

AIMS Mathematics, 9(9): 25966–25978. DOI: 10.3934/math.20241269 Received: 20 July 2024 Revised: 22 August 2024 Accepted: 27 August 2024 Published: 06 September 2024

https://www.aimspress.com/journal/Math

Research article

Weighted L^p boundedness of maximal operators with rough kernels

Hussain Al-Qassem^{1,*} and Mohammed Ali²

- ¹ Department of Mathematics and Statistics, Qatar University, Doha, Qatar
- ² Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
- * Correspondence: Email: husseink@qu.edu.qa.

Abstract: In this paper, we study the weighted spaces $L^p(\omega, \mathbb{R}^d)$ boundedness of certain class of maximal operators when their kernels belong to the space $L^q(\mathbb{S}^{d-1})$, q > 1. Our results in this paper are improvements and extensions of some previously known results.

Keywords: maximal functions; *L^p* boundedness; rough kernels; surfaces of revolution; extrapolation **Mathematics Subject Classification:** 42B20, 42B25

1. Introduction and statement of results

Let \mathbb{S}^{d-1} be the unit sphere in the *d*-dimensional Euclidean space $\mathbb{R}^d (d \ge 2)$ which is equipped with the normalized Lebesgue surface measure $d\sigma = d\sigma(\cdot)$.

Let $h : \mathbb{R}^+ \to \mathbb{C}$ be a radial function satisfying

$$||h||_{L^2(\mathbb{R}^+, \frac{ds}{s})} = \left(\int_0^\infty |h(s)|^2 \frac{ds}{s}\right)^{1/2} \le 1,$$

and let \mathfrak{V} be a homogeneous function of degree zero on \mathbb{R}^d with $\mathfrak{V} \in L^1(\mathbb{S}^{d-1})$ and

$$\int_{\mathbb{S}^{d-1}} \mathfrak{V}(x') d\sigma(x') = 0, \tag{1.1}$$

where x' = x/|x| for $x \in \mathbb{R}^d \setminus \{0\}$.

For a Schwartz function $f \in (\mathbb{R}^d)$, we consider the maximal operator $\mathfrak{M}_{\mathfrak{U},P}$ given by

$$\mathfrak{M}_{\mathfrak{V},P}(f)(x) = \sup_{h \in L^2(\mathbb{R}^+, \frac{ds}{s})} \left| \int_{\mathbb{R}^d} e^{iP(u)} f(x-u) \frac{\mathfrak{V}(u)h(|u|)}{|u|^d} du \right|,$$
(1.2)

where $P : \mathbb{R}^d \to \mathbb{R}$ is a real-valued polynomial.

We notice that if $P(y) \equiv 0$, then the operator $\mathfrak{M}_{U,P}$ is reduced to be the classical maximal operator denoted by \mathfrak{M}_{U} , which was introduced by Chen and Lin in [1]. The authors of [1] proved the boundedness of \mathfrak{M}_{U} on $L^{p}(\mathbb{R}^{d})$ for $2d/(2d-1) if <math>\mathcal{U} \in C(\mathbb{S}^{d-1})$, and they showed that the range of p is the best possible. This result was extended in [2] in which the author confirmed the L^{p} boundedness of \mathfrak{M}_{U} for all $p \in [2, \infty)$ whenever $\mathcal{U} \in L(\log L)^{1/2}(\mathbb{S}^{d-1})$, and that the condition $\mathcal{U} \in L(\log L)^{1/2}(\mathbb{S}^{d-1})$ is optimal in the sense that the operator \mathfrak{M}_{U} may fail to be bounded on $L^{2}(\mathbb{R}^{d})$ when $\mathcal{U} \in L(\log L)^{r}(\mathbb{S}^{d-1})$ for any $r \in (0, 1/2)$. On the other hand, the author of [3] proved that \mathfrak{M}_{U} is bounded on $L^{p}(\mathbb{R}^{d})$ for $p \ge 2$ if \mathcal{U} lies in the block spaces $B_{q}^{(0,-1/2)}(\mathbb{S}^{d-1})$ with q > 1, and they also proved that if the kernel \mathcal{U} belongs to $B_{q}^{(0,r)}(\mathbb{S}^{d-1})$ for some $r \in (-1, -1/2)$, then \mathfrak{M}_{U} may not be bounded on $L^{p}(\mathbb{R}^{d})$ for all $p \ge 2$ provided that $\mathcal{U} \in B_{q}^{(0,-1/2)}(\mathbb{S}^{d-1}) \cup L(\log L)^{1/2}(\mathbb{S}^{d-1})$. Subsequently, the investigation of the boundedness of $\mathfrak{M}_{U,P}$ on $L^{p}(\mathbb{R}^{d})$ under various conditions has attracted the attention of many authors: For background information [5–8], importance and the development [9–11], and recent advances and studies [12, 13].

On the other hand, in [14] Y. Ding and H. Qingzheng proved the weighted L^p boundedness of $\mathfrak{M}_{\mathfrak{V}}$ as described in the following theorem.

Theorem A. Let $d \ge 2$. Assume $\mathfrak{U} \in L^2(\mathbb{S}^{d-1})$ satisfies (1.1). Then,

$$\|\mathfrak{M}_{\mathfrak{U}}(f)\|_{L^{p}(\omega, \mathbb{R}^{d})} \leq C_{p} \|f\|_{L^{p}(\omega, \mathbb{R}^{d})}, \qquad (1.3)$$

if p and ω satisfy one of the following conditions:

(a) $2 \le p < \infty$ and $\omega \in A_{p/2}(\mathbb{R}^d)$;

(b) $2d/(2d-1) , <math>\omega(x) = |x|^{\alpha}$, and $\frac{1}{2}(1-d)(2-p) < \alpha < \frac{1}{2}(2dp-2d-p)$, where A_p is the Muckenhoupt's weight class, and the weighted $L^p(\omega, \mathbb{R}^d)$ with $\omega \ge 0$ is defined by

$$L^{p}(\omega,\mathbb{R}^{d}) = \left\{ f: \|f\|_{L^{p}(\omega,\mathbb{R}^{d})} = \left(\int_{\mathbb{R}^{d}} |f(y)|^{p} \,\omega(y) dy \right)^{1/p} < \infty \right\}.$$

Subsequently, Al-Qassem in [15] generalized the above result as in the following theorem: **Theorem B.** Suppose that $\mho \in L^q(\mathbb{S}^{d-1})$ for some q > 1 and it satisfies (1.1). Then,

$$\left\|\mathfrak{M}_{\mathfrak{V}}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \left\|f\right\|_{L^{p}(\omega,\mathbb{R}^{d})},$$

if p and ω satisfy one of the following conditions:

(a) $\delta \leq p < \infty$ and $\omega \in A_{p/\delta}$;

(b) $2d\delta/(2d + d\delta - 2) , <math>\omega(x) = |x|^{\alpha}$, $\frac{1}{2}(1 - d)(2 - p) < \alpha < \frac{1}{2}(2dp - 2d - p)$, where $\delta = \max\{2, q'\}$ and q' is the dual exponent of q.

In view of the results in [4] concerning the L^p boundedness of $\mathfrak{M}_{\mathfrak{U},P}$ and of the results in [15] concerning the weighted L^p boundedness of $\mathfrak{M}_{\mathfrak{U},P}$ it is natural to ask wether the weighted L^p boundedness of $\mathfrak{M}_{\mathfrak{U},P}$ holds under the same conditions as assumed in Theorem B. We shall obtain an answer to this question in the affirmative as described in the following theorem.

AIMS Mathematics

Theorem 1.1. Let $\mathcal{U} \in L^q(\mathbb{S}^{d-1})$ with q > 1. Suppose that $P : \mathbb{R}^d \to \mathbb{R}$ is a polynomial of degree k, then the estimate

$$\left\|\mathfrak{M}_{\mathfrak{U},P}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \left\|f\right\|_{L^{p}(\omega,\mathbb{R}^{d})}$$
(1.4)

holds for $\delta \leq p < \infty$ and $\omega \in A_{p/\delta}$, where $\delta = \max\{2, q'\}$.

Now let us give some results which follow as a consequence of Theorem 1.1. For $\gamma \in (1, \infty)$, we let $L^{\gamma}(\mathbb{R}^+, \frac{ds}{s})$ be the set of all measurable functions $h : \mathbb{R}^+ \to \mathbb{R}$ such that

$$\|h\|_{L^{\gamma}(\mathbb{R}^+,\frac{ds}{s})} = \left(\int_0^\infty |h(s)|^{\gamma} \frac{ds}{s}\right)^{1/\gamma} \le 1.$$

Consider the maximal operator $\mathfrak{M}_{\mathfrak{T}P}^{(\gamma)}$ given by

$$\mathfrak{M}_{\mathfrak{V},P}^{(\gamma)}(f)(x) = \sup_{h \in L^{\gamma}(\mathbb{R}^{+}, \frac{ds}{s})} \left| \int_{\mathbb{R}^{d}} e^{iP(u)} f(x-u) \frac{\mathfrak{V}(u)h(|u|)}{|u|^{d}} du \right|,$$
(1.5)

where $P : \mathbb{R}^d \to \mathbb{R}$ is a real-valued polynomial, $f \in \mathcal{S}(\mathbb{R}^d)$ and $1 \le \gamma \le 2$.

The study of the boundedness of the operator $\mathfrak{M}_{\mathfrak{U},P}^{(\gamma)}$ started in [1] in which the authors proved that if $\mathfrak{U} \in C(\mathbb{S}^{d-1})$ and $h \in L^{\gamma}(\mathbb{R}^+, \frac{ds}{s})$ for some $1 \leq \gamma \leq 2$, then the $L^p(\mathbb{R}^d)$ boundedness of the operator $\mathfrak{M}_{\mathfrak{U},P}^{(\gamma)}$ is satisfied for $(\gamma d)' . For more information about the investigation of <math>\mathfrak{M}_{\mathfrak{U},P}^{(\gamma)}$, under various conditions and some past studies, readers are referred to see [16–18] and the references therein. In this work, an extension and improvement over the result in [1] shall be obtained by proving the weighted L^p of $\mathfrak{M}_{\mathfrak{U},P}^{(\gamma)}$ when the condition $\mathfrak{U} \in C(\mathbb{S}^{d-1})$ is replaced by the weaker condition $\mathfrak{U} \in L^q(\mathbb{S}^{d-1})$ with q > 1. Precisely, we have the following:

Theorem 1.2. Let $\mathfrak{O} \in L^q(\mathbb{S}^{d-1})$ with q > 1. Let $\omega \in A_{p/\delta}$ and $h \in L^{\gamma}(\mathbb{R}^+, \frac{ds}{s})$ with $1 \le \gamma \le 2$. Then, we have

$$\left\|\mathfrak{M}_{\mathfrak{V},P}^{(\gamma)}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \left\|f\right\|_{L^{p}(\omega,\mathbb{R}^{d})}$$
(1.6)

for $(\delta \gamma')/2 \le p < \infty$.

Concerning the boundedness of a certain class of oscillatory singular integrals, we have the following:

Theorem 1.3. Assume that $\mathfrak{U} \in L^q(\mathbb{S}^{d-1})$ with q > 1. Let $\omega \in A_{p/\delta}$ and $h \in L^{\gamma}(\mathbb{R}^+, \frac{ds}{s})$ for some $1 < \gamma \leq 2$. Then, the oscillatory singular integral operator $T_{\mathfrak{U}, p}^{(\gamma)}$ given by

$$T_{\mathfrak{U},P}^{(\gamma)}(f)(x) = p.v. \int_{\mathbb{R}^d} e^{iP(u)} f(x-u) \frac{\mathfrak{U}(u)h(|u|)}{|u|^d} du,$$

is bounded on $L^p(\omega, \mathbb{R}^d)$ for $(\delta \gamma')/2 \leq p < \infty$, and it is bounded on $L^p(\omega, \mathbb{R}^d)$ for $1 and <math>\omega^{1-p'} \in A_{p'/\delta}$.

For background information and related work about the operator, see [19–24].

AIMS Mathematics

We point out that the generalized Marcinkiewicz operator concerning the operator $\mathfrak{M}_{\mathcal{T}P}^{(\gamma)}$ is given by

$$\mathcal{M}_{\mathcal{U},P}^{(\gamma)}(f)(x) = \left(\int_{\mathbb{R}^+} \left| \frac{1}{s} \int_{|u| \le s} e^{iP(u)} f(x-u) \mathcal{U}(u) |u|^{-d+1} du \right|^{\gamma'} \frac{ds}{s} \right)^{1/\gamma'}.$$
 (1.7)

As an immediate consequence of the fact

$$\mathcal{M}_{\mathcal{U},P}^{(\gamma)}(f)(x) \le C \mathfrak{M}_{\mathcal{U},P}^{(\gamma)}(f)(x)$$

for $1 \le \gamma \le 2$, we obtain the following result:

Theorem 1.4. Let \mathfrak{V} , ω , P, and γ be given as in Theorem 1.2. Then, the generalized Marcinkiewicz integral $\mathcal{M}_{\mathfrak{V}P}^{(\gamma)}$ is bounded on $L^p(\omega, \mathbb{R}^d)$ for $(\delta \gamma')/2 \leq p < \infty$ with $1 < \gamma \leq 2$.

It is clear that for the special case P = 0 and $\gamma = 2$, the operator $\mathcal{M}_{U,0}^{(2)}$ reduces to the classical Marcinkiewicz integral operator, which was introduced in [25], in which the author proved that the operator is bounded on $L^p(\mathbb{R}^d)$ only for $1 whenever <math>\mathcal{U} \in Lip_\eta(\mathbb{S}^{d-1})$ for some $0 < \eta \le 2$. Thereafter, the study of the operator $\mathcal{M}_{U,P}^{(\gamma)}$ under several conditions has been discussed by many mathematicians (see, for instance [4, 26–30]).

Throughout the rest of the paper, the letter *C* stands for a positive constant which is independent of the essential variables and its value is not necessary the same at each occurrence.

2. Preliminary lemmas

In this section, we give some preliminary lemmas to prove our main results. Let us start with the following lemma, which is found in [4].

Lemma 2.1. Let $\mathfrak{T} \in L^q(\mathbb{S}^{d-1})$, q > 1 be a homogeneous function of degree zero. Suppose that

$$P(x) = \sum_{|\eta| \le k} \lambda_{\eta} x^{\eta},$$

is a polynomial of degree k > 1 such that $|u|^k$ is not one of its terms. For $j \in \mathbb{Z}$, define $I_{j,U} : \mathbb{R}^d \to \mathbb{R}$ by

$$I_{j,\mho}(\xi) = \int_{2^{-(j+1)}}^{2^{-(j-1)}} \left| \int_{\mathbb{S}^{d-1}} \mho(u) e^{-i[P(su) + su \cdot \xi]} d\sigma(u) \right|^2 \frac{ds}{s}.$$
 (2.1)

Then, there exist constants C > 0 and $0 < \epsilon < 1$ such that

$$\sup_{\xi \in \mathbb{R}^d} I_{j,\mho}(\xi) \le C \, 2^{(j+1)/4q'} \left(\sum_{|\eta|=m} |\lambda_{\eta}| \right)^{-\epsilon/q'}$$

We need the following lemma from [15].

AIMS Mathematics

Lemma 2.2. Let $\mathfrak{U} \in L^q(\mathbb{S}^{d-1})$ for some q > 1 and $\omega \in A_{p/q'}(\mathbb{R}^+)$ with $1 . Assume that the maximal function <math>M_{\mathfrak{U}}$ is given by

$$M_{\mathcal{U}}f(x) = \sup_{j \in \mathbb{Z}} \int_{2^{j} \le |u| \le 2^{(j+1)}} |f(x-u)| \frac{|\mathcal{U}(u)|}{|u|^d} du.$$

Then there exists a positive constant C_p such that

$$\|M_{\mathfrak{U}}(f)\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \|f\|_{L^{p}(\omega,\mathbb{R}^{d})}$$

for any $f \in L^p(\omega, \mathbb{R}^d)$ with $q' \leq p < \infty$.

The next lemma can be proved by employing the same argument as in the proof of Theorem 1.1 in [15].

Lemma 2.3. Let $\omega \in A_{p/\delta}$ and $\mathfrak{V} \in L^q(\mathbb{S}^{d-1})$ with q > 1. Then, there is a constant $C_p > 0$ such that

$$\|\mathfrak{M}_{\mathfrak{U}}(f)\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \|f\|_{L^{p}(\omega,\mathbb{R}^{d})}$$

$$(2.2)$$

for all $\delta \leq p < \infty$.

Proof. Let $\{\psi_j\}_{j\in\mathbb{Z}}$ be a smooth partition of unity in $(0,\infty)$ with the following properties:

$$\psi_{j} \in C^{\infty}, \quad \operatorname{supp} \psi_{j} \subseteq \left[2^{-(j+1)}, 2^{-(j-1)}\right], \quad 0 \le \psi_{j} \le 1,$$
$$\sum_{j \in \mathbb{Z}} \psi_{j}(s) = 1, \quad \operatorname{and} \quad \left|\frac{d^{k}\psi_{j}(s)}{ds^{k}}\right| \le \frac{C_{k}}{s^{k}}.$$
(2.3)

For $j \in \mathbb{Z}$, define the operator Υ_j in \mathbb{R}^d by

$$(\widehat{\Upsilon_j(f)})(\xi) = \psi_j(|\xi|))\widehat{f}(\xi) \text{ for } \xi \in \mathbb{R}^d.$$

Then, for $f \in \mathcal{S}(\mathbb{R}^d)$, we have that

$$\mathfrak{M}_{\mathfrak{U}}(f)(x) \le \sum_{k \in \mathbb{Z}} \mathcal{G}_{\mathfrak{U},k}(f)(x),$$
(2.4)

where

$$\mathcal{G}_{\mathfrak{V},k}(f)(x) = \left(\sum_{j\in\mathbb{Z}}\int_{2^{-(j+1)}}^{2^{-(j-1)}} \left|\int_{\mathbb{S}^{d-1}} (\Upsilon_{k+j}f)(x-su)\mathfrak{V}(u)d\sigma(u)\right|^2 \frac{ds}{s}\right)^{1/2}$$

By following the same argument utilized in the proof of Theorem 1.1 in [15], along with invoking Lemma 2.1, we obtain that

$$\left\|\mathcal{G}_{\mathfrak{V},k}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} 2^{-\tau|k|} \left\|f\right\|_{L^{p}(\omega,\mathbb{R}^{d})},\tag{2.5}$$

for some constant $\tau \in (0, 1)$ and for all $\delta \le p < \infty$. Consequently, by (2.4) and (2.5), we get (2.2) for all $\delta \le p < \infty$.

AIMS Mathematics

3. Proof of the main results

Proof of Theorem 1.1. We shall use some of the ideas from [4]. Precisely, we use the induction on the degree of the polynomial *P*. It is clear that if the degree of *P* is 0, then by Lemma 2.3 we get

$$\left\|\mathfrak{M}_{\mathfrak{V},P}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \le C_{p} \|\|f\|_{L^{p}(\omega,\mathbb{R}^{d})}$$

$$(3.1)$$

for all $\delta \le p < \infty$. Now, if the degree of *P* is 1, then we deduce that there is $\overrightarrow{c} \in \mathbb{R}^d$ so that $P(u) = \overrightarrow{c} \cdot u$. Hence, if we set $g(u) = e^{-iP(u)}f(u)$, then by (3.1) we get that

$$\left\|\mathfrak{M}_{\mathfrak{U},P}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq \left\|\mathfrak{M}_{\mathfrak{U},P}(g)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \|f\|_{L^{p}(\omega,\mathbb{R}^{d})}.$$

Next, suppose that (1.4) holds for any polynomial P whose degree is less than or equal to $k \ge 1$. We need to prove that the inequality (1.4) is also satisfied for any polynomial of degree k + 1. Let

$$P(u) = \sum_{|\eta| \le k+1} \lambda_{\eta} u^{\eta}$$

be a polynomial of degree k + 1. Without loss of generality, we may assume that *P* does not contain $|u|^{k+1}$ as one of its terms, and $\sum_{|\eta|=k+1} |\lambda_{\eta}| = 1$.

For $j \in \mathbb{Z}$, let $\{\psi_j\}$ and Υ_j be chosen as those in (2.3). Set

$$\Gamma_{\infty}(s) = \sum_{j=-\infty}^{0} \psi_j(s) \text{ and } \Gamma_0(s) = \sum_{j=1}^{\infty} \psi_j(s).$$

Then, $\Gamma_{\infty}(s) + \Gamma_0(s) = 1$, $supp(\Gamma_{\infty}(s)) \subseteq [2^{-1}, \infty)$, and $supp(\Gamma_0(s)) \subseteq (0, 1]$. Hence, we get by Minkowski's inequality that

$$\mathfrak{M}_{\mathfrak{U},P}(f)(x) \le \mathfrak{M}_{\mathfrak{U},P,\infty}(f)(x) + \mathfrak{M}_{\mathfrak{U},P,0}(f)(x), \tag{3.2}$$

where

$$\mathfrak{M}_{\mathfrak{U},P,\infty}(f)(x) = \left(\int_{2^{-1}}^{\infty} \left| \Gamma_{\infty}(s) \int_{\mathbb{S}^{d-1}} e^{iP(su)} f(x-su) \mathfrak{U}(u) d\sigma(u) \right|^2 \frac{ds}{s} \right)^{1/2}$$

and

$$\mathfrak{M}_{\mathfrak{V},P,0}(f)(x) = \left(\int_{0}^{1} \left|\Gamma_{0}(s)\int_{\mathbb{S}^{d-1}} e^{iP(su)}f(x-su)\mathfrak{V}(u)d\sigma(u)\right|^{2}\frac{ds}{s}\right)^{1/2}$$

Let us estimate $\left\|\mathfrak{M}_{\mathfrak{U},P,\infty}(f)\right\|_{L^p(\omega,\mathbb{R}^d)}$. Define

$$\mathfrak{M}_{\mathfrak{U},P,\infty,j}(f)(x) = \left(\int_{2^{-(j+1)}}^{2^{-(j-1)}} \left| \int_{\mathbb{S}^{d-1}} e^{iP(su)} f(x-su) \mathfrak{U}(u) d\sigma(u) \right|^2 \frac{ds}{s} \right)^{1/2}.$$

AIMS Mathematics

Then, by the generalized Minkowski's inequality, we have

$$\mathfrak{M}_{\mathfrak{U},P,\infty}(f)(x) \le \sum_{j=-\infty}^{0} \mathfrak{M}_{\mathfrak{U},P,\infty,j}(f)(x).$$
(3.3)

Case 1. When $q \ge 2$. In this case, we have $2 \le p < \infty$ and $\omega \in A_{p/2}$. Let us consider first the case p > 2. By duality, there is $g \in L^{(p/2)'}(\omega^{1-(p/2)'}, \mathbb{R}^d)$ such that $||g||_{L^{(p/2)'}(\omega^{1-(p/2)'}, \mathbb{R}^d)} \le 1$ and

$$\begin{split} & \left\|\mathfrak{M}_{\mathfrak{U},P,\infty,j}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})}^{2} \\ &= \int_{\mathbb{R}^{d}} \int_{1}^{4} \left|\int_{\mathbb{S}^{d-1}} e^{-iP(2^{-(j+1)}su)} \mathfrak{U}(u) f(x-2^{-(j+1)}su) d\sigma(u)\right|^{2} \frac{ds}{s} |g(x)| dx \\ &\leq \left\|\mathfrak{U}\right\|_{L^{q}(\mathbb{S}^{d-1})}^{2} \int_{\mathbb{R}^{d}} \int_{1}^{4} \left(\int_{\mathbb{S}^{d-1}} \left|f(x-2^{-(j+1)}su)\right|^{q'} d\sigma(u)\right)^{2/q'} \frac{ds}{s} |g(x)| dx \\ &\leq \left\|\mathfrak{U}\right\|_{L^{q}(\mathbb{S}^{d-1})}^{2} \int_{\mathbb{R}^{d}} \int_{1}^{4} \left(\int_{\mathbb{S}^{d-1}} \left|f(x-2^{-(j+1)}su)\right|^{2} d\sigma(u)\right) \frac{ds}{s} |g(x)| dx. \end{split}$$

Hence, by Hölder's inequality, we get

$$\begin{split} \left\| \mathfrak{M}_{\mathfrak{U},P,a,j}(f) \right\|_{L^{p}(\omega,\mathbb{R}^{d})}^{2} &\leq C \int_{\mathbb{R}^{d}} |f(y)|^{2} \int_{1}^{4} \int_{\mathbb{S}^{d-1}} \left| g(y+2^{-(j+1)}su) \right| d\sigma(u) \frac{ds}{s} dy \\ &\leq C_{p} \left\| |f|^{2} \right\|_{L^{(p/2)}(\omega,\mathbb{R}^{d})} \left\| M^{*}(\widetilde{g}) \right\|_{L^{(p/2)'}(\omega^{1-(p/2)'},\mathbb{R}^{d})} \\ &\leq C_{p} \left\| f \right\|_{L^{p}(\omega,\mathbb{R}^{d})}^{2} \left\| \widetilde{g} \right\|_{L^{(p/2)'}(\omega^{1-(p/2)'},\mathbb{R}^{d})}, \end{split}$$

where $\tilde{g}(y) = g(-y)$ and $M^*(f)$ is the Hardy-Littlewood maximal function. Thus,

$$\left\|\mathfrak{M}_{\mathfrak{U},P,\infty,j}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \left\|f\right\|_{L^{p}(\omega,\mathbb{R}^{d})},\tag{3.4}$$

for $2 and <math>\omega \in A_{p/2}$.

Now, for the case p = 2 and $\omega \in A_1$, we have

$$\begin{split} \left\|\mathfrak{M}_{\mathfrak{U},P,\infty,j}(f)\right\|_{L^{2}(\omega,\mathbb{R}^{d})}^{2} &= \int_{\mathbb{R}^{d}} \int_{1}^{4} \left|\int_{\mathbb{S}^{d-1}} e^{-iP(2^{-(j+1)}su)} \mathfrak{U}(u)f(x-2^{-(j+1)}su)d\sigma(u)\right|^{2} \frac{ds}{s}\omega(x)dx \\ &\leq \left\|\mathfrak{U}\right\|_{q}^{2} \int_{\mathbb{R}^{n}} |f(x)|^{2} \left(\int_{1}^{4} \int_{\mathbb{S}^{d-1}} \omega(x+2^{-(j+1)}su)d\sigma(u) \frac{ds}{s}\right)\omega(x)dx \\ &\leq C \int_{\mathbb{R}^{n}} |f(x)|^{2} M^{*}(\tilde{\omega})(-x)dx, \text{ with } \tilde{\omega}(x) = \omega(-x) \\ &\leq C \int_{\mathbb{R}^{n}} |f(x)|^{2} \omega(x)dx = C \left\|f\right\|_{L^{2}(\omega,\mathbb{R}^{d})}^{2}, \end{split}$$
(3.5)

where the last inequality is obtained by the fact that $M^*\omega(x) \leq C\omega(x)$ for a.e. $x \in \mathbb{R}^d$.

Since for any $\omega \in A_{p/2}$ there exists $\alpha > 0$ such that $\omega^{1+\alpha} \in A_{p/2}$, by (3.4) and (3.5), we get that

$$\left\|\mathfrak{M}_{\mathfrak{U},P,\infty,j}(f)\right\|_{L^{p}(\omega^{1+\alpha},\mathbb{R}^{d})} \leq C_{p} \left\|f\right\|_{L^{p}(\omega^{1+\alpha},\mathbb{R}^{d})},\tag{3.6}$$

for $2 and <math>\omega \in A_{p/2}$.

AIMS Mathematics

Now we will obtain a sharp unweighted L^2 estimate of $\mathfrak{M}_{\mathfrak{O},P,\infty,i}(f)$. By Fubini's theorem, Plancherel's theorem and Lemma 2.1 we get

$$\begin{aligned} \left\|\mathfrak{M}_{\mathfrak{U},P,\infty,j}(f)\right\|_{L^{2}(\mathbb{R}^{d})} &= \left(\int_{\mathbb{R}^{d}}\left|\widehat{f}(\xi)\right|^{2}I_{j,\mathfrak{U}}(\xi)d\xi\right)^{1/2} \\ &\leq C 2^{\frac{(j+1)}{8q'}}\left\||f\|_{L^{2}(\mathbb{R}^{d})}. \end{aligned}$$
(3.7)

Thus, using the Stein-Weiss interpolation theorem with change of measure [31], we may interpolate between (3.6) and (3.7) to obtain

$$\left\|\mathfrak{M}_{\mathfrak{V},P,\infty,j}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} 2^{\frac{\varepsilon(j+1)}{8q'}} \left\|f\right\|_{L^{p}(\omega,\mathbb{R}^{d})}$$
(3.8)

for $2 \le p < \infty$, $\omega \in A_{p/2}$, and for some $\varepsilon \in (0, 1)$. Consequently, by (3.3) and (3.8), we conclude that

$$\left\|\mathfrak{M}_{\mathfrak{U},P,\infty}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \left\|f\right\|_{L^{p}(\omega,\mathbb{R}^{d})}$$
(3.9)

for $2 \le p < \infty$ and $\omega \in A_{p/2}$.

Case 2. When 1 < q < 2. In this case, we have $q' \le p < \infty$ and $\omega \in A_{p/q'}$. Since p > 2, by duality, there exists $F \in L^{(p/2)'}(\omega^{1-(p/2)'}, \mathbb{R}^d)$ such that $||F||_{L^{(p/2)'}(\omega^{1-(p/2)'}, \mathbb{R}^d)} \le 1$ and

$$\begin{split} &\|\mathfrak{M}_{\mathfrak{U},P,\infty,j}(f)\|_{L^{p}(\omega,\mathbb{R}^{d})}^{2} \\ &= \int_{\mathbb{R}^{d}} \int_{1}^{4} \left| \int_{\mathbb{S}^{d-1}} e^{-iP(2^{-(j+1)}su)} \mathfrak{U}(u) f(x-2^{-(j+1)}su) d\sigma(u) \right|^{2} \frac{ds}{s} |F(x)| \, dx \\ &\leq \||\mathfrak{U}\|_{L^{q}(\mathbb{S}^{d-1})}^{q} \int_{\mathbb{R}^{d}} \int_{1}^{4} \left(\int_{\mathbb{S}^{d-1}} |\mathfrak{U}(u)|^{2-q} \left| f(x-2^{-(j+1)}su) \right|^{2} d\sigma(u) \right) \frac{ds}{s} |F(x)| \, dx. \end{split}$$

Hence, by Hölder's inequality, we get

$$\begin{split} \left\| \mathfrak{M}_{\mathfrak{V},P,\infty,j}(f) \right\|_{L^{p}(\omega,\mathbb{R}^{d})}^{2} &\leq C \int_{\mathbb{R}^{d}} |f(y)|^{2} \int_{1}^{4} \int_{\mathbb{S}^{d-1}} |\mathfrak{V}(u)|^{2-q} \left| F(y+2^{-(j+1)}su) \right| d\sigma(u) \frac{ds}{s} dy \\ &\leq C \left\| |f|^{2} \right\|_{L^{(p/2)}(\omega,\mathbb{R}^{d})} \left\| M_{\mathfrak{V}^{(2-q)}}(\widetilde{F}) \right\|_{L^{(p/2)'}(\omega^{1-(p/2)'},\mathbb{R}^{d})} \\ &\leq C_{p} \left\| f \right\|_{L^{p}(\omega,\mathbb{R}^{d})}^{2} \left\| \widetilde{F} \right\|_{L^{(p/2)'}(\omega^{1-(p/2)'},\mathbb{R}^{d})}, \end{split}$$

where $\widetilde{F}(y) = F(-y)$. The last inequality holds since (p/2)' > q/(2-q) and by invoking Lemma 2.2. Therefore, we have

$$\left\|\mathfrak{M}_{\mathfrak{V},P,\infty,j}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \left\|f\right\|_{L^{p}(\omega,\mathbb{R}^{d})}$$
(3.10)

for $q' \le p < \infty$ and $\omega \in A_{p/q'}$. By the last inequality and (3.3), we have that

$$\left\|\mathfrak{M}_{\mathfrak{U},P,\infty}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \left\|f\right\|_{L^{p}(\omega,\mathbb{R}^{d})}$$
(3.11)

for $\delta \leq p < \infty$ and $\omega \in A_{p/\delta}$.

Now, let us estimate the $\left\|\mathfrak{M}_{\mathfrak{U},P,0}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})}$. Take $Q(x) = \sum_{|\eta| \le k} \lambda_{\eta} x^{\eta}$, and let $\mathfrak{M}_{\mathfrak{U},Q,0}(f)$ and $\mathfrak{M}_{\mathfrak{U},P,Q,0}(f)$

be given by

$$\mathfrak{M}_{\mathfrak{U},Q,0}(f)(x) = \left(\int_{0}^{1} \left| \int_{\mathbb{S}^{d-1}} e^{iQ(sw)} f(x-su) \mathfrak{U}(u) d\sigma(u) \right|^{2} \frac{ds}{s} \right)^{1/2},$$

AIMS Mathematics

and

$$\mathfrak{M}_{\mathfrak{V},P,Q,0}(f)(x) = \left(\int_{0}^{1} \left| \int_{\mathbb{S}^{d-1}} \left(e^{iP(su)} - e^{iQ(su)} \right) f(x-su) \mathfrak{U}(u) d\sigma(u) \right|^{2} \frac{ds}{s} \right)^{1/2}$$

By Minkowski's inequality, we deduce that

$$\mathfrak{M}_{\mathfrak{U},P,0}(f)(x) \le \mathfrak{M}_{\mathfrak{U},Q,0}(f)(x) + \mathfrak{M}_{\mathfrak{U},P,Q,0}(f)(x).$$
(3.12)

Since the degree of the polynomial Q is less than or equal to k, we have that

$$\left\|\mathfrak{M}_{\mathfrak{U},\mathcal{Q},0}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \left\|f\right\|_{L^{p}(\omega,\mathbb{R}^{d})}$$
(3.13)

for all $\delta \leq p < \infty$ and $\omega \in A_{p/\delta}$. By noticing that

$$\left| e^{iP(su)} - e^{iQ(su)} \right| \le s^{(d+1)} \left| \sum_{|\eta|=d+1} \lambda_{\eta} u^{\eta} \right| \le s^{(d+1)}$$

and using the Cauchy-Schwartz inequality, we obtain

$$\begin{aligned} \mathfrak{M}_{\mathfrak{V},P,Q,0}(f)(x) &\leq C \left(\int_{0}^{1} \int_{\mathbb{S}^{d-1}} s^{2(k+1)} |\mathfrak{V}(u)f(x-su)|^{2} \, d\sigma(u) \frac{ds}{s} \right)^{1/2} \\ &\leq \left(\sum_{\ell=1}^{\infty} 2^{-j\ell 2(k+1))} \int_{2^{-\ell}}^{2^{-\ell+1}} \int_{\mathbb{S}^{d-1}} |\mathfrak{V}(u)f(x-su)|^{2} \, d\sigma(u) \frac{ds}{s} \right)^{1/2}. \end{aligned}$$

Therefore, by following the same arguments as above, we obtain that

$$\left\|\mathfrak{M}_{\mathfrak{V},P,\mathcal{Q},0}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \|f\|_{L^{p}(\omega,\mathbb{R}^{d})}$$

$$(3.14)$$

for all $\delta \leq p < \infty$ and $\omega \in A_{p/\delta}$. Hence, by (3.13) and (3.14), we deduce that

$$\left\|\mathfrak{M}_{\mathfrak{U},P,0}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \left\|f\right\|_{L^{p}(\omega,\mathbb{R}^{d})}.$$
(3.15)

Consequently, by (3.2), (3.9), (3.11) and (3.15), the proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. By duality, it is easy to get that

$$\mathfrak{M}_{\mathfrak{U},P}^{(\gamma)}(f)(x) = \left(\int_0^\infty \left| \int_{\mathbb{S}^{d-1}} e^{iP(sv)} f(x-sv) \mathfrak{U}(v) d\sigma(v) \right|^{\gamma'} \frac{ds}{s} \right)^{1/\gamma'}$$

for all $1 < \gamma \leq 2$. Hence,

$$\left\|\mathfrak{M}_{\mathfrak{O},P}^{(\gamma)}(f)\right\|_{L^p(\omega,\mathbb{R}^d)} = \|S(f)\|_{L^p(L^{\gamma'}(\mathbb{R}^+,\frac{ds}{s}),\omega,\mathbb{R}^d)},$$

where $S : L^p(\omega, \mathbb{R}^d) \to L^p(L^{\gamma'}(\mathbb{R}^+, \frac{ds}{s}), \omega, \mathbb{R}^d)$ is a linear operator given by

$$S(f)(x,s) = \int_{\mathbb{S}^{d-1}} e^{iP(sv)} f(x-sv) \mathfrak{V}(v) d\sigma(v).$$

AIMS Mathematics

Now, if $\gamma = 1$, $f \in L^{\infty}(\mathbb{R}^d)$ and $h \in L^1(\mathbb{R}^+, \frac{ds}{s})$, then we have that

$$\left|\int_0^\infty \int_{\mathbb{S}^{d-1}} e^{iP(su)} f(x-su) \operatorname{U}(u)h(s) d\sigma(u) \frac{ds}{s}\right| \leq \|f\|_{L^\infty(\mathbb{R}^d)} \|\operatorname{U}\|_{L^1(\mathbb{S}^{d-1})} \|h\|_{L^1(\mathbb{R}^+, \frac{ds}{s})},$$

and, hence,

$$\left\|\mathfrak{M}^{(1)}_{\mathfrak{U},P}(f)\right\|_{L^{\infty}(\mathbf{R}^{d})} \leq C \left\|f\right\|_{L^{\infty}(\mathbb{R}^{d})}$$

which, in turn, implies

$$\left\|\mathfrak{M}_{\mathfrak{O},P}^{(1)}(f)\right\|_{L^{\infty}(\mathbf{R}^{d})} = \left\|S(f)\right\|_{L^{\infty}(L^{\infty}(\mathbb{R}^{+},\frac{ds}{s}),\mathbb{R}^{d})} \le C \left\|f\right\|_{L^{\infty}(\mathbb{R}^{d})}$$

Since $L^{\infty}(\mathbb{R}^d, \omega) = L^{\infty}(\mathbb{R}^d)$, we have

$$\left\|\mathfrak{M}^{(1)}_{\mathfrak{V},P}(f)\right\|_{L^{\infty}(\omega,\mathbb{R}^d)} = \|S(f)\|_{L^{\infty}(L^{\infty}(\mathbb{R}^+,\frac{ds}{s}),\omega,\mathbb{R}^d)} \le C \|f\|_{L^{\infty}(\omega,\mathbb{R}^d)}.$$
(3.16)

On the other hand, by Theorem 1.1 we get

$$\begin{split} \left\|\mathfrak{M}_{\mathfrak{U},P}^{(2)}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} &= \left\|\mathfrak{M}_{\mathfrak{U},P}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} = \left\|S\left(f\right)\right\|_{L^{p}(L^{2}(\mathbb{R}^{+},\frac{ds}{s}),\omega,\mathbb{R}^{d})} \\ &\leq C_{p}\left\|f\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \end{split}$$
(3.17)

for $\delta \leq p < \infty$. Therefore, by applying the interpolation theorem for the Lebesgue mixed normed spaces to (3.16) and (3.17), we deduce that

$$\left\|\mathfrak{M}_{\mathfrak{U},P}^{(\gamma)}(f)\right\|_{L^{p}(\omega,\mathbb{R}^{d})} \leq C_{p} \left\|f\right\|_{L^{p}(\omega,\mathbb{R}^{d})}$$

for all $(\delta \gamma')/2 \le p < \infty$ with $1 < \gamma \le 2$.

Proof of Theorem 1.3. To begin, we notice that $(T_{U,P}^{(\gamma)}f)(x) = \lim_{\varepsilon \to 0} T_{U,P,\varepsilon}^{(\gamma)}f(x)$, where $T_{U,P,\varepsilon}^{(\gamma)}$ is the truncated singular integral operator given by

$$T_{\mho,P,\varepsilon}^{(\gamma)}f(x) = \int_{|u|>\varepsilon} e^{iP(u)}f(x-u)\frac{\mho(u)h(|u|)}{|u|^d}du.$$
(3.18)

By Hölder's inequality, we deduce

$$\begin{aligned} \left| T_{\mathfrak{U},P,\varepsilon}^{(\gamma)} f(x) \right| &\leq \int_{\varepsilon}^{\infty} |h(s)| \left| \int_{\mathbb{S}^{d-1}} e^{iP(sv)} f(x-sv) \mathfrak{U}(v) d\sigma(v) \right| \frac{ds}{s} \\ &\leq ||h||_{L^{\gamma}(\mathbf{R}^{+},dr/r)} \left(\int_{0}^{\infty} \left| \int_{\mathbb{S}^{d-1}} e^{iP(sv)} f(x-sv) \mathfrak{U}(v) d\sigma(v) \right|^{\gamma'} \frac{ds}{s} \right)^{1/\gamma'}. \end{aligned}$$

Hence,

$$\left|T_{\mathcal{U},P,\varepsilon}^{(\gamma)}(f)(x)\right| \le \left\|h\right\|_{L^{\gamma}(\mathbb{R}^{+},\frac{ds}{s})}\mathfrak{M}_{\mathcal{U},P}^{(\gamma)}(f)(x).$$
(3.19)

Therefore, by Theorem 1.2, we get that $T_{U,P}^{(\gamma)}$ is bounded on $L^p(\omega, \mathbb{R}^d)$ for $(\delta \gamma')/2 \leq p < \infty$ and $\omega \in A_{p/\delta}$. On the other hand, by a standard duality argument, we get that $T_{U,P}^{(\gamma)}$ is bounded on $L^p(\omega, \mathbb{R}^d)$ for $1 and <math>\omega^{1-p'} \in A_{p'/\delta}$. The proof is complete.

AIMS Mathematics

4. Conclusions

In this work, we studied the mapping properties of the maximal integral operators $\mathfrak{M}_{U,P}^{(\gamma)}$. In fact, we proved the weighted space $L^p(\omega, \mathbb{R}^d)$ boundedness of $\mathfrak{M}_{U,P}^{(\gamma)}$ for all $(\delta \gamma')/2 \leq p < \infty$ whenever $\omega \in A_{p/\delta}, \ U \in L^q(\mathbb{S}^{d-1})$, and $1 \leq \gamma \leq 2$. Then, as consequence of the this result, we confirmed the weighted $L^p(\omega, \mathbb{R}^d)$ boundedness of the operators $T_{U,P}^{(\gamma)}$ and $\mathcal{M}_{U,P}^{(\gamma)}$. The results of this paper are substantial extensions and improvements of the main results in [4] and [15].

Author contributions

Mohammed Ali: Writing-original draft, Formal Analysis, Commenting; Hussain Al-Qassem: Writing-original draft, Commenting. All authors have read and approved the final version of the manuscript for publication.

Acknowledgments

The authors would like to express their gratitude to the editor for handling the full submission of the manuscript.

Conflict of interest

The authors declare that they have no conflicts of interest in this paper.

References

- 1. L. Chen, H. Lin, A maximal operator related to a class of singular integral, *Illinois J. Math.*, **34** (1990), 120–126. https://doi.org/10.1215/IJM/1255988497
- 2. A. Al-Salman, On maximal functions with rough kernels in $L(\log L)^{1/2}(\mathbb{S}^{n-1})$, *Collect. Math.*, **56** (2005), 47–56.
- 3. H. M. Al-Qassem, Maximal operators related to block spaces, *Kodai Math. J.*, **28** (2005), 494–510. https://doi.org/10.2996/kmj/1134397763
- 4. A. Al-Salman, A unifying approach for certain class of maximal functions, *J. Inequal. Appl.*, **2006** (2006), 1–17. https://doi.org/10.1155/JIA/2006/56272
- 5. P. Sjolin, Convolution with oscillating kernels, Indiana U. Math. J., 30 (1981), 47–55.
- 6. F. Ricci, E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals I. Oscillatory integrals, *J. Func. Anal.*, **73** (1987), 179–194. https://doi.org/10.1016/0022-1236(87)90064-4
- 7. S. Z. Lu, Y. Zhang, Criterion on *L^p*-boundedness for a class of oscillatory singular integrals with rough kernels, *Revista Matem. Iber.*, **8** (1992), 201–219. https://eudml.org/doc/39425
- 8. Y. Pan, L² estimates for convolution operators with oscillating kernels, *Math. Proc. Cambridge Phil. Soc.*, **113** (1993), 179–193.
- 9. D. S. Fan, Y. B. Pan, Boundedness of certain oscillatory singular integrals, *Studia Math.*, **114** (1995), 105–116.

- 10. M. Ali, Q. Katatbeh, *L^p* bounds for rough parabolic maximal operators, *Heliyon*, **6** (2020), e05153. https://doi.org/10.1016/j.heliyon.2020.e05153
- 11. A. Al-Salman, Rough oscillatory singular integral operators of nonconvolution type, *J. Math. Anal. Appl.*, **299** (2004), 72–88. https://doi.org/10.1016/j.jmaa.2004.06.006
- S. G. Shi, Z. W. Fu, Q. Y. Wu, On the average operators, oscillatory integrals, singulars, singular integrals and their applications, *J. Appl. Anal. Comput.*, **14** (2024), 334–378. https://doi.org/10.11948/20230225
- 13. Z. W. Fu, E. Pozzi, Q. Y. Wu, Commutators of maximal functions on spaces of homogeneous type and their weighted, local versions, *Front. Math. China*, **17** (2022), 625–652. https://doi.org/10.1007/s11464-021-0912-y
- 14. Y. Ding, Q. Z. He, Weighted boundedness of a rough maximal operator, *Acta Math. Sci.*, **20** (2000), 417–422. https://doi.org/10.1016/S0252-9602(17)30649-5
- 15. H. M. Al-Qassem, Weighted *L^p* estimates for a rough maximal operator, *Kyungpook Math. J.*, **45** (2005), 255–272.
- 16. H. M. Al-Bataineh, M. Ali, Boundedness of maximal operators with mixed homogeneity associated to surfaces of revolution, *Int. J. Pure Appl. Math.*, **119** (2018), 705–716.
- 17. H. M. Al-Qassem, On the boundedness of maximal operators and singular operators with kernels in $L(\log L)^{\alpha}(\mathbb{S}^{n-1})$, *J. Inequal. Appl.*, **2006** (2006), 96732. https://doi.org/10.1155/JIA/2006/96732
- M. Ali, O. Al-Mohammed, Boundedness of a class of rough maximal functions. *J. Inequal. Appl.*, 305 (2018). https://doi.org/10.1186/s13660-018-1900-y
- 19. A. P. Calderön, A. Zygmund, On the existence of certain singular integrals, *Acta Math.*, **88** (1952), 85–139. https://doi.org/10.1007/BF02392130
- 20. A. P. Calderön, A. Zygmund, On singular integrals, Am. J. Math., 78 (1956), 289–309. https://doi.org/10.2307/2372517
- 21. R. Fefferman, A note on singular integrals, Proc. Amer, Math. Soc., 74 (1979), 266–270. https://doi.org/10.2307/2043145
- 22. J. Duoandikoetxea, J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, *Invent. Math.*, **84** (1986), 541–561. https://doi.org/10.1007/BF01388746
- 23. J. Namazi, A singular integral, *Proc. Amer. Math. Soc.*, **96** (1986), 421–424. https://doi.org/10.2307/2046587
- for higher-order 24. S. G. Shi, L. Zhang, Norm inequalities commutators of oneoscillatory singular Inequal. sided integrals, J. 2016 (2016),1 - 12.Appl., https://doi.org/10.1186/s13660-016-1025-0
- 25. E. M. Stein, On the functions of Littlewood-Paley, Lusin and Marcinkiewicz, *Trans. Amer. Math. Soc.*, **88** (1958), 430–466. https://doi.org/10.2307/1993226
- 26. H. Al-Qassem, L. Cheng, Y. Pan, On rough generalized parametric Marcinkiewicz integrals, J. *Math. Ineq.*, **11** (2017), 763–780. https://doi.org/10.7153/jmi-2017-11-60
- 27. A. Benedek, A. P. Calderön, R. Panzone, Convolution operators on Banach space valued functions, *Mathematics*, **48** (1962), 356–365. https://doi.org/10.1073/pnas.48.3.356

AIMS Mathematics

- 28. Y. Ding, D. S. Fan, Y. B. Pan, L^p-boundedness of Marcinkiewicz integrals with Hardy space function kernels, *Acta Math. Sinica*, **16** (2000), 593–600. https://doi.org/10.1007/s101140000015
- 29. Y. Ding, S. Z. Lu, K. Yabuta, A problem on rough parametric Marcinkiewicz functions, J. Aust. Math. Soc., 72 (2002), 13–22. https://doi.org/10.1017/S1446788700003542
- 30. M. Ali, H. Al-Qassem, Estimates for certain class of rough generalized Marcinkiewicz functions along submanifolds, *Open Math.*, **21** (2023), 1–13. https://doi.org/10.1515/math-2022-0603
- 31. E. M. Stein, G. Weiss, Interpolation of operators with change of measures, *Trans. Amer. Math. Soc.*, **87** (1958), 159–172. https://doi.org/10.1090/s0002-9947-1958-0092943-6

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)