Research article

A multi-player game equilibrium problem based on stochastic variational inequalities

  • Received: 24 June 2024 Revised: 24 August 2024 Accepted: 26 August 2024 Published: 06 September 2024
  • MSC : 91A10, 90C30, 49J53

  • In this paper, we studied a generalized Nash equilibrium problem where the constraint conditions were limited to a certain probability. The existence of an equilibrium solution for the vector-valued optimization problem was verified using Ky Fan's inequality and Lusin's theorem, considering the conditions of lower semi-continuity and concavity. Based on the study of the variational inequality method, we proposed a new algorithm to solve the problem. Furthermore, we analyzed the convergence of the algorithm. Finally, we applied the model to examine the economic benefits of digital currency issuance, corroborating the algorithm's effectiveness with a concrete numerical example.

    Citation: Cunlin Li, Wenyu Zhang, Baojun Yang, Hooi Min Yee. A multi-player game equilibrium problem based on stochastic variational inequalities[J]. AIMS Mathematics, 2024, 9(9): 26035-26048. doi: 10.3934/math.20241271

    Related Papers:

  • In this paper, we studied a generalized Nash equilibrium problem where the constraint conditions were limited to a certain probability. The existence of an equilibrium solution for the vector-valued optimization problem was verified using Ky Fan's inequality and Lusin's theorem, considering the conditions of lower semi-continuity and concavity. Based on the study of the variational inequality method, we proposed a new algorithm to solve the problem. Furthermore, we analyzed the convergence of the algorithm. Finally, we applied the model to examine the economic benefits of digital currency issuance, corroborating the algorithm's effectiveness with a concrete numerical example.



    加载中


    [1] J. Nash, Noncooperative games, J. Ann. Math, 54 (1951), 286–295. https://doi.org/10.2307/1969529 doi: 10.2307/1969529
    [2] G. Debreu, A social equilibrium existence theorem, Proceedings of the National Academy of Science, 38 (1952), 886–893. https://doi.org/10.1073/pnas.38.10.886 doi: 10.1073/pnas.38.10.886
    [3] K. J. Arrow, G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica, 22 (1954), 265–290. https://doi.org/10.2307/1907353 doi: 10.2307/1907353
    [4] M. Z. Yao, D. G. Wang, H. Yang, A game-theoretic model of car ownership and household time allocation, Transport. Res. B-Meth., 104 (2017), 667–685. https://doi.org/10.1016/j.trb.2017.05.015 doi: 10.1016/j.trb.2017.05.015
    [5] A. Deligiannis, A. Panoui, S. Lambotharan, J. A. Chambers, Game-theoretic power allocation and the Nash equilibrium analysis for a multistatic MIMO radar network, IEEE T. Signal Proces., 65 (2017), 6397–6408. https://doi.org/10.1109/TSP.2017.2755591 doi: 10.1109/TSP.2017.2755591
    [6] P. Tominac, V. Mahalec, A game theoretic framework for petroleum refinery strategic production planning, AIChE J., 63 (2017), 2751–2763. https://doi.org/10.1002/aic.15644 doi: 10.1002/aic.15644
    [7] V. Y. Glizer, Solutions of one class of singular two-person Nash equilibrium games with state and control delays: Regularization approach, Appl. Set-Valued Anal. Optim., 5 (2023), 401–438. https://doi.org/10.23952/asvao.5.2023.3.06 doi: 10.23952/asvao.5.2023.3.06
    [8] M. Passacantando, F. Raciti, A continuity result for the Nash equilibrium of a class of network games, J. Nonlinear Var. Anal., 8 (2024), 167–179. https://doi.org/10.23952/jnva.8.2024.1.09 doi: 10.23952/jnva.8.2024.1.09
    [9] P. Dechboon, P. Kumam, P. Chaipunya, N. Boonyam, A generalized F-contraction mapping for coupled fixed point theorems and an application to a two-person game, J. Nonlinear Funct. An., 11 (2022). https://doi.org/10.23952/jnfa.2022.11 doi: 10.23952/jnfa.2022.11
    [10] A. Maugeri, Convex programming, variational inequalities, and applications to the traffic equilibrium problem, Appl. Math. Optim., 16 (1987), 169–185. https://doi.org/10.1007/BF01442190 doi: 10.1007/BF01442190
    [11] C. Ciarcia, P. Daniele, New existence theorems for quasi-variational inequalities and applications to financial models, Eur. J. Oper. Res., 251 (2016), 288–299. https://doi.org/10.1016/j.ejor.2015.11.013 doi: 10.1016/j.ejor.2015.11.013
    [12] Y. Y. Zhou, Y. L. Zhang, M. Goh, Platform responses to entry in a local market with mobile providers, Eur. J. Oper. Res., 309 (2023), 236–251. https://doi.org/10.1016/j.ejor.2023.01.020 doi: 10.1016/j.ejor.2023.01.020
    [13] I. V. Konnov, Equilibrium models and variational inequalities, Oxford: Elsevier, 2007.
    [14] G. J. Tang, X. Wang, H. W. Liu, A projection-type method for variational inequalities on Hadamard manifolds and verification of solution existence, Optimization, 64 (2013), 1081–1096. https://doi.org/10.1080/02331934.2013.840622 doi: 10.1080/02331934.2013.840622
    [15] G. J. Tang, M. Zhu, H. W. Liu, A new extragradient-type method for mixed variational inequalities, Oper. Res. Lett., 43 (2015), 567–572. https://doi.org/10.1016/j.orl.2015.08.009 doi: 10.1016/j.orl.2015.08.009
    [16] R. Y. Zhong, Z. Dou, J. H. Fan, Degree theory and solution existence of set-valued vector variational inequalities in reflexive Banach spaces, J. Optim. Theory Appl., 167 (2015), 527–549. https://doi.org/10.1007/s10957-015-0731-y doi: 10.1007/s10957-015-0731-y
    [17] E. Cavazzuti, M. Pappalardo, M. Passacantando, Nash equilibria, variational inequalities, and dynamical systems, J. Optim. Theory Appl., 114 (2002), 491–506. https://doi.org/10.1023/A:1016056327692 doi: 10.1023/A:1016056327692
    [18] F. Facchinei, A. Fischer, V. Piccialli, On generalized Nash games and variational inequalities, Oper. Res. Lett., 35 (2007), 159–164. https://doi.org/10.1016/j.orl.2006.03.004 doi: 10.1016/j.orl.2006.03.004
    [19] F. Facchinei, J. S. Pang, Finite-dimensional variational inequalities and complementary problems, New York: Springer-Verlag, 2003. https://doi.org/10.1007/b97543
    [20] W. Rudin, Real and complex analysis, New York: Mcgraw-Hill Book Computation, 1974.
    [21] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann., 142 (1961), 305–310. https://doi.org/10.1007/BF01353421 doi: 10.1007/BF01353421
    [22] Q. Ho, Necessary and sufficient KKT optimality conditions in non-convex optimization, Optim. Lett., 11 (2017), 41–46. https://doi.org/10.1007/s11590-016-1054-0 doi: 10.1007/s11590-016-1054-0
    [23] A. V. Fiacco, G. P. Mccormick, Nonlinear programming: Sequential unconstrained minimization techniques, Classics Appl. Math., 1990, 86–112. https://doi.org/10.1137/1.9781611971316
    [24] D. G. Luenberger, Y. Y. Ye, Linear and nonlinear programming, Massachusetts: Addision Wesley, 1984. https://doi.org/10.1007/978-3-030-85450-8
    [25] J. Nocedal, S. J. Wright, Numerical optimization, New York: Springer-Verlag, 1999. https://doi.org/10.1007/978-0-387-40065-5
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(258) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog