Citation: Erdal Bas, Ramazan Ozarslan. Theory of discrete fractional Sturm–Liouville equations and visual results[J]. AIMS Mathematics, 2019, 4(3): 593-612. doi: 10.3934/math.2019.3.593
[1] | J. B. Diaz, T. J. Osler, Differences of fractional order, Math. Comput., 28 (1974), 185-202. doi: 10.1090/S0025-5718-1974-0346352-5 |
[2] | K. S. Miller, B. Ross, Fractional difference calculus. In: Proceedings of the International Symposium on Univalent Functions, fractional calculus and their applications, pp. 139-152, 1989. |
[3] | H. L. Gray, N. F. Zhang, On a new definition of the fractional difference, Math. Comput., 50 (1988), 513-529. doi: 10.1090/S0025-5718-1988-0929549-2 |
[4] | C. Goodrich, A. C. Peterson, Discrete fractional calculus, Berlin: Springer, 2015. |
[5] | D. Baleanu, S. Rezapour, S. Salehi, On some self-adjoint fractional finite difference equations, J. Comput. Anal. Appl., 19 (2015), 59-67. |
[6] | K. Ahrendt, T. Rolling, L. Dewolf, et al. Initial and boundary value problems for the caputo fractional self-adjoint difference equations, EPAM, 2 (2016), 105-141. |
[7] | F. M. Atı cı, P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theo., 3 (2009), 1-12. |
[8] | N. Acar, F. M. Atı cı, Exponential functions of discrete fractional calculus, Appl. Anal. Discr. Math., 7 (2013), 343-353. doi: 10.2298/AADM130828020A |
[9] | F. Atici, P. Eloe, Initial value problems in discrete fractional calculus, P. Am. Math. Soc., 137 (2008), 981-989. doi: 10.1090/S0002-9939-08-09626-3 |
[10] | F. M. Atici, P. W. Eloe, Linear forward fractional difference equations, Communications in Applied Analysis, 19 (2015), 31-42. |
[11] | F. M. Atı cı, M. Atı cı, M. Belcher, et al. A new approach for modeling with discrete fractional equations, Fund. Inform., 151 (2017), 313-324. doi: 10.3233/FI-2017-1494 |
[12] | T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602-1611. doi: 10.1016/j.camwa.2011.03.036 |
[13] | T. Abdeljawad, D. Baleanu, Fractional Differences and Integration by Parts, J. Comput. Anal. Appl., 13 (2011), 574-582. |
[14] | T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013), 1-12. |
[15] | D. Mozyrska, M. Wyrwas, The Z-Transform Method and Delta Type Fractional Difference Operators, Discrete Dyn. Nat. Soc., 2015 (2015), 1-12. |
[16] | D. Mozyrska, M. Wyrwas, Solutions of fractional linear difference systems with Caputo-type operator via transform method. In: ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014, pp. 1-6. |
[17] | D. Mozyrska, M. Wyrwas, Fractional linear equations with discrete operators of positive order. In: K. Latawiec, M. Łukaniszyn, R. Stanisławski (eds) Advances in Modelling and Control of Non-integer-Order Systems, Lecture Notes in Electrical Engineering, Vol. 320, Springer, Cham, 2015. |
[18] | G. A. Anastassiou, Nabla discrete fractional calculus and nabla inequalities, Math. Comput. Model., 51 (2010), 562-571. doi: 10.1016/j.mcm.2009.11.006 |
[19] | G. A. Anastassiou, Right nabla discrete fractional calculus, International Journal of Difference Equations, 6 (2011), 91-104. |
[20] | J. Hein, Z. McCarthy, N. Gaswick, et al. Laplace transforms for the nabla-difference operator, Panamerican Mathematical Journal, 21 (2011), 79-97. |
[21] | J. F. Cheng, Y. M. Chu, Fractional difference equations with real variable, Abstr. Appl. Anal., 2012 (2012), 1-24. |
[22] | R. Yilmazer, F. Tchier, D. Baleanu, Particular solutions of the confluent hypergeometric differential equation by using the nabla fractional calculus operator, Entropy, 18 (2016), 49. |
[23] | G. C. Wu, D. Baleanu, S. D. Zeng, et al. Discrete fractional diffusion equation, Nonlinear Dynam., 80 (2015), 281-286. doi: 10.1007/s11071-014-1867-2 |
[24] | D. Baleanu, O. Defterli, O. P. Agrawal, A central difference numerical scheme for fractional optimal control problems, J. Vib. Control, 15 (2009), 583-597. doi: 10.1177/1077546308088565 |
[25] | G. C. Wu, D. Baleanu, S. D. Zeng, et al. Mittag-Leffler function for discrete fractional modelling, Journal of King Saud University-Science, 28 (2016), 99-102. doi: 10.1016/j.jksus.2015.06.004 |
[26] | R. Almeida, A. Malinowska, M. L. Morgado, et al. Variational methods for the solution of fractional discrete/continuous Sturm–Liouville problems, J. Mech. Mater. Struct., 12 (2017), 3-21. doi: 10.2140/jomms.2017.12.3 |
[27] | B. M. Levitan, I. S. Sargsian, Introduction to spectral theory: selfadjoint ordinary differential operators, Translations of mathematical monographs, American Mathematical Society, 1975. |
[28] | M. Dehghan, A. B. Mingarelli, Fractional Sturm-Liouville eigenvalue problems, I, arXiv preprint arXiv:1712.09891, 2017. |
[29] | M. Dehghan, A. B. Mingarelli, Fractional Sturm-Liouville eigenvalue problems, II, arXiv preprint arXiv:1712.09894, 2017. |
[30] | E. Bas, F. Metin, Fractional singular Sturm-Liouville operator for Coulomb potential, Adv. Differ. Equ-Ny, 2013 (2013), 300. |
[31] | E. Bas, The Inverse Nodal problem for the fractional diffusion equation, Acta Sci-Technol, 37 (2015), 251-257. doi: 10.4025/actascitechnol.v37i2.17273 |
[32] | M. Klimek, O. P. Agrawal, Fractional Sturm–Liouville problem, Comput. Math. Appl., 66 (2013), 795-812. doi: 10.1016/j.camwa.2012.12.011 |
[33] | M. Klimek, O. P. Agrawal, On a regular fractional Sturm-Liouville problem with derivatives of order in (0, 1). In: Proceedings of the 13th International Carpathian Control Conference (ICCC), pp. 284-289, 2012. |
[34] | M. Klimek, T. Odzijewicz, A. B. Malinowska, Variational methods for the fractional Sturm–Liouville problem, J. Math. Anal. Appl., 416 (2014), 402-426. doi: 10.1016/j.jmaa.2014.02.009 |
[35] | A. B. Malinowska, T. Odzijewicz, D. F. Torres, Advanced methods in the fractional calculus of variations, Cham: Springer, 2015. |
[36] | M. Al-Refai, T. Abdeljawad, Fundamental results of conformable Sturm-Liouville eigenvalue problems, Complexity, 2017 (2017), 1-7. |
[37] | T. Abdeljawad, R. Mert, A. Peterson, Sturm Liouville Equations in the frame of fractional operators with exponential kernels and their discrete versions, Quaest. Math., (2018), 1-19. |
[38] | S. Qureshi, A. Yusuf, A. A. Shaikh, et al. Fractional modeling of blood ethanol concentration system with real data application, Chaos, 29 (2019), 013143. |
[39] | A. Yusuf, S. Qureshi, A. I. Aliyu, et al. Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel, Chaos, 28 (2018), 123121. |
[40] | S. Qureshi, A. Yusuf, Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu, Chaos Soliton. Fract., 122 (2019), 111-118. doi: 10.1016/j.chaos.2019.03.020 |
[41] | E. Bas, R. Ozarslan, Real world applications of fractional models by Atangana–Baleanu fractional derivative, Chaos Soliton. Fract., 116 (2018), 121-125. doi: 10.1016/j.chaos.2018.09.019 |
[42] | E. Bas, R. Ozarslan, D. Baleanu, et al. Comparative simulations for solutions of fractional Sturm–Liouville problems with non-singular operators, Adv. Differ. Equ-Ny, 2018 (2018), 350. |
[43] | E. Bas, B. Acay, R. Ozarslan, Fractional models with singular and non-singular kernels for energy efficient buildings, Chaos, 29 (2019), 023110. |
[44] | R. Ozarslan, A. Ercan, E. Bas, Novel Fractional Models Compatible with Real World Problems, Fractal and Fractional, 3 (2019), 15. |
[45] | R. Mert, T. Abdeljawad, A. Peterson, Sturm Liouville Equations in the frame of fractional operators with Mittag-Leffler kernels and their discrete versions, arXiv preprint arXiv:1803.05013, 2018. |
[46] | M. Bohner, A. C. Peterson, Advances in dynamic equations on time scales, Springer Science & Business Media, 2003. |
[47] | T. Abdeljawad, F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012), 1-13. |
[48] | L. Bourdin, J. Cresson, I. Greff, et al. Variational integrator for fractional Euler–Lagrange equations, Appl. Numer. Math., 71 (2013), 14-23. doi: 10.1016/j.apnum.2013.03.003 |