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1. Introduction

Fractional calculus is a notably attractive subject owing to having wide-ranging application areas
of theoretical and applied sciences. Despite the fact that there are a large number of worthwhile
mathematical works on the fractional differential calculus, there is no noteworthy parallel
improvement of fractional difference calculus up to lately. This statement has shown that discrete
fractional calculus has certain unforeseen hardship.

Fractional sums and differences were obtained firstly in Diaz-Osler [1], Miller-Ross [2] and Gray
and Zhang [3] and they found discrete types of fractional integrals and derivatives. Later, several
authors began to touch upon discrete fractional calculus; Goodrich-Peterson [4], Baleanu et al. [5],
Ahrendt et al. [6]. Nevertheless, discrete fractional calculus is a rather novel area. The first studies
have been done by Atıcı et al. [7–11], Abdeljawad et al. [12–14], Mozyrska et al. [15–17], Anastassiou
[18, 19], Hein et al. [20] and Cheng et al. [21] and so forth [22–26].

Self-adjoint operators have an important place in differential operators. Levitan and Sargsian [27]
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studied self-adjoint Sturm-Liouville differential operators and they obtained spectral properties based
on self-adjointness. Also, they found representation of solutions and hence they obtained asymptotic
formulas of eigenfunctions and eigenvalues. Similarly, Dehghan and Mingarelli [28, 29] obtained for
the first time representation of solution of fractional Sturm-Liouville problem and they obtained
asymptotic formulas of eigenfunctions and eigenvalues of the problem. In this study, firstly we obtain
self-adjointness of DFSL operator within nabla fractional Riemann-Liouville and delta fractional
Grünwald-Letnikov operators. From this point of view, we obtain orthogonality of distinct
eigenfunctions, reality of eigenvalues. In addition, we open a new gate by obtaining representation of
solution of DFSL problem for researchers study in this area.

Self-adjointness of fractional Sturm-Liouville differential operators have been proven by Bas et
al. [30, 31], Klimek et al. [32, 33]. Variational properties of fractional Sturm-Liouville problem has
been studied in [34, 35]. However, self-adjointness of conformable Sturm-Liouville and DFSL with
Caputo-Fabrizio operator has been proven by [36,37]. Nowadays, several studies related to Atangana-
Baleanu fractional derivative and its discrete version are done [38–45].

In this study, we consider DFSL operators within Riemann-Liouville and Grünwald-Letnikov sense,
and we prove the self-adjointness, orthogonality of distinct eigenfunctions, reality of eigenvalues of
DFSL operator. However, we get sum representation of solutions for DFSL equation by means Laplace
transform for nabla fractional difference equations. Finally, we compare the results for the solution
of DFSL problem, discrete Sturm-Liouville (DSL) problem with the second order, fractional Sturm-
Liouville (FSL) problem and classical Sturm-Liouville (CSL) problem with the second order. The aim
of this paper is to contribute to the theory of DFSL operator.

We discuss DFSL equations in three different ways with;
i) Self-adjoint (nabla left and right) Riemann-Liouville (R-L) fractional operator,

L1x (t) = ∇µa (p (t)b ∇
µx (t)) + q (t) x (t) = λr (t) x (t) , 0 < µ < 1,

ii) Self-adjoint (delta left and right) Grünwald-Letnikov (G-L) fractional operator,

L2x (t) = ∆
µ
−

(
p (t) ∆

µ
+x (t)

)
+ q (t) x (t) = λr (t) x (t) , 0 < µ < 1,

iii)(nabla left) DFSL operator is defined by R-L fractional operator,

L3x (t) = ∇µa
(
∇µa x (t)

)
+ q (t) x (t) = λx (t) , 0 < µ < 1.

2. Preliminaries

Definition 2.1. [4] Delta and nabla difference operators are defined by respectively

∆x (t) = x (t + 1) − x (t) , ∇x (t) = x (t) − x (t − 1) . (1)

Definition 2.2. [46] Falling function is defined by, α ∈ R

tα =
Γ (α + 1)

Γ (α + 1 − n)
, (2)

where Γ is Euler gamma function.
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Definition 2.3. [46] Rising function is defined by,α ∈ R,

tα =
Γ (t + α)

Γ (t)
. (3)

Remark 1. Delta and nabla operators have the following properties

∆tα = αtα−1, (4)

∇tα = αtα−1.

Definition 2.4. [2, 7] Fractional sum operators are defined by,
(i) The left defined nabla fractional sum with order µ > 0 is defined by

∇−µa x (t) =
1

Γ (µ)

t∑
s=a+1

(t − ρ (s))µ−1 x (s) , t ∈ Na+1, (5)

(ii) The right defined nabla fractional sum with order µ > 0 is defined by

b∇
−µx (t) =

1
Γ (µ)

b−1∑
s=t

(s − ρ (t))µ−1 x (s) , t ∈ b−1N, (6)

where ρ (t) = t − 1 is called backward jump operators, Na = {a, a + 1, ...} , bN = {b, b − 1, ...}.

Definition 2.5. [47] Fractional difference operators are defined by,
(i) The nabla left fractional difference of order µ > 0 is defined

∇µa x (t) = ∇n∇−
(n−µ)

a x (t) =
∇n

Γ (n − µ)

t∑
s=a+1

(t − ρ (s))n−µ−1 x (s) , t ∈ Na+1, (7)

(ii) The nabla right fractional difference of order µ > 0 is defined

b∇
µx (t) = (−1)n ∆n

b∇
−(n−µ)x (t) =

(−1)n ∆n

Γ (n − µ)

b−1∑
s=t

(s − ρ (t))n−µ−1 x (s) , t ∈ b−1N. (8)

Fractional differences in (7 − 8) are called the Riemann-Liouville (R-L) definition of the µ-th order
nabla fractional difference.

Definition 2.6. [1, 21, 48] Fractional difference operators are defined by,
(i) The left defined delta fractional difference of order µ, 0 < µ ≤ 1, is defined by

∆
µ
−x (t) =

1
hµ

t∑
s=0

(−1)s µ (µ − 1) ... (µ − s + 1)
s!

x (t − s) , t = 1, ...,N. (9)

(ii) The right defined delta fractional difference of order µ, 0 < µ ≤ 1, is defined by

∆
µ
+x (t) =

1
hµ

N−t∑
s=0

(−1)s µ (µ − 1) ... (µ − s + 1)
s!

x (t + s) , t = 0, ..,N − 1. (10)

Fractional differences in (9 − 10) are called the Grünwald-Letnikov (G-L) definition of the µ-th order
delta fractional difference.
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Theorem 2.7. [47] We define the summation by parts formula for R-L fractional nabla difference
operator, u is defined on bN and v is defined on Na, then

b−1∑
s=a+1

u (s)∇µav (s) =

b−1∑
s=a+1

v (s)b ∇
µu (s) . (11)

Theorem 2.8. [26, 48] We define the summation by parts formula for G-L delta fractional difference
operator, u, v is defined on {0, 1, ..., n}, then

n∑
s=0

u (s) ∆
µ
−v (s) =

n∑
s=0

v (s) ∆
µ
+u (s) . (12)

Definition 2.9. [20] f : Na → R, s ∈ <, Laplace transform is defined as follows,

La { f } (s) =

∞∑
k=1

(1 − s)k−1 f (a + k) ,

where< = C\ {1} and< is called the set of regressive (complex) functions.

Definition 2.10. [20] Let f , g : Na → R, all t ∈ Na+1, convolution property of f and g is given by

( f ∗ g) (t) =

t∑
s=a+1

f (t − ρ (s) + a) g (s) ,

where ρ (s) is the backward jump function defined in [46] as

ρ (s) = s − 1.

Theorem 2.11. [20] f , g : Na → R, convolution theorem is expressed as follows,

La { f ∗ g} (s) = La { f }La {g} (s) .

Lemma 2.12. [20] f : Na → R, the following property is valid,

La+1 { f } (s) =
1

1 − s
La { f } (s) −

1
1 − s

f (a + 1) .

Theorem 2.13. [20] f : Na → R, 0 < µ < 1, Laplace transform of nabla fractional difference

La+1
{
∇µa f

}
(s) = sµLa+1 { f } (s) −

1 − sµ

1 − s
f (a + 1) , t ∈ Na+1.

Definition 2.14. [20] For |p| < 1, α > 0, β ∈ R and t ∈ Na, discrete Mittag-Leffler function is defined
by

Ep,α,β (t, a) =

∞∑
k=0

pk (t − a)αk+β

Γ (αk + β + 1)
,

where tn =

{
t (t + 1) · · · (t + n − 1) , n ∈ Z

Γ(t+n)
Γ(t) , n ∈ R is rising factorial function.
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Theorem 2.15. [20] For |p| < 1, α > 0, β ∈ R, |1 − s| < 1, and |s|α > p, Laplace transform of discrete
Mittag-Leffler function is as follows,

La

{
Ep,α,β (., a)

}
(s) =

sα−β−1

sα − p
.

Definition 2.16. Laplace transform of f (t) ∈ R+, t ≥ 0 is defined as follows,

L { f } (s) =

∞∫
0

e−st f (t) dt.

Theorem 2.17. For z, θ ∈ C,Re(δ) > 0, Mittag-Leffler function with two parameters is defined as
follows

Eδ,θ (z) =

∞∑
k=0

zk

Γ (δk + θ)
.

Theorem 2.18. Laplace transform of Mittag-Leffler function is as follows

L
{
tθ−1Eδ,θ

(
λtδ

)}
(s) =

sδ−θ

sδ − λ
.

Property 2.19. [28] f : Na → R, 0 < µ < 1, Laplace transform of fractional derivative in Caputo
sense is as follows, 0 < α < 1,

L
{
CDα

0+ f
}

(s) = sαL { f } (s) − sα−1 f (0) .

Property 2.20. [28] f : Na → R, 0 < µ < 1, Laplace transform of left fractional derivative in
Riemann-Liouville sense is as follows, 0 < α < 1,

L
{
Dα

0+ f
}
(s) = sαL { f } (s) − I1−α

0+ f (t)
∣∣∣
t=0
,

here Iα0+ is left fractional integral in Riemann-Liouville sense.

3. Main results

3.1. Discrete fractional Sturm-Liouville equations

We consider discrete fractional Sturm-Liouville equations in three different ways as follows:
First Case : Self-adjoint L1 DFSL operator is defined by (nabla right and left) R-L fractional operator,

L1x (t) = ∇µa (p (t)b ∇
µx (t)) + q (t) x (t) = λr (t) x (t) , 0 < µ < 1, (13)

where p (t) > 0, r (t) > 0, q (t) is a real valued function on [a + 1, b − 1] and real valued, λ is the
spectral parameter, t ∈ [a + 1, b − 1] , x (t) ∈ l2 [a + 1, b − 1] . In `2 (a + 1, b − 1) , the Hilbert space of
sequences of complex numbers u (a + 1) , ..., u (b − 1) with the inner product is given by,

〈u (n) , v (n)〉 =

b−1∑
n=a+1

u (n) v (n) ,
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for every u ∈ DL1 , let’s define as follows

DL1 =
{
u (n) , v (n) ∈ `2 (a + 1, b − 1) : L1u (n) , L1v (n) ∈ `2 (a + 1, b − 1)

}
.

S econd Case : Self-adjoint L2 DFSL operator is defined by(delta left and right) G-L fractional
operator,

L2x (t) = ∆
µ
−

(
p (t) ∆

µ
+x (t)

)
+ q (t) x (t) = λr (t) x (t) , 0 < µ < 1, (14)

where p, r, λ is as defined above, q (t) is a real valued function on [0, n] , t ∈ [0, n] , x (t) ∈ l2 [0, n] . In
`2 (0, n) , the Hilbert space of sequences of complex numbers u (0) , ..., u (n) with the inner product is
given by, n is a finite integer,

〈u (i) , r (i)〉 =

n∑
i=0

u (i) r (i) ,

for every u ∈ DL2 , let’s define as follows

DL2 =
{
u (i) , v (i) ∈ `2 (0, n) : L2u (n) , L2r (n) ∈ `2 (0, n)

}
.

Third Case :L3 DFSL operator is defined by (nabla left) R-L fractional operator,

L3x (t) = ∇µa
(
∇µa x (t)

)
+ q (t) x (t) = λx (t) , 0 < µ < 1, (15)

p, r, λ is as defined above, q (t) is a real valued function on [a + 1, b − 1] , t ∈ [a + 1, b − 1] .

Firstly, we consider the first case and give the following theorems and proofs;

Theorem 3.1. DFSL operator L1 is self-adjoint.

Proof.
u (t) L1v (t) =u (t)∇µa (p (t)b ∇

µv (t)) + u (t) q (t) v (t) , (16)

v (t) L1u (t) =v (t)∇µa (p (t)b ∇
µu (t)) + v (t) q (t) u (t) . (17)

If (16 − 17) is subtracted from each other

u (t) L1v (t) − v (t) L1u (t) = u (t)∇µa (p (t)b ∇
µv (t)) − v (t)∇µa (p (t)b ∇

µu (t))

and sum operator from a + 1 to b − 1 to both side of the last equality is applied, we get

b−1∑
s=a+1

(u (s) L1v (s) − v (s) L1u (s)) =

b−1∑
s=a+1

u (s)∇µa (p (s)b ∇
µv (s)) (18)

−

b−1∑
s=a+1

v (s)∇µa (p (s)b ∇
µu (s)) .

If we apply the summation by parts formula in (11) to right hand side of (18) , we have

b−1∑
s=a+1

(u (s) L1v (s) − v (s) L1u (s)) =

b−1∑
s=a+1

p (s)b ∇
µv (s)b ∇

µu (s)
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−

b−1∑
s=a+1

p (s)b ∇
µu (s)b ∇

µv (s)

= 0,

〈L1u, v〉 = 〈u, L1v〉 .

Hence, the proof completes. �

Theorem 3.2. Two eigenfunctions, u(t, λα) and v(t, λβ), of the equation (13) are orthogonal as λα , λβ.

Proof. Let λα and λβ are two different eigenvalues corresponds to eigenfunctions u (t) and v (t)
respectively for the the equation (13),

∇µa (p (t)b ∇
µu (t)) + q (t) u (t) − λαr (t) u (t) = 0,

∇µa (p (t)b ∇
µv (t)) + q (t) v (t) − λβr (t) v (t) = 0.

If we multiply last two equations by v (t) and u (t) respectively, subtract from each other and apply
definite sum operator, owing to the self-adjointness of the operator L1, we have

(
λα − λβ

) b−1∑
s=a+1

r (s) u (s) v (s) = 0,

since λα , λβ,

b−1∑
s=a+1

r (s) u (s) v (s) = 0,

〈u (t) , v (t)〉 = 0.

Hence, the proof completes. �

Theorem 3.3. All eigenvalues of the equation (13) are real.

Proof. Let λ = α + iβ, owing to the self-adjointness of the operator L1, we can write

〈L1u (t) , u (t)〉 = 〈u (t) , L1u (t)〉 ,
〈λru (t) , u (t)〉 = 〈u (t) , λr (t) u (t)〉 ,(

λ − λ
)
〈u (t) , u (t)〉r = 0.

Since 〈u (t) , u (t)〉r , 0,
λ = λ

and hence β = 0. The proof completes. �

Secondly, we consider the second case and give the following theorems and proofs;

Theorem 3.4. DFSL operator L2 is self-adjoint.
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Proof.
u (t) L2v (t) =u (t) ∆

µ
−

(
p (t) ∆

µ
+v (t)

)
+ u (t) q (t) v (t) , (19)

v (t) L2u (t) =v (t) ∆
µ
−

(
p (t) ∆

µ
+u (t)

)
+ v (t) q (t) u (t) . (20)

If (19 − 20) is subtracted from each other

u (t) L2v (t) − v (t) L2u (t) = u (t) ∆
µ
−

(
p (t) ∆

µ
+v (t)

)
− v (t) ∆

µ
−

(
p (t) ∆

µ
+u (t)

)
and definite sum operator from 0 to t to both side of the last equality is applied, we have

t∑
s=0

(u (s) L1v (s) − v (s) L2u (s)) =

t∑
s=0

u (s) ∆
µ
−

(
p (s) ∆

µ
+v (s)

)
−

t∑
s=0

v (s) ∆
µ
−

(
p (s) ∆

µ
+u (s)

)
. (21)

If we apply the summation by parts formula in (12) to r.h.s. of (21) , we get

t∑
s=0

(u (s) L2v (s) − v (s) L2u (s)) =

t∑
s=0

p (s) ∆
µ
+v (s) ∆

µ
+u (s)

−

t∑
s=0

p (s) ∆
µ
+u (s) ∆

µ
+v (s)

= 0,

〈L2u, v〉 = 〈u, L2v〉 .

Hence, the proof completes. �

Theorem 3.5. Two eigenfunctions, u(t, λα) and v(t, λβ), of the equation (14) are orthogonal as λα , λβ.
orthogonal.

Proof. Let λα and λβ are two different eigenvalues corresponds to eigenfunctions u (t) and v (t)
respectively for the the equation (14),

∆
µ
−

(
p (t) ∆

µ
+u (t)

)
+ q (t) u (t) − λαr (t) u (t) = 0,

∆
µ
−

(
p (t) ∆

µ
+v (t)

)
+ q (t) v (t) − λβr (t) v (t) = 0.

If we multiply last two equations to v (t) and u (t) respectively, subtract from each other and apply
definite sum operator, owing to the self-adjointness of the operator L2, we get

(
λα − λβ

) t∑
s=0

r (s) u (s) v (s) = 0,

since λα , λβ,

t∑
s=0

r (s) u (s) v (s) = 0

〈u (t) , v (t)〉 = 0.

So, the eigenfunctions are orthogonal. The proof completes. �
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Theorem 3.6. All eigenvalues of the equation (14) are real.

Proof. Let λ = α + iβ, owing to the self-adjointness of the operator L2

〈L2u (t) , u (t)〉 = 〈u (t) , L2u (t)〉 ,
〈λr (t) u (t) , u (t)〉 = 〈u (t) , λr (t) u (t)〉 ,(

λ − λ
)
〈u, u〉r = 0.

Since 〈u, u〉r , 0,
λ = λ,

and hence β = 0. The proof completes. �

3.2. Sum representation of solution of discrete fractional Sturm-Liouville problem

Now, we consider the third case and give the following theorem and proof;

Theorem 3.7.
L3x (t) = ∇µa

(
∇µa x (t)

)
+ q (t) x (t) = λx (t) , 0 < µ < 1, (22)

x (a + 1) = c1, ∇
µ
a x (a + 1) = c2, (23)

where p (t) > 0, r (t) > 0, q (t) is defined and real valued, λ is the spectral parameter. The sum
representation of solution of the problem (22) − (23) is found as follows,

x (t) = c1

[
(1 + q (a + 1)) Eλ,2µ,µ−1 (t, a) − λEλ,2µ,2µ−1 (t, a)

]
(24)

+ c2

[
Eλ,2µ,2µ−1 (t, a) − Eλ,2µ,µ−1 (t, a)

]
−

t∑
s=a+1

Eλ,2µ,2µ−1 (t − ρ (s) + a) q (s) x (s) ,

where |λ| < 1, |1 − s| < 1, and |s|α > λ from Theorem 2.15.

Proof. Let’s use the Laplace transform of both side of the equation (22) by Theorem 2.13, and let
q (t) x (t) = g (t) ,

La+1
{
∇µa

(
∇µa x

)}
(s) + La+1 {g} (s) = λLa+1 {x} (s) ,

= sµLa+1
{
∇µa x

}
(s) −

1 − sµ

1 − s
c2 = λLa+1 {x} (s) − La+1 {g} (s) ,

= sµ
(
sµLa+1 {x} (s) −

1 − sµ

1 − s
c1

)
−

1 − sµ

1 − s
c2 = λLa+1 {x} (s) − La+1 {g} (s) ,

= La+1 {x} (s) =
1 − sµ

1 − s
1

s2µ − λ
(sµc1 + c2) −

1
s2µ − λ

La+1 {g} (s) ,

from Lemma 2.12, we get

La {x} (s) = c1

(
sµ − λ
s2µ − λ

)
−

1 − s
s2µ − λ

(
1

1 − s
La {g} (s) −

1
1 − s

g (a + 1)
)

+ c2

(
1 − sµ

s2µ − λ

)
. (25)
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Applying inverse Laplace transform to the equation (25), then we get representation of solution of the
problem (22) − (23) ,

x (t) = c1

(
(1 + q (a + 1)) Eλ,2µ,µ−1 (t, a) − λEλ,2µ,2µ−1 (t, a)

)
+c2

(
Eλ,2µ,2µ−1 (t, a) − Eλ,2µ,µ−1 (t, a)

)
−

t∑
s=a+1

Eλ,2µ,2µ−1 (t − ρ (s) + a) q (s) x (s) .

�

4. General discussions

Now, let us consider comparatively discrete fractional Sturm-Liouville (DFSL) problem, discrete
Sturm-Liouville (DSL) problem, fractional Sturm-Liouville (FSL) problem and classical
Sturm-Liouville (CSL) problem respectively as follows by taking q (t) = 0,
DFS L problem:

∇
µ
0

(
∇
µ
0 x (t)

)
= λx (t) , (26)

x (1) = 1, ∇µa x (1) = 0, (27)

and its analytic solution is as follows by the help of Laplace transform in Lemma 2.12

x (t) = Eλ,2µ,µ−1 (t, 0) − λEλ,2µ,2µ−1 (t, 0) , (28)

DS L problem:
∇2x (t) = λx (t) , (29)

x (1) = 1, ∇x (1) = 0, (30)

and its analytic solution is as follows

x (t) =
1
2

(1 − λ)−t
[(

1 −
√
λ
)t (

1 +
√
λ
)
−

(
−1 +

√
λ
) (

1 +
√
λ
)t
]
, (31)

FS L problem:
CDµ

0+

(
Dµ

0+ x (t)
)

= λx (t) , (32)

I1−µ
0+ x (t)

∣∣∣
t=0

= 1, Dµ
0+ x (t)

∣∣∣
t=0

= 0, (33)

and its analytic solution is as follows by the help of Laplace transform in Property 2.19 and 2.20

x (t) = tµ−1E2µ,µ

(
λt2µ

)
, (34)

CS L problem:
x′′ (t) = λx (t) , (35)

x (0) = 1, x′ (0) = 0, (36)

and its analytic solution is as follows
x (t) = cosh t

√
λ, (37)
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where the domain and range of function x (t) and Mittag-Leffler functions must be well defined. Note
that we may show the solution of CSL problem can be obtained by taking µ→ 1 in the solution of FSL
problem and similarly, the solution of DSL problem can be obtained by taking µ → 1 in the solution
of DFSL problem.

Firstly, we compare the solutions of DFSL and DSL problems and from here we show that the
solutions of DFSL problem converge to the solutions of DSL problem as µ→ 1 in Figure 1 for discrete

Mittag-Leffler function Ep,α,β (t, a) =
1000∑
k=0

pk (t−a)αk+β

Γ(αk+β+1) ; let λ = 0.01,
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Figure 1. Comparison of solutions of DFSL–DSL problems.
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Secondly, we compare the solutions of DFSL, DSL, FSL and CSL problems for discrete Mittag-

Leffler function Ep,α,β (t, a) =
1000∑
k=0

pk (t−a)αk+β

Γ(αk+β+1) . At first view, we observe the solution of DSL and CSL

problems almost coincide in any order µ, and we observe the solutions of DFSL and FSL problem
almost coincide in any order µ. However, we observe that all of the solutions of DFSL, DSL, FSL and
CSL problems almost coincide to each other as µ→ 1 in Figure 2. Let λ = 0.01,
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Figure 2. Comparison of solutions of DFSL–DSL–CSL–SL problems.
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Thirdly, we compare the solutions of DFSL problem (22 − 23) with different orders, different
potential functions and different eigenvalues for discrete Mittag-Leffler function

Ep,α,β (t, a) =
1000∑
k=0

pk (t−a)αk+β

Γ(αk+β+1) in the Figure 3;
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Figure 3. Analysis of solutions of DFSL problem.

Eigenvalues of DFSL problem (22 − 23) , correspond to some specific eigenfunctions for numerical

values of discrete Mittag-Leffler function Ep,α,β (t, a) =
i∑

k=0
pk (t−a)αk+β

Γ(αk+β+1) , is given with different orders

while q (t) = 0 in Table 1;
Finally, we give the solutions of DFSL problem (22 − 23) with different orders, different potential

functions and different eigenvalues for discrete Mittag-Leffler function Ep,α,β (t, a) =
100∑
k=0

pk (t−a)αk+β

Γ(αk+β+1) in

Tables 2–4;
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Table 1. Approximations to three eigenvalues of the problem (22–23).

i λ1,i λ2,i λ3,i

750 −0.992 −0.982 −0.057
1000 −0.989 −0.977 −0.057
2000 −0.996 −0.990 −0.057

λ1,i λ2,i λ3,i

−0.986 −0.941 −0.027
−0.990 −0.954 −0.027
−0.995 −0.978 −0.027

λ1,i λ2,i λ3,i

−0.483 −0.483 0
−0.559 −0.435 0
−0.654 −0.435 0

x (5) , µ = 0.5 x (10) , µ = 0.9 x (2000) , µ = 0.1
i λ1,i λ2,i λ3,i

750 −0.951 −0.004 0
1000 −0.963 −0.004 0
2000 −0.981 −0.004 0

λ1,i λ2,i λ3,i

−0.868 −0.793 −0.0003
−0.898 −0.828 −0.0003
−0.947 −0.828 −0.0003

λ1,i λ2,i λ3,i

−0.190 −3.290 × 10−6 0
−0.394 −3.290 × 10−6 0
−0.548 −3.290 × 10−6 0

x (20) , µ = 0.5 x (100) , µ = 0.9 x (1000) , µ = 0.7
i λ1,i λ2,i λ3,i

750 −0.414 −9.59 × 10−7 0
1000 −0.478 −9.59 × 10−7 0
2000 −0.544 −9.59 × 10−7 0

λ1,i λ2,i λ3,i

−0.853 −0.0003 0
−0.887 −0.0003 0
−0.940 −0.0003 0

λ1,i λ2,i λ3,i

−0.330 −4.140 × 10−6 0
−0.375 −4.140 × 10−6 0
−0.361 −4.140 × 10−6 0

x (1000) , µ = 0.3 x (100) , µ = 0.8 x (1000) , µ = 0.9
i λ1,i λ2,i λ3,i

750 −0.303 −3.894 × 10−6 0
1000 −0.335 −3.894 × 10−6 0
2000 −0.399 −3.894 × 10−6 0

λ1,i λ2,i λ3,i

−0.192 −0.066 0
−0.197 −0.066 0
−0.289 −0.066 0

λ1,i λ2,i λ3,i

−0.985 −0.955 −0.026
−0.989 −0.941 −0.026
−0.994 −0.918 −0.026

x (1000) , µ = 0.8 x (2000) , µ = 0.6 x (10) , µ = 0.83

Table 2. q (t) = 0, λ = 0.2.

x (t) µ = 0.1 µ = 0.2 µ = 0.5 µ = 0.7 µ = 0.9

x (1) 1 1 1 1 1
x (2) 0.125 0.25 0.625 0.875 1.125
x (3) 0.075 0.174 0.624 1.050 1.575
x (5) 0.045 0.128 0.830 1.968 4.000
x (7) 0.0336 0.111 1.228 4.079 11.203
x (9) 0.0274 0.103 1.878 8.657 31.941
x (12) 0.022 0.098 3.622 27.05 154.56
x (15) 0.0187 0.0962 7.045 84.75 748.56
x (16) 0.0178 0.0961 8.800 124.04 1266.5
x (18) 0.0164 0.0964 13.737 265.70 3625.6
x (20) 0.0152 0.0972 21.455 569.16 10378.8
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Table 3. λ = 0.01, µ = 0.45.

x (t) q (t) = 1 q (t) = t q (t) =
√

t

x (1) 1 1 1
x (2) 0.2261 0.1505 0.1871
x (3) 0.1138 0.0481 0.0767
x (5) 0.0518 0.0110 0.0252
x (7) 0.0318 0.0043 0.0123
x (9) 0.0223 0.0021 0.0072

x (12) 0.0150 0.0010 0.0039
x (15) 0.0110 0.0005 0.0025
x (16) 0.0101 0.0004 0.0022
x (18) 0.0086 0.0003 0.0017
x (20) 0.0075 0.0002 0.0014

Table 4. λ = 0.01, µ = 0.5.

x (t) q (t) = 1 q (t) = t q (t) =
√

t

x (1) 1 1 1
x (2) 0.2261 0.1505 0.1871
x (3) 0.1138 0.0481 0.0767
x (5) 0.0518 0.0110 0.0252
x (7) 0.0318 0.0043 0.0123
x (9) 0.0223 0.0021 0.0072

x (12) 0.0150 0.0010 0.0039
x (15) 0.0110 0.0005 0.0025
x (16) 0.0101 0.0004 0.0022
x (18) 0.0086 0.0003 0.0017
x (20) 0.0075 0.0002 0.0014
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4.1. Discussions on eigenvalues and eigenfunctions of DFSL, DSL, FSL, CSL problems

Now, let’s consider the problems together DFSL (26) − (27) , DSL (29) − (30), FSL (32) − (33) and
CSL (35) − (36) . Eigenvalues of these problems are the roots of the following equation

x (35) = 0.

Thus, if we apply the solutions (28) , (31) , (34) and (37) of these four problems to the equation above
respectively, we can find the eigenvalues of these problems for the orders µ = 0.9 and µ = 0.99
respectively in Table 5, and Table 6,

Table 5. µ = 0.9.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

DFSL −0.904 −0.859 −0.811 −0.262 −0.157 −0.079 −0.029 −0.003 0.982

FSL −0.497 −0.383 −0.283 −0.196 −0.124 −0.066 −0.026 −0.003 0 ...

DSL −1.450 −0.689 −0.469 −0.310 −0.194 −0.112 −0.055 −0.019 −0.002
CSL −0.163 −0.128 −0.098 −0.072 −0.050 −0.032 −0.008 −0.002 0

Table 6. µ = 0.99.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

DFSL −0.866 −0.813 −0.200 −0.115 −0.057 −0.020 −0.002 0 0.982

FSL −0.456 −0.343 −0.246 −0.165 −0.100 −0.051 −0.018 −0.002 0 ...

DSL −1.450 −0.689 −0.469 −0.310 −0.194 −0.112 −0.055 −0.019 −0.002 ...

CSL −0.163 −0.128 −0.098 −0.072 −0.050 −0.032 −0.008 −0.002 0

In here, we observe that these four problems have real eigenvalues under different orders µ = 0.9
and µ = 0.99, hence we can find eigenfunctions putting these eigenvalues into the four solutions.
Furthermore, as the order changes, we can see that eigenvalues change for DFSL problems.

5. Conclusion

We consider firstly discrete fractional Sturm-Liouville (DFSL) operators with nabla
Riemann-Liouville and delta Grünwald-Letnikov fractional operators and we prove self-adjointness
of the DFSL operator and fundamental spectral properties. However, we analyze DFSL problem,
discrete Sturm-Liouville (DSL) problem, fractional Sturm-Liouville (FSL) problem and classical
Sturm-Liouville (CSL) problem by taking q (t) = 0 in applications. Firstly, we compare the solutions
of DFSL and DSL problems and we observe that the solutions of DFSL problem converge to the
solutions of DSL problem when µ → 1 in Fig. 1. Secondly, we compare the solutions of DFSL, DSL,
FSL and CSL problems in Fig. 2. At first view, we observe the solutions of DSL and CSL problems
almost coincide with any order µ, and we observe the solutions of DFSL and FSL problem almost
coincide with any order µ. However, we observe that all of solutions of DFSL, DSL, FSL and CSL

AIMS Mathematics Volume 4, Issue 3, 593–612.



609

problems almost coincide with each other as µ → 1. Thirdly, we compare the solutions of DFSL
problem (22 − 23) with different orders, different potential functions and different eigenvalues in
Fig. 3.

Eigenvalues of DFSL problem (22 − 23) corresponded to some specific eigenfunctions is given
with different orders in Table1. We give the eigenfunctions of DFSL problem (22 − 23) with different
orders, different potential functions and different eigenvalues in Table 2, Table 3 and Table 4.

In Section 4.1, we consider DFSL, DSL, FSL and CSL problems together and thus, we can compare
the eigenvalues of these four problems in Table 5 and Table 6 for different values of µ. We observe
that these four problems have real eigenvalues under different values of µ, from here we can find
eigenfunctions corresponding eigenvalues. Moreover, when the order change, eigenvalues change for
DFSL problems.

Consequently, important results in spectral theory are given for discrete Sturm-Liouville problems.
These results will lead to open gates for the researchers studied in this area. Especially, representation
of solution will be practicable for future studies. It worths noting that visual results both will enable to
be understood clearly by readers and verify the results to the integer order discrete case while the order
approaches to one.
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