Research article Special Issues

New criteria on global Mittag-Leffler synchronization for Caputo-type delayed Cohen-Grossberg Inertial Neural Networks

  • Received: 30 August 2023 Revised: 01 October 2023 Accepted: 15 October 2023 Published: 26 October 2023
  • MSC : 26A33, 92B20, 94B50

  • Our focus of this paper is on global Mittag-Leffler synchronization (GMLS) of the Caputo-type Inertial Cohen-Grossberg Neural Networks (ICGNNs) with discrete and distributed delays. This model takes into account the inertial term as well as the two types of delays, which greatly reduces the conservatism with respect to the model. A change of variables transforms the $ 2\beta $ order inertial frame into $ \beta $ order ordinary frame in order to deal with the effect of the inertial term. In the following steps, two novel types of delay controllers are designed for the purpose of reaching the GMLS. In conjunction with the novel controllers, utilizing differential mean-value theorem and inequality techniques, several criteria are derived to determine the GMLS of ICGNNs within the framework of Caputo-type derivative and calculus properties. At length, the feasibility of the results is further demonstrated by two simulation examples.

    Citation: Hongmei Zhang, Xiangnian Yin, Hai Zhang, Weiwei Zhang. New criteria on global Mittag-Leffler synchronization for Caputo-type delayed Cohen-Grossberg Inertial Neural Networks[J]. AIMS Mathematics, 2023, 8(12): 29239-29259. doi: 10.3934/math.20231497

    Related Papers:

  • Our focus of this paper is on global Mittag-Leffler synchronization (GMLS) of the Caputo-type Inertial Cohen-Grossberg Neural Networks (ICGNNs) with discrete and distributed delays. This model takes into account the inertial term as well as the two types of delays, which greatly reduces the conservatism with respect to the model. A change of variables transforms the $ 2\beta $ order inertial frame into $ \beta $ order ordinary frame in order to deal with the effect of the inertial term. In the following steps, two novel types of delay controllers are designed for the purpose of reaching the GMLS. In conjunction with the novel controllers, utilizing differential mean-value theorem and inequality techniques, several criteria are derived to determine the GMLS of ICGNNs within the framework of Caputo-type derivative and calculus properties. At length, the feasibility of the results is further demonstrated by two simulation examples.



    加载中


    [1] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [2] R. Koeller, Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech., 51 (1984), 229–307. https://doi.org/10.1115/1.3167616 doi: 10.1115/1.3167616
    [3] D. Baleanu, J. Machado, A. Luo, Fractional dynamics and control, Berlin: Springer, 2012.
    [4] X. Yang, C. Li, T. Huang, Q. Song, Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses, Appl. Math. Comput., 293 (2017), 416–422. https://doi.org/10.1016/j.amc.2016.08.039 doi: 10.1016/j.amc.2016.08.039
    [5] F. Hoppensteadt, E. Izhikevich, Pattern recognition via synchronization in phase-locked loop neural networks, IEEE T. Neural Networ., 11 (2000), 734–738. https://doi.org/10.1109/72.846744 doi: 10.1109/72.846744
    [6] F. Du, J. Lu, New criteria on finite-time stability of fractional-order hopfield neural networks with time delays, IEEE T. Neur. Net. Lear., 32 (2021), 3858–3866. https://doi.org/10.1109/TNNLS.2020.3016038 doi: 10.1109/TNNLS.2020.3016038
    [7] L. Zhou, H. Lin, F. Tan, Fixed/predefined-time synchronization of coupled memristor-based neural networks with stochastic disturbance, Chaos Soliton. Fract., 173 (2023), 113643. https://doi.org/10.1016/j.chaos.2023.113643 doi: 10.1016/j.chaos.2023.113643
    [8] S. Han, C. Hu, J. Yu, H. Jiang, S. Wen, Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach, Chaos Soliton. Fract., 142 (2021), 110432. https://doi.org/10.1016/j.chaos.2020.110432 doi: 10.1016/j.chaos.2020.110432
    [9] C. Long, G. Zhang, Z. Zeng, J. Hu, Finite-time stabilization of complex-valued neural networks with proportional delays and inertial terms: A non-separation approach, Neural Networks, 148 (2022), 86–95. https://doi.org/10.1016/j.neunet.2022.01.005 doi: 10.1016/j.neunet.2022.01.005
    [10] N. Cui, H. Jiang, C. Hu, A. Abdurahman, Global asymptotic and robust stability of inertial neural networks with proportional delays, Neurocomputing, 272 (2018), 326–333. https://doi.org/10.1016/j.neucom.2017.07.001 doi: 10.1016/j.neucom.2017.07.001
    [11] J. Liu, L. Shu, Q. Chen, S. Zhong, Fixed-time synchronization criteria of fuzzy inertial neural networks via Lyapunov functions with indefinite derivatives and its application to image encryption, Fuzzy Set. Syst., 459 (2023), 22–42. https://doi.org/10.1016/j.fss.2022.08.002 doi: 10.1016/j.fss.2022.08.002
    [12] J. Han, G. Chen, J. Hu, New results on anti-synchronization in predefined-time for a class of fuzzy inertial neural networks with mixed time delays, Neurocomputing, 495 (2022), 26–36. https://doi.org/10.1016/j.neucom.2022.04.120 doi: 10.1016/j.neucom.2022.04.120
    [13] Y. Yu, Z. Zhang, M. Zhong, Z. Wang, Pinning synchronization and adaptive synchronization of complex-valued inertial neural networks with time-varying delays in fixed-time interval, J. Franklin I., 359 (2022), 1434–1456. https://doi.org/10.1016/j.jfranklin.2021.11.036 doi: 10.1016/j.jfranklin.2021.11.036
    [14] R. Guo, S. Xu, Observer-based sliding mode synchronization control of complex-valued neural networks with inertial term and mixed time-varying delays, Appl. Math. Comput., 442 (2023), 127761. https://doi.org/10.1016/j.amc.2022.127761 doi: 10.1016/j.amc.2022.127761
    [15] L. Ke, Mittag-Leffler stability and asymptotic $\omega$-periodicity of fractional-order inertial neural networks with time-delays, Neurocomputing, 465 (2021), 53–62. https://doi.org/10.1016/j.neucom.2021.08.121 doi: 10.1016/j.neucom.2021.08.121
    [16] Y. Gu, H. Wang, Y. Yu, Stability and synchronization for Riemann-Liouville fractional-order time-delayed inertial neural networks, Neurocomputing, 340 (2019), 270–280. https://doi.org/10.1016/j.neucom.2019.03.005 doi: 10.1016/j.neucom.2019.03.005
    [17] Y. Cheng, H. Zhang, W. Zhang, H. Zhang, Novel algebraic criteria on global Mittag-Leffler synchronization for FOINNs with the Caputo derivative and delay, J. Appl. Math. Comput., 68 (2022), 3527–3544. https://doi.org/10.1007/s12190-021-01672-0 doi: 10.1007/s12190-021-01672-0
    [18] Q. Peng, J. Jian, Synchronization analysis of fractional-order inertial-type neural networks with time delays, Math. Comput. Simul., 205 (2022), 62–77. https://doi.org/10.1016/j.matcom.2022.09.023 doi: 10.1016/j.matcom.2022.09.023
    [19] A. Alimi, C. Aouiti, E. Assali, Finite-time and fixed-time synchronization of a class of inertial neural networks with multi-proportional delays and its application to secure communication, Neurocomputing, 332 (2019), 29–43. https://doi.org/10.1016/j.neucom.2018.11.020 doi: 10.1016/j.neucom.2018.11.020
    [20] M. Prakash, P. Balasubramaniam, S. Lakshmanan, Synchronization of Markovian jumping inertial neural networks and its applications in image encryption, Neural Networks, 83 (2016), 86–93. https://doi.org/10.1016/j.neunet.2016.07.001 doi: 10.1016/j.neunet.2016.07.001
    [21] J. Feng, J. Ma, S. Qin, Exponential stability of periodic solution for impulsive memristor-based cohen-grossberg neural networks with mixed delays, Int. J. Pattern Recogn., 31 (2017), 1750022. https://doi.org/10.1142/S0218001417500227 doi: 10.1142/S0218001417500227
    [22] C. Zhou, H. Zhang, H. Zhang, C. Dang, Global exponential stability of impulsive fuzzy Cohen-Grossberg neural networks with mixed delays and reaction Cdiffusion terms, Neurocomputing, 91 (2012), 67–76. https://doi.org/10.1016/j.neucom.2012.02.012 doi: 10.1016/j.neucom.2012.02.012
    [23] Z. Wang, H. Zhang, W. Yu, Robust stability of Cohen-Grossberg neural networks via state transmission matrix, IEEE T. Neural Networ., 20 (2009), 169–174. https://doi.org/10.1109/tnn.2008.2009119 doi: 10.1109/tnn.2008.2009119
    [24] Y. Li, J. Xiang, Existence and global exponential stability of anti-periodic solution for clifford-valued inertial Cohen-Grossberg neural networks with delays, Neurocomputing, 332 (2019), 259–269. https://doi.org/10.1016/j.neucom.2018.12.064 doi: 10.1016/j.neucom.2018.12.064
    [25] S. Baluni, V. Yadav, S. Das, Quasi projective synchronization of time varying delayed complex valued Cohen-Grossberg neural networks, Inform. Sciences, 612 (2022), 231–240. https://doi.org/10.1016/j.ins.2022.08.106 doi: 10.1016/j.ins.2022.08.106
    [26] F. Kong, Q. Zhu, R. Sakthivel, Finite-time and fixed-time synchronization analysis of fuzzy Cohen-Grossberg neural networks with discontinuous activations and parameter uncertainties, Eur. J. Control, 56 (2022), 179–190. https://doi.org/10.1016/j.ejcon.2020.03.003 doi: 10.1016/j.ejcon.2020.03.003
    [27] Q. Li, L. Zhou, Global asymptotic synchronization of inertial memristive Cohen-Grossberg neural networks with proportional delays, Commun. Nonlinear Sci., 123 (2023), 107295. https://doi.org/10.1016/j.cnsns.2023.107295 doi: 10.1016/j.cnsns.2023.107295
    [28] H. Jia, D. Luo, J. Wang, H. Shen, Fixed-time synchronization for inertial Cohen-Grossberg delayed neural networks: An event-triggered approach, Knowl.-Based Syst., 250 (2022), 109104. https://doi.org/10.1016/j.knosys.2022.109104 doi: 10.1016/j.knosys.2022.109104
    [29] L. Ke, W. Li, Exponential synchronization in inertial Cohen-Grossberg neural networks with time delays, J. Franklin I., 356 (2019), 11285–11304. https://doi.org/10.1016/j.jfranklin.2019.07.027 doi: 10.1016/j.jfranklin.2019.07.027
    [30] Z. Li, Y. Zhang, The boundedness and the global Mittag-Leffler synchronization of fractional-order inertial Cohen-Grossberg neural networks with time delays, Neural Process. Lett., 54 (2022), 597–611. https://doi.org/10.1007/s11063-021-10648-x doi: 10.1007/s11063-021-10648-x
    [31] H. Zhang, C. Wang, R. Ye, I. Stamova, J. Cao, Novel order-dependent passivity conditions of fractional generalized Cohen-Grossberg neural networks with proportional delays, Commun. Nonlinear Sci., 120 (2023), 107155. https://doi.org/10.1016/j.cnsns.2023.107155 doi: 10.1016/j.cnsns.2023.107155
    [32] L. Wan, Z. Liu, Multiple O$(t^{-q})$ stability and instability of time-varying delayed fractional-order Cohen-Grossberg neural networks with Gaussian activation functions, Neurocomputing, 454 (2021), 212–227. https://doi.org/10.1016/j.neucom.2021.05.018 doi: 10.1016/j.neucom.2021.05.018
    [33] R. Aravind, P. Balasubramaniam, Stability criteria for memristor-based delayed fractional-order Cohen-Grossberg neural networks with uncertainties, J. Comput. Appl. Math., 420 (2023), 114764. https://doi.org/10.1016/j.cam.2022.114764 doi: 10.1016/j.cam.2022.114764
    [34] H. Zhang, X. Chen, R. Ye, I. Stamova, J. Cao, Adaptive quasi-synchronization analysis for Caputo delayed Cohen-Grossberg neural networks, Math. Comput. Simulat., 212 (2023), 49–65. https://doi.org/10.1016/j.matcom.2023.04.025 doi: 10.1016/j.matcom.2023.04.025
    [35] J. Xiao, L. Wu, A. Wu, Z. Zeng, Z. Zhang, Novel controller design for finite-time synchronization of fractional-order memristive neural networks, Neurocomputing, 512 (2022), 494–502. https://doi.org/10.1016/j.neucom.2022.09.118 doi: 10.1016/j.neucom.2022.09.118
    [36] Z. Ruan, Y. Li, J. Hu, J. Mei, D. Xia, Finite-time synchronization of the drive-response networks by event-triggered aperiodic intermittent control, Neurocomputing, 485 (2022), 89–102. https://doi.org/10.1016/j.neucom.2022.02.037 doi: 10.1016/j.neucom.2022.02.037
    [37] B. Zheng, Z. Wang, Event-based delayed impulsive control for fractional-order dynamic systems with application to synchronization of fractional-order neural networks, Neural. Comput. Appl., 35 (2023), 20241–20251. https://doi.org/10.1007/s00521-023-08738-z doi: 10.1007/s00521-023-08738-z
    [38] X. Yuan, G. Ren, H. Wang, Y. Yu, Mean-square synchronization of fractional-order stochastic complex network via pinning control, Neurocomputing, 513 (2022), 153–164. https://doi.org/10.1016/j.neucom.2022.09.128 doi: 10.1016/j.neucom.2022.09.128
    [39] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [40] M. D. Mermoud, N. A. Camacho, J. Gallegos, R. C. Linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci., 22 (2015), 650–659. https://doi.org/10.1016/j.cnsns.2014.10.008 doi: 10.1016/j.cnsns.2014.10.008
    [41] M. Tan, Asymptotic stability of nonlinear systems with unbounded delays, J. Math. Anal. Appl., 337 (2008), 1010–1021. https://doi.org/10.1016/j.jmaa.2007.04.019 doi: 10.1016/j.jmaa.2007.04.019
    [42] J. Chen, Z. Zeng, P. Jiang, Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks, Neural Networks, 51 (2014), 1–8. https://doi.org/10.1016/j.neunet.2013.11.016 doi: 10.1016/j.neunet.2013.11.016
    [43] L. Feng, C. Hu, J. Yu, H. Jiang, Pinning synchronization of directed networks with disconnected switching topology via averaging method, Nonlinear Anal.-Hybri., 49 (2023), 101369. https://doi.org/10.1016/j.nahs.2023.101369 doi: 10.1016/j.nahs.2023.101369
    [44] F. Tan, L. Zhou, J. Xia, Adaptive quantitative exponential synchronization in multiplex Cohen-Grossberg neural networks under deception attacks, J. Franklin I., 2022. https://doi.org/10.1016/j.jfranklin.2022.09.020. doi: 10.1016/j.jfranklin.2022.09.020
    [45] J. Xiao, Z. Zeng, A. Wu, S. Wen, Fixed-time synchronization of delayed Cohen-Grossberg neural networks based on a novel sliding mode, Neural Networks, 128 (2020), 1–12. https://doi.org/10.1016/j.neunet.2020.04.020 doi: 10.1016/j.neunet.2020.04.020
    [46] M. Hui, C. Wei, J. Zhang, H. Iu, R. Yao, L. Bai, Finite-time synchronization of fractional-order memristive neural networks via feedback and periodically intermittent control, Commun. Nonlinear Sci., 116 (2022), 160822. https://doi.org/10.1016/j.cnsns.2022.106822 doi: 10.1016/j.cnsns.2022.106822
    [47] H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays, Chaos Soliton. Fract., 152 (2021), 111432. https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(990) PDF downloads(76) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog