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1. Introduction

With the increasing interest in comprehending the decision-making process of multi-player games,
numerous scholars have endeavored to develop theoretical frameworks for describing player outcomes.
They aim to construct mathematical models that accurately depict interactions between participants.
In this context, Nash’s work has garnered widespread attention. He introduced a game model known
as the “Nash equilibrium” (1951, [1–3]), in which each player assumes that the strategies of other
players remain constant and makes an optimal choice accordingly. This state of balance is crucial
for ensuring stability and predictability during the game, thus attracting significant attention and
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discussion. Furthermore, by utilizing variational inequalities as a mathematical tool, researchers can
more precisely characterize the constraints and interactions within a system.

Nash equilibrium theory has not only profoundly influenced economics and game theory but also
has a wide range of applications in computer science, mathematics, and other fields. For example,
Yao [4] uses a heuristic method combining backward induction and exhaustion to solve the two-
stage decision-making process of family car purchase. Deligiannis [5] utilizes convex optimization
methods and noncooperative game-theoretic techniques to investigate the power distribution scheme
of a multi-static system and a multi-input multi-output radar network, based on the estimation of
the signal-to-interference-plus-noise ratio (SINR). Tominac [6] formulates a non-convex nonlinear
programming problem (NLP) and extends it to non-convex mixed integer nonlinear programming
(MINLP) for refinery strategic production planning. Glizer et al. [7] studied a regularization approach
to solving singular two-person Nash equilibrium games with state and control delays. Passacantando
and Raciti [8] investigated the continuity of the Nash equilibrium in network games. Dechboon et
al. [9] proposed a generalized F-contraction mapping for coupled fixed point theorems and applied it
to a three-player game.

The scope of variational inequality theory is extensive, encompassing fields such as management
science and engineering sciences. Over the years, there has been substantial focus on the theory
and algorithms of deterministic variational inequalities [10]. This paper addresses establishing
an equilibrium traffic flow distribution within a deterministic urban network, given the known
traffic demand on a specified set of routes. Additionally, [11] determines the impact of expected
equilibrium distributions based on the valuation of assets and liabilities across various financial
instruments, leading to a quasi-variational formula characterizing equilibrium in dynamic financial
models. Furthermore, [12] studies the impact of new competitors on market structure and consumer
choice by analyzing strategic adjustments and market dynamics of existing platforms. For additional
instances of deterministic variational inequalities, please consult [13–16].

In reality, we frequently encounter situations with uncertain properties. For instance, in business
dealings, our goal is to achieve a certain return probability within the range of [0, 1], subject to
uncertainty influenced by market policies, distributors, consumers, and other factors. However, there
is no clear formula for calculating this specific return probability. This paper addresses this issue
by studying a class of Nash equilibrium models with uncertain constraint sets to establish a more
flexible model. Drawing from the classical mathematical tools discussed by Cavazzuti and Pappalardo
et al. [17], we transform the multi-player game problem into a vector variational inequality problem
and define its equilibrium. Additionally, we introduce the Knaster-Kuratowski-Mazurkiewicz (KKM)
theorem, Lusin’s theorem, and their related definitions to consider the existence of equilibrium in
transformation problems, accounting for conditions of lower semi-continuity and concavity based
on the established model. Using this relationship, we derive the existence of a weak Pareto-Nash
equilibrium for the multi-player vector optimization problem under consideration. To solve this
problem, we propose a new algorithm based on the Lagrange multiplier method, allowing us to obtain
a set of probabilities corresponding to different objective returns, thus ensuring that achieving expected
returns in a multi-player game is reasonable.

The structure of this paper is as follows: The second part presents the generalized Nash equilibrium
model of multi-player games through a concrete example and defines its nonlinear programming
maximization problem. The third part defines weak Pareto-Nash equilibrium and other related
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definitions and deduces the existence of the weak Pareto-Nash equilibrium. In the fourth section,
we introduce a new algorithm based on the Lagrange function for solving constrained uncertain multi-
player game problems and analyze the convergence of this algorithm. In the conclusion, we apply this
model to the economic benefit analysis of digital currency issuance, demonstrating its feasibility and
effectiveness through concrete examples. Finally, in the sixth part, we summarize our research results
and describe future tasks.

2. The model

In real life, conflicts between objectives and behaviors are quite common. Typically, these issues
involve multiple participants and multiple objectives. The primary problem we need to solve is how
to maximize our benefits without compromising the interests of other players. The Nash equilibrium
theory has become a powerful tool for scholars to address this issue. Next, let us first review the
classical generalized Nash equilibrium (GNEP).

Definition 1. [18] Suppose there are N = {1, . . . ,m} players, each denoted by player i with control
variable xi ∈ R. We represent the vector composed of all decision variables as x := (x1, x2, . . . , xm),
and x−i denotes the vector composed of decision variables of all players except player i. To emphasize
player i’s strategy, we use (xi, x−i) instead of x. Player i’s strategy is xi ∈ Vli , which relies on the
strategies of other players. Given the strategies x−i of the other players, if player i’s payoff function is
expressed by R(xi, x−i), then player i aims to choose a strategy xi, along with strategies x∗

−i of the other
players that maximize their payoff: max Ri(xi, x∗−i),

s.t. xi ∈ Vli(x∗−i).
(2.1)

Given any x−i, let S (x∗
−i) represent the solution set of this problem. The GNEP aims to identify a vector

x∗ := (x∗1, . . . , x
∗
m) such that x∗i ∈ S (x∗

−i),∀i ∈ N.

Next, in conjunction with the definition of the generalized Nash equilibrium, we will use an example
to show how to rewrite a multi-player game problem with uncertain constraints into a variational
inequality problem with random variables.

With the rapid ascent of digital currency, central banks have begun actively exploring the issuance
of their own central bank digital currency (CBDC) to align with the developmental trajectory of the
digital economy. Each country wants to secure its monetary sovereignty by issuing its digital currency,
while also trying to take a leading position in the global digital currency market. However, due to the
rapid changes in the technological, regulatory, and market environment in the digital currency space,
competition among central banks has become more intense.

Assume the i-th(i = 1, . . . ,m) central bank chosen strategy is denoted by xi, where it is assumed that
the maximum issuance for each central bank per day is t. When the issuance reaches t, the profit for that
day will reach its maximum value, but excessive issuance will affect the economic benefits of the next
day. Therefore, to prevent excessive issuance of virtual currency leading to inflation, it is necessary
to find an optimal issuance amount x∗. Let u represent the relationship between the issuance amount
and the benefits generated. Thus, u(xi)(i = 1, . . . ,m) denotes the economic benefit when the issuance
volume is x for the i-th central bank, where x is a random variable constrained to the interval [0, t].
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Next, we can construct a game process, assuming that the return per unit of virtual currency issued is

ri(xi, x−i),

and the total operating costs and marketing expenses are

mi(xi),

so, the total revenue for the enterprise in the end is

Ri(xi, x−i) = ri(xi, x−i) · xi − mi(xi), i = 1, . . . ,m.

This problem of the game can be rewritten as follows:

Ri(xi, x−i) ≥ Ri(yi, x−i). (2.2)

Therefore, according to Proposition 1.4.2 in Facchinei and Pang (2003) [19], the generalized Nash
equilibrium problem for problem (2.2) can be reformulated as the following variational inequality:
Find an x ∈ Vl such that

〈H(x), y − x〉 ≥ 0,∀y ∈ Vl, (2.3)

where Vl represents the feasible domain of the processing capacity that satisfies the constraint
condition. In this model, the firm aims to maximize Pi(R(xi) ≥ eli), ensuring it meets its expected
payoff e = (el1 , . . . , elm) by combining various factors, where P represents a probability function. Thus,
the following set is defined:

Vl = Pi(R(xi) ≥ eli) ≥ li. (2.4)

Then, problem (2.2) can be reformulated as follows:max 〈H(x), y − x〉 ≥ 0
s.t. Pi(R(xi) ≥ eli) ≥ 0

, (2.5)

where x = (x1, x2, . . . , xm), H represents the marginal benefit, which is denoted as the partial derivative
of Ri with respect to xi, and there is

H(x) =
∂R
∂x

= (−
∂R1(x1, x−1)

∂x1
, . . . ,−

∂Rm(xm, x−m)
∂xm

).

This variational inequality formulation encapsulates the equilibrium condition by ensuring that no
player can unilaterally improve their payoff by deviating from their current strategy, given the strategies
of the other players and the constraints. The function H(x) integrates the gradients of the Lagrangians
associated with each player’s optimization problem, ensuring that the equilibrium respects both the
maximization of payoffs and the constraints influenced by uncertainty.
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3. Analysis of the existence of the equilibrium

In this section, we define the weak Pareto-Nash equilibrium of vector-variational inequality and
introduce several other theorems and definitions to construct the model.

Definition 2. Let F = ( f1, . . . , fm) : Rm → Rm represent the target revenue function for the multi-player
game. If there is x∗ = (x∗1, . . . , x

∗
m), such that

F(yi, x∗−i) − F(x∗i , x
∗
−i) < intRm

+ ,∀yi ∈ Vli ,

then x∗ is called a weak Pareto-Nash equilibrium of the multi-player game.

Definition 3. Let Vl be a nonempty subset of Rn, and ψ : Vl → Rk be a vector-valued function. If for
∀x1, x2 ∈ Vl, ∀λ ∈ (0, 1), ∀y0 ∈ Rk, and ψ(x1) ∈ y0 + Rk

+, ψ(x2) ∈ y0 + Rk
+, there is

ψ(λx1 + (1 − λ)x2) ∈ y0 + Rk
+,

then ψ is said to be quasi-concave on x in Rk
+.

Definition 4. Consider Vl as a nonempty subset of Rn, and let φ : Vl → Rm be a vector-valued function.
∀x ∈ Vl, if for any open neighborhood B of 0 in Rm, there is an open neighborhood O(x) of x ∈ Vl such
that for all x′ ∈ O(x), there exists

φ(x
′

) ∈ φ(x) + B + Rm
+ ,

then φ is said to be lower semicontinuous on Vl in Rm
+ .

Definition 5. Generalized KKM mapping: Let Vl denote a nonempty compact set and G denote a
Banach space. Let F : Vl → 2G be a set-valued mapping and a nonempty compact set for every x ∈ Vl,
and if for any finite set {x1, x2, . . . , xn} ⊂ Vl there exists a corresponding finite set {y1, y2, . . . , yn} ⊂ G
such that for any subset {yi1 , yi2 , . . . , yik} ⊂ {y1, y2, . . . , yn}, 1 ≤ k ≤ n there is Co{yi1 , yi2 , . . . , yik} ⊂

∪k
j=1F(xi j) (where Co{yi1 , yi2 , . . . , yik} is the convex hull of {yi1 , yi2 , . . . , yik}), then F : Vl → 2G is said to

be a generalized KKM mapping.

Next, in order to prove the existence of the solution, we introduce the Lusin’s theorem and
KKM theorem.

Theorem 1. [20] Let “meas” represent the Lebesgue measure on Rm, let h : Rm → Rm be a measurable
function, and B is a measurable set in Rm with finite measure, i.e., meas(B) < ∞. For any ε > 0, there
exists a closed set B1 ⊆ B with meas(B\B1) < ε, such that the restriction of h to B1 is continuous.

Theorem 2. [21] KKM theorem: Let Vl denote a nonempty set and G denote a topological space.
Assume for every N = t0, t1, . . . , tn ∈ 〈T 〉 there is a mapping F : K → 2T that is a closed-valued
generalized KKM mapping. If there exists M ∈ 〈Vl〉, such that ∩x∈MF(x) is a compact subset of G, then

∩x∈KF(x) , ∅.

In Theorem 3, we will establish an existence of a solution to a multi-player vector
optimization problem.
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Theorem 3. Let Vli be a nonempty bounded closed convex set in Rm, and Vl = Πi∈NVli . Consider the
mapping Fi = ( f1, . . . , fm) : Vl → Rm, which satisfies the following conditions:
(1) The vector-valued mapping Fi = { f1, . . . , fm} : Vl → Rm is continuous for any i = 1, . . . ,m.
(2) The function fi(yi, x−i) is concave on Vl for every fixed x−i ∈ Vl−i , i = 1, . . . ,m.
Then, there exists a weak Pareto-Nash equilibrium for the multi-player vector optimization
problem (2.5).

Proof. To begin, consider the function F(x, y) defined by:

F(x, y) = [
m∑

i=1

fi(yi, x−i) −
m∑

i=1

fi(xi, x−i)], i = 1, . . . ,m,

where x = (x1, . . . , xm) and y = (y1, . . . , ym) are points in Vl. Since fi(yi, x−i) is a concave function on
Vli and concave functions are lower semicontinuous on their domains, for any fixed x−i, fi(yi, x−i) as
a function of yi is lower semicontinuous. Specifically, let B = ((−ε, ε)1, . . . , (−ε, ε)m) be the set of m
open neighborhoods in Rm, for any yi ∈ Vli , and for ε > 0 there exists an open neighborhood O(yi)
such that

F(x
′

, y) ∈ F(x, y) + B + Rm
+

= (( f1(yi, x−i) − ε,+∞), . . . , ( fm(yi, x−i − ε,+∞)).

For any i = 1, . . . ,m, x
′

∈ O(x), there exists fi(y
′

i, x−i) > fi(yi, x−i) − ε, so F(x, y) is lower semi-
continuous on Vl.

Next, we prove that F(x, y) is concave on Vl.
For each fi(yi, x−i), since it is concave with respect to yi, it satisfies:

fi(λyi1 + (1 − λ)yi2 , x−i) ≥ λ fi(yi1 , x−i) + (1 − λ) fi(yi2 , x−i),

where yi1 , yi2 ∈ Vli . Since F(x, y) is a linear combination of the concave functions fi(yi, x−i), it also
inherits this concavity. Thus, F(x, y) is concave on Vl.

To further demonstrate the existence of the weak Pareto-Nash equilibrium of problem (2.5), next
we use the KKM theorem and Ky Fan’s inequality to prove the existence of a weak Pareto-Nash
equilibrium. For each y ∈ Vl, define the set Γ(y) as

Γ(y) = {x ∈ Vl|F(x, y) < intRm
+ }, (3.1)

where intRm
+ denotes the interior of Rm

+ , which is the set of vectors in Rm with all positive coordinates.
Suppose

⋂
y∈Vl

Γ(y) = ∅. By the KKM theorem, if Γ(y) is a closed set and satisfies certain conditions,
so the

⋂
y∈Vl

Γ(y) cannot be empty, then there exists a x ∈ Vl such that F(x, y) < intRm
+ . According to

Lusin’s theorem, there exists a set Ṽ ⊆ Vl with m(Ṽ) > 0, where m(Ṽ) > 0 represents the Lebesgue
measure. For any ε > 0, there is a subset Ṽ0 ⊂ Ṽ such that m(Ṽ \ Ṽ0) ≤ ε, and F is also a continuous
function on Ṽ0. Since F(x, y) is lower semicontinuous on Vl and Ṽ0 is a closed subset of Vl, the lower
semicontinuity extends to the whole Vl. Next, we prove that for any y = (y1, . . . , ym) ⊂ Vl, we have

co{y1, . . . , ym} ⊂ ∪
m
i=1Γ(yi).

Here we use the method of proof by contradiction. Assume ŷ =
∑m

i=1 λixi ∈ Vl such that ŷ < Γ(yi)
for some λi ≥ 0,

∑m
i=1 λi = 1. Then, for any y ∈ Vl, there exists H(ŷ, yi) ∈ intRm

+ . For x1, x2 ∈ Vl, then
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similarly we have F(ŷ, x1) ∈ intRm
+ , F(ŷ, x2) ∈ intRm

+ , then for λ ∈ (0, 1), we have

F(ŷ, λx1 + (1 − λ)x2) ∈ intRm
+ .

Let B̄ be an open neighborhood which contains 0 in Rm
+ such that F(ŷ, x1)+ B̄ ∈ intRm

+ , F(ŷ, x2)+ B̄ ∈
intRm

+ . Then, we take any open neighborhood B of 0 in Rm
+ again, so there is a δ > 0 such that

O(0, δ) ⊂ B. Let B̄ = O(0, δ), then B̄ ⊂ B and there is B̄ = −B̄. For any z ∈ intRm
+ , when c0 is

sufficiently small, there exists c0z ∈ intRm
+ and c0z ∈ B̄, then we can obtain that −c0z ∈ Vl. Let

c = −c0z, then F(ŷ, x1)+c ∈ intRm
+ , F(ŷ, x2)+c ∈ intRm

+ , and given that F is quasi-convex on Vl, there is

F(ŷ, λx1 + (1 − λ)x2) ∈ −c + Rm
+

= c0z + Rm
+ ⊂ intRm

+ + Rm
+ = intRm

+ .

This implies that if ŷ < Γ(yi),then
F(ŷ, x1) + c ∈ intRm

+ ,

for some c ∈ intRm
+ , contradicting ŷ < Γ(yi).

So, the intersection ∩y∈VlΓ(y) , ∅, and there exists a point x∗ = (x∗1, . . . , x
∗
m) ∈ ∩y∈VlΓ(y). Thus for

all y ∈ Vl, F(x∗, y) < intRm
+ . Hence, there exists a weak Pareto-Nash equilibrium x∗ such that

F(x∗, y) = [
m∑

i=1

fi(yi, x−i) −
m∑

i=1

fi(x∗i , x−i)] < intRm
+ .

Thus, we can conclude that the vector-valued function F(x, y) has a weak Pareto-Nash equilibrium
such that (2.5) holds. �

4. Algorithm and convergence analysis for problem (2.5)

Then, by proving Theorem 3, we establish that problem (2.5) has a weak Pareto-Nash equilibrium.
Next, for a given el, we aim to find the optimal point (x∗, l∗). Thus, we consider the nonlinear
programming problem with only inequality constraints: max f (x, l),

s.t. q(x, l) ≤ 0,
(4.1)

where f (x, l) : Vl × R → Rm and q(x, l) : Vl × R → Rm are second-order continuously differentiable
scalar and vector functions, respectively. Let (x∗, l∗) satisfy the constraint, and Ii

m(x∗, l∗) represents the
indicator set of i corresponding to Ii

m(x∗, l∗), i. e.,

Ii
m(x∗, l∗) = {i|qi(x∗, l∗) = 0, i = 1, . . . ,m}.

If the gradient ∇qi(x∗, l∗), i ∈ Ii
m(x∗, l∗) is linearly independent, (x∗, l∗) is called a regular point

of problem (4.1).
The classical Lagrange function is

L(x, l, λ) = f (x, l) + λq(x, l),

where λ = ζ2, and ζ represents the Lagrange multiplier.
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Theorem 4. (Karush-Kuhn-Tucker optimality condition) [22] Let (x∗, l∗) be the local optimal solution
and the regular point of the problem (4.1), then there exists a unique vector λ∗, such that

∇L(x∗, l∗, λ∗) = 0,
λ∗i qi(x∗, l∗) = 0,

q(x∗,l∗) ≤ 0, i = 1, . . . ,m.

Next, we define the generalized Lagrange function as

Gσ(x, l, λ) = f (x, l) + λT q(x, l) +
1
2
σλqT (x, l)q(x, l)

= L(x, l, λ) +
1
2
σλqT (x, l)q(x, l),

where σ is a penalty parameter, and without losing generality, we assume that the penalty factor σ
is an increasing bounded sequence, i.e., σ0 ≤ σ ≤ σmax, in order to strengthen the punishment
for violating the constraint gradually in the optimization process, so as to converge to the solution
satisfying the constraint.

Then, the gradient of the generalized Lagrange function with respect to (x, l) and the Hessian matrix
are respectively,

∇xGσ(x, l, λ) = ∇xL(x, l, λ) + σ · λ · q(x, l) · ∇xq(x, l),
∇2

xxGσ(x, l, λ) = ∇2
xxL(x, l, λ) + σ · λ · ∇xq(x, l) · ∇xqT (x, l) + σ · λ · q(x, l) · ∇2

xxq(x, l).

The specific iteration process is as follows:
Step 1. Initialization:
• Selects the initial point (x0, l0, λ0, σ0).
Step 2. Iterative process:
• For each iteration step w = w + 1,w = 0, 1, 2, . . ., perform the following steps:

xw+1 = xw − η · ∇xL(xw, lw, λw),
lw+1 = lw − η · ∇lL(xw, lw, λw),
λw+1 = λw · [1 + σw+1 · q(xw, lw)],
σw+1 = ρ · σw,

where η > 0 is the iterative step, ρ > 1 is the growth rate of the penalty factor, and ∇L(xw+1, lw+1, λw+1)
is the gradient of the Lagrange function with respect to the constraint L.
Step 3. Convergence judgment:
• When w > 1 and |(xw+1, lw+1, λw+1) − (xw, lw, λw)| < ε, we output the current (xw+1, lw+1, λw+1) as a
weak Pareto Nash equilibrium.
• Otherwise, return to Step 2 for the next iteration.

Next, to introduce the convergence analysis of the above algorithm, we introduce the
subsequent theorem:
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Theorem 5. [23, 24]Let (x∗, l∗) be the regular point of problem (4.1), and there exists a vector
λ∗i satisfying

∇xL(x∗, l∗, λ∗) = 0,
λ∗i qi(x∗, l∗) = 0,
qi(x∗, l∗) ≤ 0, i = 1, . . . ,m.

For any nonzero vector g, such that ∇qT
i (x∗, l∗)g = 0, i ∈ Ii

m(x∗, l∗), there is

gT [∇2 f (x∗, l∗) + λ∗∇2q(x∗, l∗)]g < 0.

In addition, λ∗i satisfies the strict complementarity hypothesis

λ∗i > 0,∀i ∈ Ii
m(x∗, l∗).

Then we call (x∗, l∗) the strictly local maximum point of problem (4.1).

Theorem 6. [25]Let M be an n × n symmetric matrix, and R be a semi-negative definite symmetric
matrix of the same size. If for any nonzero vector p satisfying pT Rp = 0, we have pT Mp < 0, then
there exists a scalar σ > 0 such that

M + σR < 0.

So, according to Theorems 5 and 6, we can know that there exists a scalar σ > 0, such that

∇xGσ(x∗, l∗, λ∗) = ∇xL(x∗, l∗, λ∗) + σ · λ∗ · q(x∗, l∗) · ∇xq(x∗, l∗) = 0, (4.2)

and
∇2

xxGσ(x∗, l∗, λ∗) = ∇2
xxL(x∗, l∗, λ∗) + σ · λ∗ · ∇xq(x∗, l∗) · ∇xqT (x∗, l∗) < 0. (4.3)

Based on these two formulas, we can conclude that (x∗, l∗) is a strictly local maximum point
of Gσ(·, ·, λ∗).

Assuming all the inequality constraints are active, a similar proof to the case with equalities can be
applied, leading to the following conclusions.

Theorem 7. Let (x∗, l∗) be the regular point of problem (4.1), and there is σ > 0, such that

∇2
xxGσ(x∗, l∗, λ∗) < 0,

so there are positive numbers δ, ε and subset D ⊂ Rm+1 where

D = {(λ, σ) : ‖λ − λ∗‖ ≤ δ, σ0 ≤ σ ≤ σmax}. (4.4)

Therefore, ∀(λ, σ) ⊂ D, maximizes the problem max Gσ(x, l, λ), x ∈ Vl,

s.t. (x, l) ∈ B(S (x∗, l∗), ε),
(4.5)

where S = {(x∗, l∗)|P(u(x∗) ≥ el) ≥ l∗}, and B(S (x∗, l∗), ε) represents the ε neighborhood of S (x∗, l∗).
Thus, there is a unique maximum point (x∗, l∗) in the internal continuity of D.

AIMS Mathematics Volume 9, Issue 9, 26035–26048.



26044

Proof. Let Ξ = diag(λ∗) represent the vector diagonalization operator. So, consider the following
two equations:

∇ f (x∗, l∗) + λ∗∇q(x∗, l∗) = 0,

Ξ(λ∗)q(x∗, l∗) +
λ − λ∗

σ
= 0.

(4.6)

Next, let ρ = λ−λ0
σ
, τ = 1

σ
, then formula (4.7) can be redrafted as

∇ f (x∗, l∗) + λ · ∇q(x∗, l∗) = 0,
Ξ(λ∗)q(x∗, l∗) + ρ + τ · (λ0 − λ

∗) = 0,
(4.7)

and the Jacob matrix at (x∗, l∗) and λ∗ is[
∇2

xxL(x∗, l∗, λ∗) ∇q(x∗, l∗)
Ξ(λ∗)∇qT (x∗, l∗) −τIm

]
, (4.8)

where Im is an identity matrix of n × n. Because 1
σmax
≤ τ ≤ 1

σ0
, so the Jacob matrix is non-singular. If

not, let there be a nonzero vector (νT , ωT )T , such that[
∇2

xxL(x∗, l∗, λ∗) ∇q(x∗, l∗)
Ξ(λ∗)∇qT (x∗, l∗) −τIm

] [
ν

ω

]
= 0. (4.9)

So, we have
∇2

xxL(x∗, l∗, λ∗) · ν + ∇q(x∗, l∗) · ω = 0, (4.10)

Ξ(λ∗)∇qT (x∗, l∗) · ν − τ · ω = 0, (4.11)

and we can get the ω expression obtained in Eq (4.11) as

ω =
Ξ(λ∗)∇qT (x∗, l∗) · ν

τIi
m

. (4.12)

By substituting (4.12) into formula (4.10), we get

∇2
xxL(x∗, l∗, λ∗) · ν + σ · ∇q(x∗, l∗) · Ξ(λ∗) · ∇qT (x∗, l∗) · ω = 0, (4.13)

which means
∇2

xxGσ(x∗, l∗, λ∗) · ν = 0. (4.14)

Because σ ≥ σ0,∇
2
xxGσ(x∗, l∗, λ∗) is negative definite, therefore, so we get ν = 0 for every σ ∈

[σ0, σmax]. Then, combine with Eq (4.11), and it is easy to obtain ω = 0, which contradicts the
previous nonzero hypothesis.

Next, define the closed set K = {(0, τ)|τ ∈ [ 1
σmax

, 1
σ0

]} and its neighborhood B(K, δ). According
to the implicit function theorem, there are ε, δ and the unique continuous differentiable functions
(x̂(ρ, τ), l̂(ρ, τ)), and λ̂(ρ, τ) for any (ρ, τ) ∈ B(K, δ), which defined on B(K, δ) satisfy

‖((x̂(ρ, τ), l̂(ρ, τ)), λ̂(ρ, τ)) − ((x∗, l∗), λ∗)‖ ≤ ε.
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Combined with Eq (4.7), we can get

f (x̂(ρ, τ), l̂(ρ, τ)) + λ̂(ρ, τ) · ∇q(x̂(ρ, τ)), l̂(ρ, τ) = 0,
Ξ(λ)q(x(ρ, τ), l(ρ, τ)) + ρ + τ · (λ∗ − λ̂(ρ, τ)) = 0.

(4.15)

The expressions of ρ = λ−λ0
σ

, and τ = 1
σ

into (x̂(ρ, τ), l̂(ρ, τ)), λ̂(ρ, τ) are defined by

(x̂(ρ, τ), l̂(ρ, τ)) = (x̂(
λ − λ0

σ
,

1
σ

), l̂(
λ − λ0

σ
,

1
σ

)) = (x(λ, σ), l(λ, σ)),

λ̂(ρ, τ) = λ̂(
λ − λ0

σ
,

1
σ

) = λ(λ, σ),

then by (4.14), ∀(λ, σ) ∈ D, we get

f (x(λ, σ), l(λ, σ)) + λ(λ, σ)∇q(x(λ, σ), l(λ, σ)) = 0,
λ(λ, σ) = λw[1 + σw+1 · qi(xw(λ, σ), lw(λ, σ))].

(4.16)

By the continuity assumption, appropriate ε and δ can be selected to ensure
∇2

xxGσ(x(λ, σ), l(λ, σ), λ(λ, σ)) negative definite.
To sum up, we can conclude that ∀(λ, σ) ∈ D. In the ε neighborhood of the optimal solution (x∗, l∗),

the generalized Lagrange function Gσ(·, ·, λ) has a unique maximal point.

5. Numerical examples

Now, consider three businesses that issue digital currencies. Here are their launch profits and
operating development costs:

r1(x1, x2) = 140 − 3x1 − 2x2 − x3,

m1(x1) = 2x2
1 + x1,

r2(x1, x2) = 130 − 2x1 − 2x2 + 2x3,

m2(x2) = 2x2
2 − x2,

r3(x1, x2) = 120 − 3x1 − 5x2 + x3,

m3(x1) = 2x2
3 − x3.

The total revenue is

R1(x1, x2, x3) = (140 − 3x1 − 2x2 − x3)x1 − (2x2
1 + x1),

R2(x1, x2, x3) = (130 − 2x1 − 2x2 + 2x3)x2 − (2x2
2 − x2),

R2(x1, x2, x3) = (120 − 3x1 − 5x2 + x3)x3 − (2x2
3 − x3).

Let Ri(x1, x2, x3) be a random variable following a uniform distribution on [80,90], and eli be a
random variable following a uniform distribution on [0,5]. Under these assumptions, we can determine
the distribution of Ri(x1, x2, x3) − eli as follows:

fRi−eli
=


0, x < 75, x > 90,

x − 75
50

, 75 < x < 80,

90 − x
50

, 80 < x < 90.
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Assuming that the expected earnings of the three enterprises are all eli = 400 for i = 1, 2, 3, it can
be concluded that enterprise 1 needs to issue x1 = 3.652 units to achieve the expected earnings,
enterprise 2 needs to issue x2 = 3.353 units, and enterprise 3 needs to issue x3 = 4.505 units.
Furthermore, it was determined that P(R1(x1, x2, x3) − el1 ≥ 0) = 0.762, P(R1(x1, x2, x3) − el2 ≥

0) = 0.799, and P(R2(x1, x2, x3) − el3 ≥ 0) = 0.518. Based on these findings, it is believed that
the expected earnings of both enterprises 1 and 2 are reasonable. As shown in Figure 1, the horizontal
axis represents the expected earnings of the three enterprises (x), and the vertical axis represents the
probability that actual earnings exceed the expected earnings (P). The blue, yellow, and green lines
respectively represent the probability trend of enterprises 1–3 reaching the expected income (P).

Figure 1. Trend graph of the probability of expected and actual returns.

6. Conclusions

In summary, this paper introduces a model for a multi-player game with uncertain constraint sets.
By employing variational analysis tools, the problem of multi-player games is transformed into a
vector variational inequality problem. The paper illustrates a class of vector variational inequality
optimization problems established under lower semicontinuous conditions and defines its solution. It
is also considers the existence of weak Pareto-Nash equilibrium after transformation, utilizing the
KKM theorem, Lusin’s theorem, and related definitions. Additionally, an algorithm is developed
using the improved Lagrange function, followed by a convergence analysis. All results demonstrate
the feasibility of our model and algorithm. Finally, a numerical example is provided to validate the
effectiveness of the model in addressing specific problems.

The integration of these concepts not only facilitates the study of players’ strategy choices in
complex systems but also advances the application of variational inequality theory in multi-player
games. This integration offers a more robust analytical tool for solving real-world problems and holds
promise for yielding profound insights and more effective results. By exploring the intersections of
theoretical frameworks, we can gain a better understanding of system interactions, providing crucial
insights for promoting sustainable development and optimizing complex systems.
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