Fourth-order fractional Sturm-Liouville problems are studied in this work. The numerical simulation uses the pseudospectral method, utilizing Chebyshev cardinal polynomials. The presented algorithm is implemented after converting the desired equation into an associated integral equation and gives us a linear system of algebraic equations. Then, we can find the eigenvalues by calculating the roots of the corresponding characteristic polynomial. What is most striking is that the proposed scheme accurately solves this type of equation. Numerical experiments confirm this claim.
Citation: Haifa Bin Jebreen, Beatriz Hernández-Jiménez. Pseudospectral method for fourth-order fractional Sturm-Liouville problems[J]. AIMS Mathematics, 2024, 9(9): 26077-26091. doi: 10.3934/math.20241274
Fourth-order fractional Sturm-Liouville problems are studied in this work. The numerical simulation uses the pseudospectral method, utilizing Chebyshev cardinal polynomials. The presented algorithm is implemented after converting the desired equation into an associated integral equation and gives us a linear system of algebraic equations. Then, we can find the eigenvalues by calculating the roots of the corresponding characteristic polynomial. What is most striking is that the proposed scheme accurately solves this type of equation. Numerical experiments confirm this claim.
[1] | A. Afarideh, F. D. Saei, M. Lakestani, B. N. Saray, Pseudospectral method for solving fractional Sturm-Liouville problem using Chebyshev cardinal functions, Phys. Scr., 96 (2021), 125267. https://doi.org/10.1088/1402-4896/ac3c59 doi: 10.1088/1402-4896/ac3c59 |
[2] | A. Afarideh, F. D. Saei, B. N. Saray, Eigenvalue problem with fractional differential operator: Chebyshev cardinal spectral method, J. Math. Model., 11 (2023), 343–355. https://doi.org/10.22124/JMM.2023.24239.2169 doi: 10.22124/JMM.2023.24239.2169 |
[3] | M. A. Al-Gwaiz, Sturm-Liouville theory and its applications, London: Springer, 2008. https://doi.org/10.1007/978-1-84628-972-9 |
[4] | Q. M. Al-Mdallal, An efficient method for solving fractional Sturm-Liouville problems, Chaos Solitons Fract., 40 (2009), 183–189. https://doi.org/10.1016/j.chaos.2007.07.041 doi: 10.1016/j.chaos.2007.07.041 |
[5] | A. L. Andrew, J. W. Paine, Correcttion of Numerov's eigenvalue estimates, Numer. Math., 47 (1985), 289–300. https://doi.org/10.1007/BF01389712 doi: 10.1007/BF01389712 |
[6] | M. Arif, F. Ali, I. Khan, K. S. Nisar, A time fractional model with non-singular kernel the generalized couette flow of couple stress nanofluid, IEEE Access, 8 (2020), 77378–77395. https://doi.org/10.1109/ACCESS.2020.2982028 doi: 10.1109/ACCESS.2020.2982028 |
[7] | M. Asadzadeh, B. N. Saray, On a multiwavelet spectral element method for integral equation of a generalized Cauchy problem, BIT Numer. Math., 62 (2022), 1383–1416. https://doi.org/10.1007/s10543-022-00915-1 doi: 10.1007/s10543-022-00915-1 |
[8] | B. S. Attili, D. Lesnic, An efficient method for computing eigenelements of Sturm-Liouville fourth-order boundary value problems, Appl. Math. Comput., 182 (2006), 1247–1254. https://doi.org/10.1016/j.amc.2006.05.011 doi: 10.1016/j.amc.2006.05.011 |
[9] | A. Benkerrouche, D. Baleanu, M. S. Souid, A. Hakem, M. Inc, Boundary value problem for nonlinear fractional differential equations of variable order via Kuratowski MNC technique, Adv. Differ. Equ., 2021 (2021), 1–19. https://doi.org/10.1186/s13662-021-03520-8 doi: 10.1186/s13662-021-03520-8 |
[10] | E. S. Baranovskii, Analytical solutions to the unsteady Poiseuille flow of a second grade fluid with slip boundary conditions, Polymers, 16 (2024), 1–16. https://doi.org/10.3390/polym16020179 doi: 10.3390/polym16020179 |
[11] | J. P. Boyd, Chebyshev and Fourier spectral methods, 2 Eds., Mineola: Dover Publications, 2001. |
[12] | B. Chanane, Accurate solutions of fourth order Sturm-Liouville problems, J. Comput. Appl. Math., 234 (2010), 3064–3071. https://doi.org/10.1016/j.cam.2010.04.023 doi: 10.1016/j.cam.2010.04.023 |
[13] | A. L. Chang, H. G. Sun, C. M. Zheng, B. Q. Lu, C. P. Lu, R. Ma, et al., A time fractional convection-diffusion equation to model gas transport through heterogeneous soil and gas reservoirs, Phys. A, 502 (2018), 356–369. https://doi.org/10.1016/j.physa.2018.02.080 doi: 10.1016/j.physa.2018.02.080 |
[14] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods: fundamentals in single domains, Berlin, Heidelberg: Springer, 2006. https://doi.org/10.1007/978-3-540-30726-6 |
[15] | L. Chen, H. P. Ma, Approximate solution of the Sturm-Liouville problems with Legendre-Galerkin-Chebyshev collocation method, Appl. Math. Comput., 206 (2008), 748–754. https://doi.org/10.1016/j.amc.2008.09.038 doi: 10.1016/j.amc.2008.09.038 |
[16] | V. Daftardar-Gejji, H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301 (2005), 508–518. https://doi.org/10.1016/j.jmaa.2004.07.039 doi: 10.1016/j.jmaa.2004.07.039 |
[17] | G. J. Fix, J. P. Roof, Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. Math. Appl., 48 (2004), 1017–1033. https://doi.org/10.1016/j.camwa.2004.10.003 doi: 10.1016/j.camwa.2004.10.003 |
[18] | P. Ghelardoni, Approximations of Sturm-Liouville eigenvalues using boundary value methods, Appl. Numer. Math., 23 (1997), 311–325. https://doi.org/10.1016/S0168-9274(96)00073-6 doi: 10.1016/S0168-9274(96)00073-6 |
[19] | M. A. Hajji, Q. M. Al-Mdallal, F. M. Allan, An efficient algorithm for solving higher-order fractional Sturm-Liouville eigenvalue problems, J. Comput. Phys., 272 (2014), 550–558. https://doi.org/10.1016/j.jcp.2014.04.048 doi: 10.1016/j.jcp.2014.04.048 |
[20] | Y. Huang, J. Chen, Q. Z. Luo, A simple approach for determining the eigenvalues of the fourth-order Sturm-Liouville problem with variable coefficients, Appl. Math. Lett., 26 (2013), 729–734. https://doi.org/10.1016/j.aml.2013.02.004 doi: 10.1016/j.aml.2013.02.004 |
[21] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[22] | M. Lakestani, M. Dehghan, The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurement, J. Comput. Appl. Math., 235 (2010), 669–678. https://doi.org/10.1016/j.cam.2010.06.020 doi: 10.1016/j.cam.2010.06.020 |
[23] | K. Marynets, Analysis of a Sturm-Liouville problem arising in atmosphere, J. Math. Fluid Mech., 26 (2024), 38. https://doi.org/10.1007/s00021-024-00873-4 doi: 10.1007/s00021-024-00873-4 |
[24] | K. Marynets, A Weighted Sturm-Liouville problem related to ocean flows, J. Math. Fluid Mech., 20 (2018), 929–935. https://doi.org/10.1007/s00021-017-0347-0 doi: 10.1007/s00021-017-0347-0 |
[25] | J. A. T. Machado, M. F. Silva, R. S. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos, et al., Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2010), 639801. https://doi.org/10.1155/2010/639801 doi: 10.1155/2010/639801 |
[26] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, 2010. https://doi.org/10.1142/p614 |
[27] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[28] | K. B. Oldham, J. Spanier, The fractional calculus, New York: Academic Press, 1974. |
[29] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
[30] | K. Sayevand, H. Arab, An efficient extension of the Chebyshev cardinal functions for differential equations with coordinate derivatives of non-integer order, Comput. Methods Differ. Equ., 6 (2018), 339–352. |
[31] | M. I. Syam, H. I. Siyyam, An efficient technique for finding the eigenvalues of fourth-order Sturm-Liouville problems, Chaos Solitons Fract., 39 (2009), 659–665. https://doi.org/10.1016/j.chaos.2007.01.105 doi: 10.1016/j.chaos.2007.01.105 |
[32] | M. Shahriari, B. N. Saray, B. Mohammadalipour, S. Saeidian, Pseudospectral method for solving the fractional one-dimensional Dirac operator using Chebyshev cardinal functions, Phys. Scr., 98 (2023), 055205. https://doi.org/10.1088/1402-4896/acc7d3 doi: 10.1088/1402-4896/acc7d3 |
[33] | L. Shi, B. N. Saray, F. Soleymani, Sparse wavelet Galerkin method: application for fractional Pantograph problem, J. Comput. Appl. Math., 451 (2024), 116081. https://doi.org/10.1016/j.cam.2024.116081 doi: 10.1016/j.cam.2024.116081 |
[34] | Z. Shi, Y. Y. Cao, Application of Haar wavelet method to eigenvalue problems of high order differential equations, Appl. Math. Model., 36 (2012), 4020–4026. https://doi.org/10.1016/j.apm.2011.11.024 doi: 10.1016/j.apm.2011.11.024 |
[35] | W. Weaver Jr., S. P. Timoshenko, D. H. Young, Vibration problems in engineering, John Wiley & Sons, 1991. |
[36] | Q. Yuan, Z. Q. He, H. N. Leng, An improvement for Chebyshev collocation method in solving certain Sturm-Liouville problems, Appl. Math. Comput., 195 (2008), 440–447. https://doi.org/10.1016/j.amc.2007.04.113 doi: 10.1016/j.amc.2007.04.113 |
[37] | U. Yücel, B. Boubaker, Differential quadrature method (DQM) and Boubaker polynomials expansion scheme (BPES) for efficient computation of the eigenvalues of fourth-order Sturm-Liouville problems, Appl. Math. Model., 36 (2012), 158–167. https://doi.org/10.1016/j.apm.2011.05.030 doi: 10.1016/j.apm.2011.05.030 |