Rd) ≤ C ‖ f ‖L∞(ω,Rd) . (3.16)

On the other hand, by Theorem 1.1 we get∥∥∥M(2)
f,P( f )

∥∥∥
Lp(ω,Rd)

=
∥∥∥Mf,P( f )

∥∥∥
Lp(ω,Rd)

= ‖S ( f )‖Lp(L2(R+, ds
s ),ω,Rd)

≤ Cp ‖ f ‖Lp(ω,Rd) (3.17)

for δ ≤ p < ∞. Therefore, by applying the interpolation theorem for the Lebesgue mixed normed
spaces to (3.16) and (3.17), we deduce that∥∥∥M(γ)

f,P( f )
∥∥∥

Lp(ω,Rd)
≤ Cp ‖ f ‖Lp(ω,Rd)

for all (δγ′)/2 ≤ p < ∞ with 1 < γ ≤ 2.

Proof of Theorem 1.3. To begin, we notice that
(
T (γ)
f,P f

)
(x) = limε→0 T (γ)

f,P,ε f (x), where T (γ)
f,P,ε is the

truncated singular integral operator given by

T (γ)
f,P,ε f (x) =

∫
|u|>ε

eiP(u) f (x − u)
f(u)h(|u|)
|u|d

du. (3.18)

By Hölder’s inequality, we deduce∣∣∣T (γ)
f,P,ε f (x)

∣∣∣ ≤ ∫ ∞

ε

|h(s)|
∣∣∣∣∣∫
Sd−1

eiP(sv) f (x − sv)f(v)dσ(v)
∣∣∣∣∣ ds

s

≤ ‖h‖Lγ(R+,dr/r)

(∫ ∞

0

∣∣∣∣∣∫
Sd−1

eiP(sv) f (x − sv)f(v)dσ(v)
∣∣∣∣∣γ′ ds

s

)1/γ′

.

Hence, ∣∣∣T (γ)
f,P,ε( f )(x)

∣∣∣ ≤ ‖h‖Lγ(R+, ds
s )M

(γ)
f,P( f )(x). (3.19)

Therefore, by Theorem 1.2, we get that T (γ)
f,P is bounded on Lp(ω,Rd) for (δγ′)/2 ≤ p < ∞ and

ω ∈ Ap/δ. On the other hand, by a standard duality argument, we get that T (γ)
f,P is bounded on Lp(ω,Rd)

for 1 < p ≤ ( δγ
′

2 )′ and ω1−p′ ∈ Ap′/δ. The proof is complete.
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4. Conclusions

In this work, we studied the mapping properties of the maximal integral operators M(γ)
f,P. In fact,

we proved the weighted space Lp(ω,Rd) boundedness of M(γ)
f,P for all (δγ′)/2 ≤ p < ∞ whenever

ω ∈ Ap/δ, f ∈ Lq(Sd−1), and 1 ≤ γ ≤ 2. Then, as consequence of the this result, we confirmed
the weighted Lp(ω,Rd) boundedness of the operators T (γ)

f,P and M(γ)
f,P. The results of this paper are

substantial extensions and improvements of the main results in [4] and [15].
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