The existence of solutions for a Sturm-Liouville boundary value problem of a nonlinear differential inclusion with nonlocal integral condition is studied. The maximal and minimal solutions will be studied. The existence of multiple solutions of the nonhomogeneous Sturm-Liouville boundary value problem of differential equation with nonlocal integral condition is considered. The eigenvalues and eigenfunctions are investigated.
Citation: Ahmed M.A. El-Sayed, Eman M.A. Hamdallah, Hameda M. A. Alama. Multiple solutions of a Sturm-Liouville boundary value problem of nonlinear differential inclusion with nonlocal integral conditions[J]. AIMS Mathematics, 2022, 7(6): 11150-11164. doi: 10.3934/math.2022624
The existence of solutions for a Sturm-Liouville boundary value problem of a nonlinear differential inclusion with nonlocal integral condition is studied. The maximal and minimal solutions will be studied. The existence of multiple solutions of the nonhomogeneous Sturm-Liouville boundary value problem of differential equation with nonlocal integral condition is considered. The eigenvalues and eigenfunctions are investigated.
[1] | J. P. Aubin, A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, vol. 264, Springer, Berlin, 2012. |
[2] | A. V. Bitsadze, A. A. Samarskii, Some elementary generalizations of linear elliptic boundary value problems, Dokl. Akad. Nauk, 185 (1969), 739–740. |
[3] | K. Bingele, A. Bankauskiene, A. Štikonas, Investigation of Spectrum Curves for a Sturm–Liouville problem with Two-Point Nonlocal Boundary Conditions, Math. Model. Anal., 25 (2020), 53–70. https://doi.org/10.3846/mma.2020.10787 doi: 10.3846/mma.2020.10787 |
[4] | R. F. Curtain, A. J. Pritchard, Functional analysis in modern appliedmathematics, Academic press, 1977. |
[5] | A. M. A. El-Sayed, A. G. Ibrahim, Multivalued fractional differential equations, Appl. Math. Comput., 68 (1995), 15–50. https://doi.org/10.1016/0096-3003(94)00080-N doi: 10.1016/0096-3003(94)00080-N |
[6] | A. M. A. El-Sayed, A. G. Ibrahim, Set-valued integral equation of fractional orders, Appl. Math. Comput. 118 (2001), 113–121. https://doi.org/10.1016/S0096-3003(99)00087-9 |
[7] | A. M. A. El-Sayed, M. Sh. Mohamed, R. E. M Embia, On the multiple solutions of a nonhomogeneous Sturm-Liouville equation with nonlocal boundary conditions, International Journal of Applied Mathematics, 32 (2019), 35–43. https://doi.org/10.12732/ijam.v32i1.3 doi: 10.12732/ijam.v32i1.3 |
[8] | A. M. A. El-Sayed, H. H. G. Hashem, Sh. M. Al-Issa, Qualitative properties of solutions of fractional order boundary value problems, Int. J. Nonlinear Anal. Appl., 13 (2022), 3427–3440. |
[9] | N. S. Imanbaev, Y. Kurmysh, On computation of eigenfunctions of composite type equation with regular boundary conditions, International Journal of Applied Mathematics, 34 (2021), 681–692. https://doi.org/10.12732/ijam.v34i4.7 doi: 10.12732/ijam.v34i4.7 |
[10] | V. Lakshmikantham, S. Leela, Differential and Integral Inequalities, vol. 1, Academic press, New York-London, 1969. |
[11] | A. Skucaite, A. Stikonas, Spectrum curves for SturmLiouville problem with integral boundary condition, Math. Model. Anal., 20 (2015), 802818. https://doi.org/10.3846/13926292.2015.1116470 doi: 10.3846/13926292.2015.1116470 |
[12] | A. Skucaite, K. Skucaite-Bingele, S. Peciulyte, A. Stikonas, Investigation of the spectrum for the SturmLiouville problem with one integral boundary Condition, Nonlinear Anal. Model. Control, 15 (2010), 501512. https://doi.org/10.15388/NA.15.4.14321 doi: 10.15388/NA.15.4.14321 |
[13] | A. Skucaite, A. Stikonas, Zeroes and poles of a characteristic function for SturmLiouville problem with nonlocal integral condition, Liet. matem. rink. Proc. LMS, Ser. A, 56 (2015), 95100. https://doi.org/10.15388/LMR.A.2015.17 doi: 10.15388/LMR.A.2015.17 |
[14] | A. Skucaite, A. Stikonas, Investigation of the spectrum of the Sturm Liouville problem with a nonlocal integral condition, Liet. matem. rink. Proc. LMS, Ser. A, 54 (2013), 67–72. https://doi.org/10.15388/LMR.A.2013.15 doi: 10.15388/LMR.A.2013.15 |
[15] | A. Skucaite, A. Stikonas, Investigation of the Sturm Liouville problems with integral boundary condition, Liet. matem. rink. Proc. LMS, Ser. A, 52 (2011), 297–302. https://doi.org/10.15388/LMR.2011.sm03 doi: 10.15388/LMR.2011.sm03 |