The aim of the present study is to investigate the damping of slow sausage MHD waves propagating in a gravitationally-stratified magnetic cylindrical structure when the plasma is strongly partially ionised. The problem is treated as an initial value problem and the analysis deals with the temporal evolution of waves in an asymptotic sense, i.e., large values of time compared to the period of waves. The plasma is assumed to be collision-dominated, i.e., we employ a two-fluid approximation. The set of equations describing the plasma dynamics is reduced to a coupled partial differential equations. Our findings show that the slow wave of charged species is affected by the presence of a cut-off. The mode associated with the neutral fluid propagates without any cut-off and decay very quickly due to collisions between particles.
Citation: Abdulaziz H. Alharbi. Analytical and numerical solution of sausage MHD wave oscillation in a thin magnetic flux tube[J]. AIMS Mathematics, 2024, 9(9): 26065-26076. doi: 10.3934/math.20241273
The aim of the present study is to investigate the damping of slow sausage MHD waves propagating in a gravitationally-stratified magnetic cylindrical structure when the plasma is strongly partially ionised. The problem is treated as an initial value problem and the analysis deals with the temporal evolution of waves in an asymptotic sense, i.e., large values of time compared to the period of waves. The plasma is assumed to be collision-dominated, i.e., we employ a two-fluid approximation. The set of equations describing the plasma dynamics is reduced to a coupled partial differential equations. Our findings show that the slow wave of charged species is affected by the presence of a cut-off. The mode associated with the neutral fluid propagates without any cut-off and decay very quickly due to collisions between particles.
[1] | J. E. Vernazza, E. H. Avrett, R. Loeser, Structure of the solar chromosphere. Ⅲ-Models of the EUV brightness components of the quiet-sun, Astrophys. J. Suppl. S., 45 (1981), 635–725. https://doi.org/10.1016/0021-8928(81)90163-5 doi: 10.1016/0021-8928(81)90163-5 |
[2] | J. M. Fontenla, E. H. Avrett, R. Loeser, Energy balance in the solar transition region. I-Hydrostatic thermal models with ambipolar diffusion, Astrophys. J., 355 (1990), 700–718. https://doi.org/10.1086/168803 doi: 10.1086/168803 |
[3] | E. H. Avrett, R. Loeser, Models of the solar chromosphere and transition region from SUMER and HRTS observations: Formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen, Astrophys. J. Suppl. S., 175 (2008), 229–276. https://doi.org/10.1086/523671 doi: 10.1086/523671 |
[4] | J. L. Ballester, I. Alexeev, M. Collados, T. Downes, R. F. Pfaff, H. Gilbert, et al., Partially ionized plasmas in astrophysics, Space Sci. Rev., 214 (2018), 58. https://doi.org/10.1007/s11214-018-0485-6 doi: 10.1007/s11214-018-0485-6 |
[5] | T. V. Zaqarashvili, M. L. Khodachenko, H. O. Rucker, Magnetohydrodynamic waves in solar partially ionized plasmas: Two-fluid approach, Astron. Astr., 529 (2011), A82. https://doi.org/10.1051/0004-6361/201016326 doi: 10.1051/0004-6361/201016326 |
[6] | R. Soler, M. Carbonell, J. L. Ballester, Magnetoacoustic waves in a partially ionized two-fluid plasma, Astrophys. J. Suppl. S., 209 (2013), 16. http://dx.doi.org/10.1088/0067-0049/209/1/16 doi: 10.1088/0067-0049/209/1/16 |
[7] | Y. G. Maneva, A. A. Laguna, A. Lani, S. Poedts, Multi-fluid modeling of magnetosonic wave propagation in the solar chromosphere: Effects of impact ionization and radiative recombination, Astrophys. J., 836 (2017), 197. https://doi.org/10.3847/1538-4357/aa5b83 doi: 10.3847/1538-4357/aa5b83 |
[8] | B. P. Braileanu, V. S. Lukin, E. Khomenko, Á. De Vicente, Two-fluid simulations of waves in the solar chromosphere-I. Numerical code verification, Astron. Astrophys., 627 (2019), A25. https://doi.org/10.1051/0004-6361/201834154 doi: 10.1051/0004-6361/201834154 |
[9] | D. Wójcik, K. Murawski, Z. E. Musielak, Acoustic waves in two-fluid solar atmosphere model: Cut-off periods, chromospheric cavity, and wave tunnelling, Mon. Not. R. Astron. Soc., 481 (2018), 262–267. https://doi.org/10.1093/mnras/sty2306 doi: 10.1093/mnras/sty2306 |
[10] | B. Kuźma, D. Wójcik, K. Murawski, Heating of a quiet region of the solar chromosphere by ion and neutral acoustic waves, Astrophys. J., 878 (2019), 81. https://doi.org/10.3847/1538-4357/ab1b4a doi: 10.3847/1538-4357/ab1b4a |
[11] | I. Ballai, Linear waves in partially ionized plasmas in ionization non-equilibrium, Front. Astron. Space, 6 (2019). https://doi.org/10.3389/fspas.2019.00039 doi: 10.3389/fspas.2019.00039 |
[12] | A. Alharbi, I. Ballai, V. Fedun, G. Verth, Slow magnetoacoustic waves in gravitationally stratified two-fluid plasmas in strongly ionized limit, Mon. Not. R. Astron. Soc., 501 (2021), 1940–1950. https://doi.org/10.1093/mnras/staa3835 doi: 10.1093/mnras/staa3835 |
[13] | B. Kuźma, L. H. S. Kadowaki, K. Murawski, Z. E. Musielak, S. Poedts, D. Yuan, et al., Magnetoacoustic cut-off effect in numerical simulations of the partially ionized solar atmosphere, Philos. T. Roy. Soc. A, 382 (2024). https://doi.org/10.1098/rsta.2023.0218 doi: 10.1098/rsta.2023.0218 |
[14] | R. Soler, Magnetohydrodynamic waves in the partially ionized solar plasma, Philos. T. Roy. Soc. A, 382 (2024). https://doi.org/10.1098/rsta.2023.0223 doi: 10.1098/rsta.2023.0223 |
[15] | E. Khomenko, M. Collados, A. Diaz, N. Vitas, Fluid description of multi-component solar partially ionized plasma, Phys. Plasmas, 21 (2014). https://doi.org/10.1063/1.4894106 doi: 10.1063/1.4894106 |
[16] | G. Herbold, P. Ulmschneider, H. C. Spruit, R. Rosner, Propagation of nonlinear, radiatively damped longitudinal waves along magnetic flux tubes in the solar atmosphere, Astron. Astr., 145 (1985), 157–169. |
[17] | R. J. Defouw, Wave propagation along a magnetic tube, Astrophys. J., 209 (1976), 266–269. https://doi.org/10.1086/154717 doi: 10.1086/154717 |
[18] | A. Pardi, I. Ballai, A. Marcu, B. Orza, Sausage mode propagation in a thick magnetic flux tube, Sol. Phys., 289 (2014), 1203–1214. https://doi.org/10.1007/s11207-013-0380-y doi: 10.1007/s11207-013-0380-y |
[19] | G. Sutmann, Z. E. Musielak, P. Ulmschneider, Acoustic wave propagation in the solar atmosphere. Ⅲ. Analytic solutions for adiabatic wave excitations, Astron. Astr., 340 (1998), 556–568. |
[20] | I. Ballai, R. Erdélyi, J. Hargreaves, Slow magnetohydrodynamic waves in stratified and viscous plasmas, Phys. Plasmas, 13 (2006). https://doi.org/10.1063/1.2194847 doi: 10.1063/1.2194847 |
[21] | H. Bateman, A. Erdélyi, W. Magnus, F. Oberhettinger, Tables of integral transforms, McGraw-Hill New York, 1 (1954). |
[22] | A. Alharbi, Guided oscillations in partially ionised solar chromosphere driven by a spectrum of waves, Braz. J. Phys., 54 (2024), 38. https://doi.org/10.1007/s13538-023-01410-w doi: 10.1007/s13538-023-01410-w |
[23] | J. E. Leake, T. D. Arber, M. L. Khodachenko, Collisional dissipation of Alfvén waves in a partially ionised solar chromosphere, Astron. Astr., 442 (2005), 1091–1098. https://doi.org/10.1051/0004-6361:20053427 doi: 10.1051/0004-6361:20053427 |