This study examines the local singularities of tube surfaces, especially those of swept surfaces $ (SS) $ in Euclidean 3-space $ \mathcal{E}^{3} $. $ SS $ is created by moving a planar curve through space such that the trajectory of any point on the surface remains perpendicular to the plane. The Type-2 Bishop frame is considered, and the singularities of these $ SS $ are analyzed. Examples are offered and illustrated.
Citation: Fatemah Mofarreh, Rashad A. Abdel-Baky. Singularities of swept surfaces in Euclidean 3-space[J]. AIMS Mathematics, 2024, 9(9): 26049-26064. doi: 10.3934/math.20241272
This study examines the local singularities of tube surfaces, especially those of swept surfaces $ (SS) $ in Euclidean 3-space $ \mathcal{E}^{3} $. $ SS $ is created by moving a planar curve through space such that the trajectory of any point on the surface remains perpendicular to the plane. The Type-2 Bishop frame is considered, and the singularities of these $ SS $ are analyzed. Examples are offered and illustrated.
[1] | J. W. Bruce, P. J. Giblin, Generic geometry, Amer. Math. Mon., 90 (1983), 529–545. https://doi.org/10.1080/00029890.1983.11971276 doi: 10.1080/00029890.1983.11971276 |
[2] | J. W. Bruce, P. J. Giblin, Curves and singularities, 2 Eds, Cambridge: Cambridge University Press, 1992. https://doi.org/10.1017/CBO9781139172615 |
[3] | R. Cipolla, P. J. Giblin, Visual motion of curves and surfaces, Cambridge: Cambridge University Press, 2000. |
[4] | K. Teramoto, Parallel and dual surfaces of cuspidal edges, Differ. Geom. Appl., 44 (2016), 52–62. https://doi.org/10.1016/j.difgeo.2015.10.005 doi: 10.1016/j.difgeo.2015.10.005 |
[5] | M. P. do Carmo, Differential geometry of curves and surface, Prentice-Hall, Englewood Cliffs, NJ, 1976. |
[6] | H. Pottmann, J. Wallner, Computational line geometry, Berlin, Heidelberg: Springer-Verlag, 2001. https://doi.org/10.1007/978-3-642-04018-4 |
[7] | L. Jäntschi, The eigenproblem translated for alignment of molecules, Symmetry, 11 (2019), 1027. https://doi.org/10.3390/sym11081027 doi: 10.3390/sym11081027 |
[8] | L. Jäntschi, Eigenproblem basics and algorithms, Symmetry, 15 (2023), 2046. https://doi.org/10.3390/sym15112046 doi: 10.3390/sym15112046 |
[9] | Z. Xu, R. S. Feng, J. Sun, Analytic and algebraic properties of canal surfaces, J. Comput. Appl. Math., 195 (2006), 220–228. https://doi.org/10.1016/j.cam.2005.08.002 doi: 10.1016/j.cam.2005.08.002 |
[10] | S. Izumiya, K. Saji, N. Takeuchi, Circular surfaces, Adv. Geom., 7 (2007), 295–313. https://doi.org/10.1515/ADVGEOM.2007.017 doi: 10.1515/ADVGEOM.2007.017 |
[11] | J. S. Ro, D. W. Yoon, Correction to: Tubes of weingarten types in Euclidean 3-space, J. Chungcheong Math. Soc., 27 (2014), 403–404. https://doi.org/10.14403/jcms.2014.27.3.403 doi: 10.14403/jcms.2014.27.3.403 |
[12] | L. Cui, D. Wang, J. S. Dai, Kinematic geometry of circular surfaces with a fixed radius based on Euclidean invariants, J. Mech. Des., 131 (2009), 101009. https://doi.org/10.1115/1.3212679 doi: 10.1115/1.3212679 |
[13] | R. L. Bishop, There is more than one way to frame a curve, Amer. Math. Mon., 82 (1975), 246–251. https://doi.org/10.1080/00029890.1975.11993807 doi: 10.1080/00029890.1975.11993807 |
[14] | N. Clauvelin, W. K. Olson, I. Tobias, Characterization of the geometry and topology of DNA pictured as a discrete collection of atoms, J. Chem. Theory Comput., 8 (2012), 1092–1107. https://doi.org/10.1021/ct200657e doi: 10.1021/ct200657e |
[15] | K. Shoeemake, Animating rotation with quaternion curves, In: SIGGRAPH '85: Proceedings of the 12th annual conference on Computer graphics and interactive techniques, 1985,245–254. https://doi.org/10.1145/325334.325242 |
[16] | H. Zhao, G. Wang, A new method for designing a developable surface utilizing the surface pencil through a given curve, Prog. Nat. Sci., 18 (2008), 105–110. https://doi.org/10.1016/j.pnsc.2007.09.001 doi: 10.1016/j.pnsc.2007.09.001 |
[17] | C. Y. Han. Nonexistence of rational rotation-minimizing frames on cubic curves, Comput. Aided Geom. D., 25 (2008), 298–304. https://doi.org/10.1016/j.cagd.2007.09.006 doi: 10.1016/j.cagd.2007.09.006 |
[18] | S. Yılmaz, M. Turgut, A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl., 371 (2010), 764–776. https://doi.org/10.1016/j.jmaa.2010.06.012 doi: 10.1016/j.jmaa.2010.06.012 |
[19] | R. A. Abdel-Baky, Developable surfaces through swepting surfaces, Bull. Iran. Math. Soc., 45 (2019), 951–963. https://doi.org/10.1007/s41980-018-0177-8 doi: 10.1007/s41980-018-0177-8 |
[20] | Y. Li, A. Haseeb, M. Ali, LP-Kenmotsu manifolds admitting $ \eta $-Ricci solitons and spacetime, J. Math., 2022 (2022), 6605127. https://doi.org/10.1155/2022/6605127 doi: 10.1155/2022/6605127 |
[21] | Y. Li, F. Mofarreh, R. A. Abdel-Baky, Timelike circular surfaces and singularities in Minkowski 3-space, Symmetry, 14 (2022), 1914. https://doi.org/10.3390/sym14091914 doi: 10.3390/sym14091914 |
[22] | Y. Li, N. Alluhaibi, R. A. Abdel-Baky. One-parameter Lorentzian dual spherical movements and invariants of the axodes, Symmetry, 14 (2022), 1930. https://doi.org/10.3390/sym14091930 doi: 10.3390/sym14091930 |
[23] | Y. Li, K. Eren, K. H. Ayvacı, S. Ersoy. Simultaneous characterizations of partner ruled surfaces using Flc frame, AIMS Mathematics, 7 (2022), 20213–20229. https://doi.org/10.3934/math.20221106 doi: 10.3934/math.20221106 |
[24] | M. D. Siddiqi, M. A. Khan, I. Al-Dayel, K. Masood, Geometrization of string cloud spacetime in general relativity, AIMS Mathematics, 8 (2023), 29042–29057. https://doi.org/10.3934/math.20231487 doi: 10.3934/math.20231487 |
[25] | S. K. Nurkan, İ. A. Güven, Construction of vectorial moments via direction curves, AIMS Mathematics, 8 (2023), 12857–12871. https://doi.org/10.3934/math.2023648 doi: 10.3934/math.2023648 |
[26] | Y. Li, A. A. Abdel-Salam, M. K. Saad, Primitivoids of curves in Minkowski plane, AIMS Mathematics, 8 (2023), 2386–2406. https://doi.org/10.3934/math.2023123 doi: 10.3934/math.2023123 |
[27] | S. Deshmukh, B. Y. Chen, A. Alghnemi, Natural mates of Frenet curves in Euclidean 3-space, Turk. J. Math., 42 (2018), 58. https://doi.org/10.3906/mat-1712-34 doi: 10.3906/mat-1712-34 |