Research article Special Issues

Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay

  • Received: 26 April 2023 Revised: 01 July 2023 Accepted: 09 July 2023 Published: 17 July 2023
  • MSC : 92B20, 34A08, 34K20

  • This paper deals with the global Mittag-Leffler stability (GMLS) of Caputo fractional-order fuzzy inertial neural networks with time delay (CFOFINND). Based on Lyapunov stability theory and global fractional Halanay inequalities, the existence of unique equilibrium point and GMLS of CFOFINND have been established. A numerical example is given to illustrate the effectiveness of our results.

    Citation: Jingfeng Wang, Chuanzhi Bai. Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay[J]. AIMS Mathematics, 2023, 8(10): 22538-22552. doi: 10.3934/math.20231148

    Related Papers:

  • This paper deals with the global Mittag-Leffler stability (GMLS) of Caputo fractional-order fuzzy inertial neural networks with time delay (CFOFINND). Based on Lyapunov stability theory and global fractional Halanay inequalities, the existence of unique equilibrium point and GMLS of CFOFINND have been established. A numerical example is given to illustrate the effectiveness of our results.



    加载中


    [1] K. L. Babcock, R. M. Westervelt, Stability and dynamics of simple electronic neural networks with added inertia, Physica D., 23 (1986), 464–469. https://doi.org/10.1016/0167-2789(86)90152-1 doi: 10.1016/0167-2789(86)90152-1
    [2] J. H. Ge, J. Xu, Hopf bifurcation and chaos in an inertial neuron system with coupled delay, Sci. China, Technol. Sci., 56 (2013), 2299–2309. https://doi.org/10.1007/s11431-013-5316-0 doi: 10.1007/s11431-013-5316-0
    [3] Q. Huang, J. Cao, Stability analysis of inertial Cohen-Grossberg neural networks with Markovian jumping parameters, Neurocomputing, 282 (2018), 89–97. https://doi.org/10.1016/j.neucom.2017.12.028 doi: 10.1016/j.neucom.2017.12.028
    [4] W. Zhang, T. Huang, X. He, C. Li, Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses, Neural Networks, 95 (2017), 102–109. https://doi.org/10.1016/j.neunet.2017.03.012 doi: 10.1016/j.neunet.2017.03.012
    [5] J. F. Wang, L. X. Tian, Global Lagrange stability for inertial neural networks with mixed time-varying delays, Neurocomputing, 235 (2017), 140–146. https://doi.org/10.1016/j.neucom.2017.01.007 doi: 10.1016/j.neucom.2017.01.007
    [6] T. Yang, L. B. Yang, The global stability of fuzzy cellular neural networks, IEEE T. Circuits Syst. I, 43 (1996), 880–883. https://doi.org/10.1109/81.538999 doi: 10.1109/81.538999
    [7] R. Kavikumar, R. Sakthivel, O. M. Kwon, B. Kaviarasan, Finite-time boundedness of interval type-2 fuzzy systems with time delay and actuator faults, J. Franklin I. 356 (2019), 8296–8324. https: //doi.org/10.1016/j.jfranklin.2019.07.031
    [8] R. W. Jia, Finite-time stability of a class of fuzzy cellular neural networks with multi-proportional delays, Fuzzy Sets Syst., 319 (2017), 70–80. https://doi.org/10.1016/j.fss.2017.01.003 doi: 10.1016/j.fss.2017.01.003
    [9] Y. Li, K. Li, S. Tong, Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems, IEEE T. Fuzzy Syst., 27 (2018), 96–110. https://doi.org/10.1109/TFUZZ.2018.2868898 doi: 10.1109/TFUZZ.2018.2868898
    [10] Q. X. Zhu, X. D. Li, Exponential and almost sure exponential stability of stochastic fuzzy delayed Cohen-Grossberg neural networks, Fuzzy Sets Syst., 203 (2012), 74–94. https://doi.org/10.1016/j.fss.2012.01.005 doi: 10.1016/j.fss.2012.01.005
    [11] X. Yao, X. Liu, S. Zhong, Exponential stability and synchronization of Memristor-based fractional-order fuzzy cellular neural networks with multiple delays, Neurocomputing, 419 (2021), 239–250. https://doi.org/10.1016/j.neucom.2020.08.057 doi: 10.1016/j.neucom.2020.08.057
    [12] A. Kumar, S. Das, V. K. Yadav, Rajeev, J. Cao, C. Huang, Synchronizations of fuzzy cellular neural networks with proportional time-delay, AIMS Math., 6 (2021), 10620–10641. https://doi.org/10.3934/math.2021617 doi: 10.3934/math.2021617
    [13] M. Syed Ali, G. Narayanan, S. Sevgen, V. Shekher, S. Arik, Global stability analysis of fractional-order fuzzy BAM neural networks with time delay and impulsive effects, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104853.
    [14] W. Fang, T. Xie, B. Li, Robustness analysis of fuzzy BAM cellular neural network with time-varying delays and stochastic disturbances, AIMS Math., 8 (2023), 9365–9384. https://doi.org/10.3934/math.2023471 doi: 10.3934/math.2023471
    [15] Y. Li, Y. Q. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810–-1821. https://doi.org/10.1016/j.camwa.2009.08.019 doi: 10.1016/j.camwa.2009.08.019
    [16] A. L. Wu, Z. G. Zeng, X. G. Song, Global Mittag-Leffler stabilization of fractional-order bidirectional associative memory neural networks, Neurocomputing, 177 (2016), 489–496. https://doi.org/10.1016/j.neucom.2015.11.055 doi: 10.1016/j.neucom.2015.11.055
    [17] S. Zhang, Y. G. Yu, Q. Wang, Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions, Neurocomputing, 171 (2016), 1075–1084. https://doi.org/10.1016/j.neucom.2015.07.077 doi: 10.1016/j.neucom.2015.07.077
    [18] J. Yu, C. Hu, H. J. Jiang, $\alpha$-stability and $\alpha$-synchronization for fractional-order neural networks, Neural Networks, 35 (2012), 82–87. https://doi.org/10.1016/j.neunet.2012.07.009 doi: 10.1016/j.neunet.2012.07.009
    [19] L. P. Chen, R. C. Wu, J. Cao, J. B. Liu, Stability and synchronization of memristor-based fractional-order delayed neural networks, Neural Networks, 71 (2015), 37–44. https://doi.org/10.1016/j.neunet.2015.07.012 doi: 10.1016/j.neunet.2015.07.012
    [20] C. Rajivganthi, F. A. Rihan, S. Lakshmanan, P. Muthukumar, Finite-time stability analysis for fractional-order Cohen-Grossberg BAM neural networks with time delays, Neural Comput. Appl., 29 (2018), 1309–1320.
    [21] X. Hu, L. Wang, C. Zhang, X. Wan, Y. He, Fixed-time stabilization of discontinuous spatiotemporal neural networks with time-varying coefficients via aperiodically switching control, Sci. China Inform. Sci., 66 (2023), 152204.
    [22] Y. Chen, N. Zhang, J. Yang, A survey of recent advances on stability analysis, state estimation and synchronization control for neural networks, Neurocomputing, 515 (2023), 26–36. https://doi.org/10.1016/j.neucom.2022.10.020 doi: 10.1016/j.neucom.2022.10.020
    [23] Z. Li, Y. Zhang, The boundedness and the global Mittag-Leffler synchronization of fractional-order inertial Cohen-Grossberg neural networks with time delays, Neural Process. Lett., 54 (2022), 597–611. https://doi.org/10.1007/s11063-021-10648-x doi: 10.1007/s11063-021-10648-x
    [24] J. Chen, C. Li, X. Yang, Asymptotic stability of delayed fractional-order fuzzy neural networks with impulse effects, J. Franklin I., 355 (2018), 7595–7608. https://doi.org/10.1016/j.jfranklin.2018.07.039 doi: 10.1016/j.jfranklin.2018.07.039
    [25] F. Zhao, J. Jian, B. Wang, Finite-time synchronization of fractional-order delayed memristive fuzzy neural networks, Fuzzy Sets Syst., 467 (2023), 108578. https://doi.org/10.1016/j.fss.2023.108578 doi: 10.1016/j.fss.2023.108578
    [26] Z. Yang, J. Zhang, Z. Zhang, J. Mei, An improved criterion on finite-time stability for fractional-order fuzzy cellular neural networks involving leakage and discrete delays, Math. Comput. Simul., 203 (2023), 910–925. https://doi.org/10.1016/j.matcom.2022.07.028 doi: 10.1016/j.matcom.2022.07.028
    [27] M. Syed Ali, G. Narayanan, S. Sevgen, V. Shekher, S. Arik, Global stability analysis of fractional-order fuzzy BAM neural networks with time delay and impulsive effects, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104853. https://doi.org/10.1016/j.cnsns.2019.104853 doi: 10.1016/j.cnsns.2019.104853
    [28] X. Hu, L. Wang, Z. Zeng, S. Zhu, J. Hu, Settling-time estimation for finite-time stabilization of fractional-order quaternion-valued fuzzy NNs. IEEE T. Fuzzy Syst., 30 (2022), 5460–5472. https://doi.org/10.1109/TFUZZ.2022.3179130
    [29] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [30] F. Ren, F. Cao, J. Cao, Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional order gene regulatory networks, Neurocomputing, 160 (2015), 185–190. https://doi.org/10.1016/j.neucom.2015.02.049 doi: 10.1016/j.neucom.2015.02.049
    [31] B. S. Chen, J. J. Chen, Global asymptotical $\omega$-periodicity of a fractional-order non-autonomous neural networks, Neural Networks, 68 (2015), 78–88. https://doi.org/10.1016/j.neunet.2015.04.006 doi: 10.1016/j.neunet.2015.04.006
    [32] A. Abdurahman, H. Jiang, Z. Teng, Finite-time synchronization for fuzzy cellular neural networks with time-varying delays, Fuzzy Set. Syst., 297 (2016), 96–111. https://doi.org/10.1016/j.fss.2015.07.009 doi: 10.1016/j.fss.2015.07.009
    [33] T. T. H. Nguyen, N. T. Nguyen, M. N. Tran, Global fractional Halanay inequalities approach to finite-time stability of nonlinear fractional order delay systems, J. Math. Anal. Appl., 525 (2023), 127145. https://doi.org/10.1016/j.jmaa.2023.127145 doi: 10.1016/j.jmaa.2023.127145
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1106) PDF downloads(111) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog