Research article Special Issues

An approach based on the pseudospectral method for fractional telegraph equations

  • Received: 16 August 2023 Revised: 08 October 2023 Accepted: 12 October 2023 Published: 26 October 2023
  • MSC : 54A25, 65M70, 65Bxx, 35L20

  • We aim to implement the pseudospectral method on fractional Telegraph equation. To implement this method, Chebyshev cardinal functions (CCFs) are considered bases. Introducing a matrix representation of the Caputo fractional derivative (CFD) via an indirect method and applying it via the pseudospectral method helps to reduce the desired problem to a system of algebraic equations. The proposed method is an effective and accurate numerical method such that its implementation is easy. Some examples are provided to confirm convergence analysis, effectiveness and accuracy.

    Citation: Haifa Bin Jebreen, Beatriz Hernández-Jiménez. An approach based on the pseudospectral method for fractional telegraph equations[J]. AIMS Mathematics, 2023, 8(12): 29221-29238. doi: 10.3934/math.20231496

    Related Papers:

  • We aim to implement the pseudospectral method on fractional Telegraph equation. To implement this method, Chebyshev cardinal functions (CCFs) are considered bases. Introducing a matrix representation of the Caputo fractional derivative (CFD) via an indirect method and applying it via the pseudospectral method helps to reduce the desired problem to a system of algebraic equations. The proposed method is an effective and accurate numerical method such that its implementation is easy. Some examples are provided to confirm convergence analysis, effectiveness and accuracy.



    加载中


    [1] M. Lakestani, B. N. Saray, Numerical solution of Telegraph equation using interpolating scaling functions, Comput. Math. Appl., 60 (2010) 1964–1972. https://doi.org/10.1016/j.camwa.2010.07.030
    [2] X. Yang, H. Zhang, J. Tang, The OSC solver for the fourth-order sub-diffusion equation with weakly singular solutions, Comput. Math. Appl., 82 (2021), 1–12.
    [3] M. Dehghan, M. Lakestani, The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation, Numer. Meth. Part. D. E., 25 (2009), 931–938. https://doi.org/10.1002/num.20382 doi: 10.1002/num.20382
    [4] M. Dehghan, A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Math. Part. D. E., 24 (2008), 1080–1093. https://doi.org/10.1002/num.20306 doi: 10.1002/num.20306
    [5] O. Nikan, Z. Avazzadeh, J. A. T. Machado, M. N. Rasoulizadeh, An accurate localized meshfree collocation technique for the telegraph equation in propagation of electrical signals, Eng. Comput., 39 (2023), 2327–2344. https://doi.org/10.1007/s00366-022-01630-9 doi: 10.1007/s00366-022-01630-9
    [6] S. Sharifi, J. Rashidinia, Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method, Appl. Math. Comput., 281 (2016), 28–38. https://doi.org/10.1016/j.amc.2016.01.049 doi: 10.1016/j.amc.2016.01.049
    [7] R. M. Hafez, Numerical solution of linear and nonlinear hyperbolic telegraph type equations with variable coefficients using shifted Jacobi collocation method, Comput. Appl. Math., 37 (2018), 5253–5273. https://doi.org/10.1007/s40314-018-0635-1 doi: 10.1007/s40314-018-0635-1
    [8] H. B. Jebreen, Y. C. Cano, I. Dassios, An efficient algorithm based on the multi-wavelet Galerkin method for telegraph equation, AIMS Math., 6 (2020), 1296–1308. https://doi.org/10.3934/math.2021080 doi: 10.3934/math.2021080
    [9] W. M. Abd-Elhameed, E. H. Doha, Y. H. Youssri, M. A. Bassuony, New Tchebyshev-Galerkin operational matrix method for solving linear and nonlinear hyperbolic telegraph type equations, Numer. Meth. Part. D. E., 32 (2016), 1553–1571. https://doi.org/10.1002/num.22074 doi: 10.1002/num.22074
    [10] A. Saadatmandi, M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Meth. Part. D. E., 26 (2010), 239–252. https://doi.org/10.1002/num.20442 doi: 10.1002/num.20442
    [11] H. B. Jebreen, I. Dassios, A biorthogonal hermite cubic spline Galerkin method for solving fractional riccati equation, Mathematics, 10 (2022), 1461. https://doi.org/10.3390/math10091461 doi: 10.3390/math10091461
    [12] H. B. Jebreen, C. Cattani, Interpolating scaling functions tau method for solving space-time fractional partial differential equations, Symmetry, 14 (2022), 2463. https://doi.org/10.3390/sym14112463 doi: 10.3390/sym14112463
    [13] M. Asadzadeh, B. N. Saray, On a multiwavelet spectral element method for integral equation of a generalized Cauchy problem, BIT, 62 (2022), 383–1416. https://doi.org/10.1007/s10543-022-00915-1 doi: 10.1007/s10543-022-00915-1
    [14] M. H. Heydari, M. Razzaghi, Highly accurate solutions for space-time fractional Schrödinger equations with non-smooth continuous solution using the hybrid clique functions, Math. Sci., 17 (2023), 31–42. https://doi.org/10.1007/s40096-021-00437-x doi: 10.1007/s40096-021-00437-x
    [15] X. Jiang, J. Wang, W. Wang, H. Zhang, A predictor-corrector compact difference scheme for a nonlinear fractional differential equation, Fractal Fract., 7 (2023), 521. https://doi.org/10.3390/fractalfract7070521 doi: 10.3390/fractalfract7070521
    [16] X. Yang, Q. Zhang, G. Yuan, Z. sheng, On positivity preservation in nonlinear finite volume method for multi-term fractional subdiffusion equation on polygonal meshes, Nonlinear Dynam., 92 (2018), 595–612.
    [17] H. Zhang, X. Yang, D. Xu, An efficient spline collocation method for a nonlinear fourth-order reaction subdiffusion equation, J. Sci. Comput., 85 (2020). https://doi.org/10.1007/s10915-020-01308-8
    [18] A. Iqbal, T. Akram, A numerical study of anomalous electro-diffusion cells in cable sense with a non-singular kernel, Demonstr. Math., 55 (2022), 574–586. https://doi.org/10.1515/dema-2022-0155 doi: 10.1515/dema-2022-0155
    [19] T. Akram, M. Abbas, A. Ali, A. Iqbal, D. Baleanu, A numerical approach of a time fractional reaction-diffusion model with a non-singular kernel, Symmetry, 12 (2020), 1653. https://doi.org/10.3390/sym12101653 doi: 10.3390/sym12101653
    [20] V. R. Hosseini, W. Chen, Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Bound. Elem., 38 (2014), 31–39. https://doi.org/10.1016/j.enganabound.2013.10.009 doi: 10.1016/j.enganabound.2013.10.009
    [21] Y. H. Youssri, W. M. Abd-Elhameed, Numerical spectral Legendre-Galerkin algorithm for solving time fractional telegraph equation, Rom. J. Phys., 63 (2018), 1–16.
    [22] N. Mollahasani, M. M. Mohseni, K. Afrooz, A new treatment based on hybrid functions to the solution of telegraph equations of fractional order, Appl. Math. Model., 40 (2016), 2804–2814. https://doi.org/10.1016/j.apm.2015.08.020 doi: 10.1016/j.apm.2015.08.020
    [23] A. Saadatmandi, M. Mohabbati, Numerical solution of fractional telegraph equation via the tau method, Math. Rep., 17 (2015), 155–166.
    [24] J. Chen, F. Liu, V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 338 (2008), 1364–1377. https://doi.org/10.1016/j.jmaa.2007.06.023 doi: 10.1016/j.jmaa.2007.06.023
    [25] W. Jiang, Y. Lin, Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space, Commun. Nonlinear Sci., 16 (2011), 3639–3645. https://doi.org/10.1016/j.cnsns.2010.12.019 doi: 10.1016/j.cnsns.2010.12.019
    [26] A. Ali, T. Abdeljawad, A. Iqbal, T. Akram, M. Abbas, On unconditionally stable new modified fractional group iterative scheme for the solution of 2D time-fractional telegraph model, Symmetry, 13 (2021), 2078. https://doi.org/10.3390/sym13112078 doi: 10.3390/sym13112078
    [27] M. Shahriari, B. N. Saray, B. Mohammadalipour, S. Saeidian, Pseudospectral method for solving the fractional one-dimensional Dirac operator using Chebyshev cardinal functions, Phys. Scripta., 98 (2023), 055205. https://doi.org/10.1088/1402-4896/acc7d3 doi: 10.1088/1402-4896/acc7d3
    [28] A. Afarideh, F. D. Saei, M. Lakestani, B. N. Saray, Pseudospectral method for solving fractional Sturm-Liouville problem using Chebyshev cardinal functions, Phys. Scripta, 96 (2021), 125267. https://doi.org/10.1088/1402-4896/ac3c59 doi: 10.1088/1402-4896/ac3c59
    [29] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods fundamentals in single domains, Berlin: Springer-Verlag, 2006.
    [30] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [31] G. Dahlquist, A. Björck, Numerical methods, Englewood Cliffs: Prentice Hall, 1974.
    [32] H. Zhang, Y. Liu, X. Yang, An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space, J. Appl. Math. Comput., 69 (2023), 651–674.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(832) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog