
Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks with time-varying delays are investigated in the article. We derive the relationship between the fractional-order integrals of the state function with and without delays through the division of time interval, using the properties of fractional calculus, and initial conditions. Moreover, by constructing the sequence solution of the system function which converges to a continuous function uniformly with the Arzela-Asoli theorem, a sufficient condition is obtained to ensure the existence of an anti-periodic solution and Mittag-Leffler stabilization of the system. In the final, we verify the correctness of the conclusion by numerical simulation.
Citation: Dan-Ning Xu, Zhi-Ying Li. Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks with time-varying delays[J]. AIMS Mathematics, 2023, 8(1): 1610-1619. doi: 10.3934/math.2023081
[1] | Yuehong Zhang, Zhiying Li, Wangdong Jiang, Wei Liu . The stability of anti-periodic solutions for fractional-order inertial BAM neural networks with time-delays. AIMS Mathematics, 2023, 8(3): 6176-6190. doi: 10.3934/math.2023312 |
[2] | Huizhen Qu, Jianwen Zhou . S-asymptotically ω-periodic dynamics in a fractional-order dual inertial neural networks with time-varying lags. AIMS Mathematics, 2022, 7(2): 2782-2809. doi: 10.3934/math.2022154 |
[3] | Ivanka Stamova, Gani Stamov . Impulsive control strategy for the Mittag-Leffler synchronization of fractional-order neural networks with mixed bounded and unbounded delays. AIMS Mathematics, 2021, 6(3): 2287-2303. doi: 10.3934/math.2021138 |
[4] | Qian Cao, Xiaojin Guo . Anti-periodic dynamics on high-order inertial Hopfield neural networks involving time-varying delays. AIMS Mathematics, 2020, 5(6): 5402-5421. doi: 10.3934/math.2020347 |
[5] | Mohammed D. Kassim . A fractional Halanay inequality for neutral systems and its application to Cohen-Grossberg neural networks. AIMS Mathematics, 2025, 10(2): 2466-2491. doi: 10.3934/math.2025115 |
[6] | Jingfeng Wang, Chuanzhi Bai . Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay. AIMS Mathematics, 2023, 8(10): 22538-22552. doi: 10.3934/math.20231148 |
[7] | Yang Xu, Zhouping Yin, Yuanzhi Wang, Qi Liu, Anwarud Din . Mittag-Leffler projective synchronization of uncertain fractional-order fuzzy complex valued neural networks with distributed and time-varying delays. AIMS Mathematics, 2024, 9(9): 25577-25602. doi: 10.3934/math.20241249 |
[8] | Wei Liu, Qinghua Zuo, Chen Xu . Finite-time and global Mittag-Leffler stability of fractional-order neural networks with S-type distributed delays. AIMS Mathematics, 2024, 9(4): 8339-8352. doi: 10.3934/math.2024405 |
[9] | Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Michal Niezabitowski . A Razumikhin approach to stability and synchronization criteria for fractional order time delayed gene regulatory networks. AIMS Mathematics, 2021, 6(5): 4526-4555. doi: 10.3934/math.2021268 |
[10] | Yanshou Dong, Junfang Zhao, Xu Miao, Ming Kang . Piecewise pseudo almost periodic solutions of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations. AIMS Mathematics, 2023, 8(9): 21828-21855. doi: 10.3934/math.20231113 |
Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks with time-varying delays are investigated in the article. We derive the relationship between the fractional-order integrals of the state function with and without delays through the division of time interval, using the properties of fractional calculus, and initial conditions. Moreover, by constructing the sequence solution of the system function which converges to a continuous function uniformly with the Arzela-Asoli theorem, a sufficient condition is obtained to ensure the existence of an anti-periodic solution and Mittag-Leffler stabilization of the system. In the final, we verify the correctness of the conclusion by numerical simulation.
The stabilization and existence of anti-periodic solutions have major significance in dynamic behavior on nonlinear differential equations, which plays a key role in various physical phenomena, such as anti-periodic characteristics in vibration equations and so on [1,2,3,4,5]. As a special case of periodic solutions, many scholars have studied the existence and stabilization of anti-periodic solutions of several kinds of neural networks in recent years. The authors [6] studied the existence and stabilization of anti-periodic solutions for BAM Cohen-Grossberg neural networks. In [7] authors investigated the existence and global exponential stabilization of anti-periodic solutions for quaternion numerical cellular neural networks with impulse effect. The existence and exponential stabilization of anti-periodic solutions for BAM neural networks is studied in [8,9]. The authors [10] studied the global exponential stabilization of anti-periodic solutions for Cohen-Grossberg neural networks. All studies in [6,7,8,9,10] are integer-order models, however, the research on fractional-order neural networks has attracted attention and obtained important research results in recent years.
The existence and stabilization of anti-periodic solutions are of great significance in the dynamic behavior of nonlinear differential equations, such as [1,2,3,4,5]. From previous data, there are only discussions on the asymptotic ω-periodic solution, almost periodic solutions and s-asymptotic ω-periodic solutions for fractional-order neural networks (e.g., [11,12,13,14,15]), we haven't found the existence and stabilization of anti-periodic solutions yet. We focus on the problem of the existence of anti-periodic solutions and Mittag-Leffler stabilization for a class of fractional order neural networks in this paper, this is a new research topic, our characteristics mainly include three points:
1) Deriving the relationship between fractional-order integrals of state functions with and without time delay through the division of time interval and the properties of fractional-order calculus;
2) Constructing function sequence solution, and it uniformly converges to a continuous function with Arzela-Asoli theorem, then giving a sufficiency for the existence of anti-periodic solutions and Mittag-Leffler stabilization of the system, the results are new;
3) Verifying the correctness of the theorems by numerical simulation instances. It provides a new criterion for dynamic system research.
We consider fractional-order neural networks with time-varying delays:
Dαtxi(t)=−βixi(t)+n∑j=1aijfj(xj(t))+n∑j=1bijfj(xj(t−τij(t)))+Ii(t),i=1,2,⋯,n. | (1) |
Where t⩾0, Dαt is Riemann-Liouville derivative with α-order, 0<α<1; xi(t) is the state of the ith neuron at time t; βi>0; aij,bij are connection weights of neurons; fj(⋅) is an excitation function of the jth neuron; Ii(t) is an external input function of the ith neuron at time t; τij(t) is a signal transmission delay between the ith neuron and the jth neuron, and τij(t)>0.
Given the initial conditions of the system (1):
xi(s)=φi(s), Dαtxi(s)=ψi(s), −τ⩽s⩽0, i=1,2,⋯,n. | (2) |
Here τ = sup1⩽i,j⩽n, t>0{ τij(t)} , φi(s),ψi(s) are bounded continuous functions.
The structure of this article is as follow. First a few preliminaries are given in Section 2. In Section 3, by the properties of fractional-order calculus, constructing function sequence solution, and the Arzela-Asoli theorem, a sufficient case is derived for the existence of anti-periodic solutions and Mittag-Leffler stabilization of the system. An illustrative example to show the effectiveness of the proposed theory in Section 4.
Definition 1. [16] Define the q-order fractional-order integral of f(t) (Riemann-Liouville integral) as
D−qtf(t)=1Γ(q)∫tt0(t−r)q−1f(r)dr, |
where t⩾t0⩾0, q is a positive real number, Γ(⋅) is a Gamma function, and Γ(r)=∫+∞0tr−1e−tdt,r>0.
Definition 2. [16] Define the q-order fractional-order derivative of f(t) (Riemann-Liourille derivative) as
Dqtf(t)=1Γ(n−q)dndtn∫tt0f(s)(t−s)q−n+1ds, |
where t⩾t0⩾0, n−1⩽q<n,n∈Z+, Γ(⋅) is a Gamma function.
Definition 3. [17] A Mittag-Leffler function with parameter q is defined
Eq(z)=+∞∑k=0zkΓ(kq+1), |
where Re(q)>0 is the real part of q, z is plural, Γ(⋅) is a Gamma function.
Definition 4. Let XT(t) and ˉXT(t) are the solutions of xi(s)=φi(s),Dαtxi(s)=ψi(s) and ˉxi(s)=ˉφi(s), Dαtˉxi(s)=ˉψi(s), −τ⩽s⩽0. If there exist ρ1>0, ρ2>0, ˉXT(t) and XT(t) satisfy
‖ |
then the system (1) is Mittag-Leffler stabilization, where X(t) = {({x_1}(t), {x_2}(t), \cdots {x_n}(t))^{\text{T}}}, {\text{ }}\bar X(t) = {({\bar x_1}(t), {\bar x_2}(t), \cdots {\bar x_n}(t))^{\text{T}}}, {\text{ }}\varphi (t) = {({\varphi _1}(t), {\varphi _2}(t), \cdots {\varphi _n}(t))^{\text{T}}}, \bar \varphi (t) = {({\bar \varphi _1}(t), {\bar \varphi _2}(t), \cdots {\bar \varphi _n}(t))^{\text{T}}}, {\text{ }}M(\varphi - \bar \varphi) \geqslant 0, M(0) = 0. {E_q}(\cdot) is a Mittag-Leffler function with a parameter q.
Lemma 1. [18] x(t) is a continuously differentiable function on [0, \delta](\delta > 0), then D_{^t}^{ - p}D_{^t}^qx(t) = D_{^t}^{ - p + q}x(t), 0 < q < 1, n - 1 \leqslant p < n, n \in {Z^ + }.
Lemma 2. [19] u(t) is a continuous function on [0, + \infty), there exists {d_1} > 0 and {d_2} > 0, such that u(t) \leqslant - {d_1}D_t^{ - q}u(t) + {d_2}, {\text{ }}t \geqslant 0, then u(t) \leqslant {d_2}{E_q}(- {d_1}{t^q}), where 0 < q < 1, {E_q}(\cdot) is a Mittag-Leffler function with a parameter q.
Lemma 3. [18] If r(t) is differentiable and r'(t) is continuous, thus \frac{1}{2}D_t^q{r^2}(t) \leqslant r(t)D_t^qr(t), {\text{ 0 < }}q \leqslant 1.
Definition 5. [20] For u(t) \in C(R), if u(t + \omega) = - u(t) for t \in R, thus u(t) is an anti-periodic function, where \omega is a normal number.
Assumptions used in this article:
{{\text{H}}_{\text{1}}}:{f_i}(t) is bounded continuous excitation function and satisfies Lipschitz conditions, there exist
{l_i} > 0, {\bar f_i} > 0 such \left| {{f_i}({\xi _1}) - {f_i}({\xi _2})} \right| \leqslant {l_i}\left| {{\xi _1} - {\xi _2}} \right|, {\text{ }}\left| {{f_i}(t)} \right| \leqslant {\bar f_i}, {\text{ }}{\xi _1}, {\xi _2} \in R, {\text{ }}i = 1, 2, \cdots n.
{{\text{H}}_2}: Excitation function {f_i}(t) satisfies {f_i}(u) = - {f_i}(- u), {\text{ }}u \in R, {\text{ }}i = 1, 2, \cdots, n.
{{\text{H}}_3}: Input function {I_i}(t) satisfies {I_i}(t + \omega) = - {I_i}(t), {\text{ }}\left| {{I_i}(t)} \right| \leqslant {\bar I_i}, where \omega > 0, {\text{ }}{\bar I_i} \geqslant 0, {\text{ }}i = 1, 2, \cdots, n.
{{\text{H}}_4}: Time-varying delays function {\tau _{ij}}(t) is bounded, and differentiable, and satisfy 0 \leqslant {\dot \tau _{ij}}(t) \leqslant {\tau ^*} < 1, {\text{ }}t > 0 , {\text{ }}i = 1, 2, \cdots, n .
Theorem 1. The solution of system (1) is bounded on [0, T](0 \leqslant T < + \infty) when {{\text{H}}_{\text{1}}} and {{\text{H}}_3} hold.
Proof. There is D_t^\alpha \left| {g(x)} \right| \leqslant {sgn} (g(x))D_t^\alpha g(x) for a continuous function g(x) and Definition 2. We get from (1):
D_t^\alpha \left| {{x_i}(t)} \right| \leqslant - {\beta _i}\left| {{x_i}(t)} \right|{\text{ + }}\sum\limits_{j = 1}^n {\left| {{a_{ij}}} \right|} \left| {{f_j}({x_j}(t))} \right|{\text{ + }}\sum\limits_{j = 1}^n {\left| {{b_{ij}}} \right|} \left| {{f_j}({x_j}(t - {\tau _{ij}}(t)))} \right|{\text{ + }}\left| {{I_i}(t)} \right| \\ \;\;\;\;\;\;\;\;\; \leqslant - {\beta _i}\left| {{x_i}(t)} \right|{\text{ + }}\sum\limits_{j = 1}^n {(\left| {{a_{ij}}} \right|} + \left| {{b_{ij}}} \right|){\bar f_j}{\text{ + }}{\bar I_i} | (3) |
Combined with Lemma 1, it can be deduced from (3):
\left| {{x_i}(t)} \right| \leqslant - {\beta _i}D_t^{ - \alpha }\left| {{x_i}(t)} \right|{\text{ + }}D_t^{ - \alpha }[\sum\limits_{j = 1}^n {(\left| {{a_{ij}}} \right|} + \left| {{b_{ij}}} \right|){\bar f_j}{\text{ + }}{\bar I_i}] \\ \;\;\;\;\;\;\;\;\;\; {\text{ = }} - {\beta _i}D_t^{ - \alpha }\left| {{x_i}(t)} \right|{\text{ + }}[\sum\limits_{j = 1}^n {(\left| {{a_{ij}}} \right|} + \left| {{b_{ij}}} \right|){\bar f_j}{\text{ + }}{\bar I_i}]\frac{{{t^\alpha }}}{{\Gamma (\alpha + 1)}} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\leqslant - {\beta _i}D_t^{ - \alpha }\left| {{x_i}(t)} \right| + [\sum\limits_{j = 1}^n {(\left| {{a_{ij}}} \right|} + \left| {{b_{ij}}} \right|){\bar f_j}{\text{ + }}{\bar I_i}]\frac{{{T^\alpha }}}{{\Gamma (\alpha + 1)}}. |
From Lemma 2:
\left| {{x_i}(t)} \right| \leqslant \frac{{[\sum\limits_{j = 1}^n {(\left| {{a_{ij}}} \right| + \left| {{b_{ij}}} \right|} ){{\bar f}_j} + {{\bar I}_i}]{T^\alpha }}}{{\Gamma (\alpha + 1)}}{E_\alpha }( - {\beta _i}{t^\alpha }), {\text{ }}t \geqslant 0, {\text{ }}i = 1, 2, \cdots , n. |
That is the solution x(t) = {({x_1}(t), {x_2}(t), \cdots, {x_n}(t))^{\text{T}}} is bounded on 0 \leqslant t \leqslant T < + \infty , where {E_\alpha }(\cdot) is a
Mittag-Leffler function with a parameter \alpha .
Theorem 2. The solution of system (1) is Mittag-Leffler stabilization on [0, T](T < + \infty), if
\eta = \mathop {\min }\limits_{1 \leqslant i \leqslant n} \{ 2{\beta _i} - \sum\limits_{j = 1}^n {(\left| {{a_{ij}}} \right| + \left| {{b_{ij}}} \right|){\text{ }}} {l_j} - \sum\limits_{j = 1}^n {(\left| {{a_{ji}}} \right| + \frac{{\left| {{b_{ji}}} \right|}}{{1 - {\tau ^*}}})} {\text{ }}{l_i}\} > 0, |
when {{\text{H}}_{\text{1}}} and {{\text{H}}_3} hold.
Proof. Suppose {x^*}(t) = {(x_1^*(t), x_2^*(t), \cdots, x_n^*(t))^{\text{T}}} and x(t) = {({x_1}(t), {x_2}(t), \cdots, {x_n}(t))^{\text{T}}} are the solutions of x_i^*(s) = \varphi _i^*(s), {\text{ }}D_t^\alpha x_i^*(s) = \psi _i^*(s) and {x_i}(s) = {\varphi _i}(s), {\text{ }}D_t^\alpha {x_i}(s) = {\psi _i}(s). Let {y_i}(t) = {x_i}(t) - x_i^*(t), combined formula (1):
D_t^\alpha {y_i}(t) = - {\beta _i}{y_i}(t) + \sum\limits_{j = 1}^n {{a_{ij}}[{f_j}({x_j}(t)) - {f_j}(x_j^*(t))]} \\+ \sum\limits_{j = 1}^n {{b_{ij}}[{f_j}({x_j}(t - {\tau _{ij}}(t))) - {f_j}(x_j^*(t - {\tau _{ij}}(t)))]} . | (4) |
We get D_t^\alpha y_i^2(t) \leqslant 2{y_i}(t)D_t^\alpha {y_i}(t) from Lemma 3, and from (4):
\begin{array}{l} D_t^\alpha y_i^2(t) \leqslant 2{y_i}(t)\{ - {\beta _i}{y_i}(t) + \sum\limits_{j = 1}^n {{a_{ij}}[{f_j}({x_j}(t)) - {f_j}(x_j^*(t))]} \\ \;\;\;\;\;\;\;\;\;\;+ \sum\limits_{j = 1}^n {{b_{ij}}[{f_j}({x_j}(t - {\tau _{ij}}(t))) - {f_j}(x_j^*(t - {\tau _{ij}}(t)))]} \} \\ \;\;\;\;\;\;\;\;\;\; \leqslant - 2{\beta _i}y_i^2(t) + 2\left| {{y_i}(t)} \right|[\sum\limits_{j = 1}^n {\left| {{a_{ij}}} \right|{l_j}\left| {{y_j}(t)} \right|} + \\ \;\;\;\;\;\;\;\;\;\; \sum\limits_{j = 1}^n {\left| {{b_{ij}}} \right|{l_j}\left| {{y_j}(t - {\tau _{ij}}(t))} \right|} ] \\ \;\;\;\;\;\;\;\;\;\; \leqslant - 2{\beta _i}y_i^2(t) + \sum\limits_{j = 1}^n {\left| {{a_{ij}}} \right|{l_j}\left| {y_i^2(t) + y_j^2(t)} \right|} + \\ \;\;\;\;\;\;\;\;\;\;\sum\limits_{j = 1}^n {\left| {{b_{ij}}} \right|{l_j}\left| {y_i^2(t) + y_j^2(t - {\tau _{ij}}(t))} \right|} \\ \;\;\;\;\;\;\;\;\;\; {\text{ = [}} - 2{\beta _i} + \sum\limits_{j = 1}^n {(\left| {{a_{ij}}} \right|} {\text{ + }}\left| {{b_{ij}}} \right|{\text{)}}{l_j}{\text{]}}y_i^2(t) + \\ \;\;\;\;\;\;\;\;\;\; \sum\limits_{j = 1}^n {\left| {{a_{ij}}} \right|{l_j}} y_j^2(t) + \sum\limits_{j = 1}^n {\left| {{b_{ij}}} \right|{l_j}} y_j^2(t - {\tau _{ij}}(t)). \\ \end{array} | (5) |
From (5):
\sum\limits_{i = 1}^n {y_i^2(t)} \leqslant \sum\limits_{i = 1}^n {{\text{[}} - 2{\beta _i} + \sum\limits_{j = 1}^n {(\left| {{a_{ij}}} \right|} {\text{ + }}\left| {{b_{ij}}} \right|{\text{)}}{l_j}{\text{ + }}\sum\limits_{j = 1}^n {\left| {{a_{ji}}} \right|{l_i}} {\text{]D}}_t^{ - \alpha }y_i^2(t)} \\+ \sum\limits_{i = 1}^n {\sum\limits_{j = 1}^n {\left| {{b_{ji}}} \right|{l_i}} {\text{D}}_t^{ - \alpha }y_i^2(t - {\tau _{ij}}(t))} . | (6) |
t - {\tau _{ij}}(t) \in [- {\tau _{ij}}(t), 0] when t \in [0, {\tau _{ij}}(t)]. Let u = s - {\tau _{ij}}(s), then
\begin{array}{l} D_t^{ - \alpha }y_i^2(t - {\tau _{ij}}(t)) = \frac{1}{{\Gamma (\alpha )}}\int_0^t {{{(t - s)}^{\alpha - 1}}y_i^2(s - {\tau _{ij}}(s)){\text{d}}s} \\ \;\;\;\;\;\;\;\;\;\; = \frac{1}{{\Gamma (\alpha )}}\int_{ - {\tau _{ij}}(0)}^{t - {\tau _{ij}}(t)} {\frac{{{{(t - u - {\tau _{ij}}(s))}^{\alpha - 1}}y_i^2(u)}}{{1 - {{\dot \tau }_{ij}}(s)}}{\text{du}}} \\ \;\;\;\;\;\;\;\;\;\; \leqslant \frac{{\varphi _i^*}}{{(1 - {\tau ^*})\Gamma (\alpha )}}\int_{ - {\tau _{ij}}(0)}^{t - {\tau _{ij}}(t)} {{{(t - u - {\tau _{ij}}(t))}^{\alpha - 1}}{\text{du}}} \\ \;\;\;\;\;\;\;\;\;\; = \frac{{\varphi _i^*{{(t + {\tau _{ij}}(0) - {\tau _{ij}}(t))}^\alpha }}}{{(1 - {\tau ^*})\Gamma (\alpha )\alpha }} \\ \;\;\;\;\;\;\;\;\;\; \leqslant \frac{{\varphi _i^*{T^\alpha }}}{{(1 - {\tau ^*})\Gamma (\alpha + 1)}}, \end{array} | (7) |
where \varphi _i^* = \mathop {\sup }\limits_{ - \tau \leqslant s \leqslant 0} \{ {(\varphi _i^*(s) - {\varphi _i}(s))^2}\}, {\text{ }}i = 1, 2, \cdots, n.
t - {\tau _{ij}}(t) \in [0, + \infty) when t \in [{\tau _{ij}}(t), + \infty). Let u = s - {\tau _{ij}}(s), then
\begin{array}{l} D_t^{ - \alpha }y_i^2(t - {\tau _{ij}}(t)) = \frac{1}{{\Gamma (\alpha )}}\int_0^t {{{(t - s)}^{\alpha - 1}}y_i^2(s - {\tau _{ij}}(s)){\text{d}}s} \\ \;\;\;\;\;\;\;\;\;\; = \frac{1}{{\Gamma (\alpha )}}\int_{ - {\tau _{ij}}(0)}^{t - {\tau _{ij}}(t)} {\frac{{{{(t - u - {\tau _{ij}}(s))}^{\alpha - 1}}y_i^2(u)}}{{1 - {{\dot \tau }_{ij}}(s)}}{\text{du}}} \\ \;\;\;\;\;\;\;\;\;\;{\text{ = }}\frac{1}{{\Gamma (\alpha )}}[\int_{ - {\tau _{ij}}(0)}^0 {\frac{{{{(t - u - {\tau _{ij}}(s))}^{\alpha - 1}}y_i^2(u)}}{{1 - {{\dot \tau }_{ij}}(s)}}{\text{du}}} + \int_0^{t - {\tau _{ij}}(t)} {\frac{{{{(t - u - {\tau _{ij}}(s))}^{\alpha - 1}}y_i^2(u)}}{{1 - {{\dot \tau }_{ij}}(s)}}{\text{du}}} ] \\ \;\;\;\;\;\;\;\;\;\; \leqslant \frac{1}{{(1 - {\tau ^*})\Gamma (\alpha )}}[\int_{ - {\tau _{ij}}(0)}^0 {{{( - u)}^{\alpha - 1}}y_i^2(u){\text{du}}} + \int_0^{t - {\tau _{ij}}(t)} {{{(t - u - {\tau _{ij}}(t))}^{\alpha - 1}}y_i^2(u){\text{du}}} ] \\ \;\;\;\;\;\;\;\;\;\; \leqslant \frac{1}{{1 - {\tau ^*}}}[\frac{{\varphi _i^*{T^\alpha }}}{{\Gamma (\alpha + 1)}} + D_i^{ - \alpha }y_i^2(t)], \\ \end{array} | (8) |
where \varphi _i^* = \mathop {\sup }\limits_{ - \tau \leqslant s \leqslant 0} \{ {(\varphi _i^*(s) - {\varphi _i}(s))^2}\}, {\text{ }}i = 1, 2, \cdots, n.
We obtain from (7) and (8):
D_t^{ - \alpha }y_i^2(t - {\tau _{ij}}(t)) \leqslant \frac{1}{{1 - {\tau ^*}}}[\frac{{\varphi _i^*{T^\alpha }}}{{\Gamma (\alpha + 1)}} + D_i^{ - \alpha }y_i^2(t)], {\text{ }}i = 1, 2, \cdots , n. | (9) |
Substitute the result of (9) into (6):
\begin{array}{l} \sum\limits_{i = 1}^n {y_i^2(t)} \leqslant \sum\limits_{i = 1}^n {{\text{[}} - 2{\beta _i} + \sum\limits_{j = 1}^n {(\left| {{a_{ij}}} \right|} {\text{ + }}\left| {{b_{ij}}} \right|{\text{)}}{l_j}{\text{ + }}\sum\limits_{j = 1}^n {(\left| {{a_{ji}}} \right| + \frac{{\left| {{b_{ji}}} \right|}}{{1 - {\tau ^*}}}){l_i}} {\text{]D}}_t^{ - \alpha }y_i^2(t)} \\ \;\;\;\;\;\;\;\;\;\;+ \sum\limits_{i = 1}^n {\sum\limits_{j = 1}^n {\left| {{b_{ji}}} \right|{l_i}} \frac{{\varphi _i^*{T^\alpha }}}{{(1 - {\tau ^*})\Gamma (\alpha + 1)}}} \\ \;\;\;\;\;\;\;\;\;\; \leqslant - \mathop {\min }\limits_{1 \leqslant i \leqslant n} [2{\beta _i} - \sum\limits_{j = 1}^n {(\left| {{a_{ij}}} \right|} {\text{ + }}\left| {{b_{ij}}} \right|{\text{)}}{l_j} - \sum\limits_{j = 1}^n {(\left| {{a_{ji}}} \right| + \frac{{\left| {{b_{ji}}} \right|}}{{1 - {\tau ^*}}}){l_i}]\sum\limits_{i = 1}^n {{\text{D}}_t^{ - \alpha }y_i^2(t) + } } \\ \;\;\;\;\;\;\;\;\;\; \sum\limits_{i = 1}^n {\sum\limits_{j = 1}^n {\left| {{b_{ji}}} \right|{l_i}} \frac{{\varphi _i^*{T^\alpha }}}{{(1 - {\tau ^*})\Gamma (\alpha + 1)}}} . \\ \end{array} | (10) |
Combined with Lemma 2, it can be deduced from (10):
\left\| {x - {x^*}} \right\| = \sum\limits_{i = 1}^n {{{(x - {x^*})}^2}} \leqslant M(\varphi - {\varphi ^*}){E_\alpha }( - \eta {t^\alpha }), {\text{ }}t > 0, | (11) |
where M(\varphi - {\varphi ^*}) = \sum\limits_{i = 1}^n {\sum\limits_{j = 1}^n {\left| {{b_{ji}}} \right|} } {l_i}\frac{{\varphi _i^*{T^\alpha }}}{{(1 - {\tau ^*})\Gamma (\alpha + 1)}}, \eta = \mathop {\min }\limits_{1 \leqslant i \leqslant n} \{ 2{\beta _i} - \sum\limits_{j = 1}^n {(\left| {{a_{ij}}} \right| + \left| {{b_{ij}}} \right|){l_j} - \sum\limits_{j = 1}^n {(\left| {{a_{ji}}} \right| + \frac{{\left| {{b_{ji}}} \right|}}{{1 - \tau *}}){l_i}} } \} > 0. Obviously M(\varphi - \varphi *) \geqslant 0, {\text{ }} and M(0) = 0, thus the solution of system (1) is Mittag-Leffler stabilization from Definition 4.
Theorem 3. System (1) has an anti-periodic solution when the Theorem 2 and {{\text{H}}_2} hold, and the solution is Mittag-Leffler stabilization.
Proof. For a positive integer k and a normal number \omega from {{\text{H}}_2} and {{\text{H}}_3}, we obtain from (1):
\begin{array}{l} D_t^\alpha [{( - 1)^{k + 1}}{x_i}(t + (k + 1)\omega )] = {( - 1)^{k + 1}}[ - {\beta _i}{x_i}(t + (k + 1)\omega ) + \sum\limits_{j = 1}^n {{a_{ij}}{f_j}({x_j}(t + (k + 1)\omega ))} \\ {\text{ }} + \sum\limits_{j = 1}^n {{b_{ij}}{f_j}({x_j}(t + (k + 1)\omega - {\tau _{ij}}(t)))} + {I_i}(t + (k + 1)\omega )] \\ {\text{ = }} - {\beta _i}{( - 1)^{k + 1}}{x_i}(t + (k + 1)\omega ) + \sum\limits_{j = 1}^n {{a_{ij}}{f_j}({{( - 1)}^{k + 1}}{x_j}(t + (k + 1)\omega ))} \\ {\text{ }} + \sum\limits_{j = 1}^n {{b_{ij}}{f_j}({{( - 1)}^{k + 1}}{x_j}(t + (k + 1)\omega - {\tau _{ij}}(t)))} + {I_i}(t), {\text{ }}i = 1, 2, \cdots , n. \\ \end{array} | (12) |
So {(- 1)^{k + 1}}{x_i}(t + (k + 1)\omega) is the solution of system (1) for a positive integer k. x(t) is bounded from Theorem 1, then there exists a positive constant N such that:
\left| {{{( - 1)}^{k + 1}}{x_i}(t + (k + 1)\omega )} \right| \leqslant N{E_\alpha }{\text{[}} - \eta {(t + (k + 1)\omega )^\alpha }{\text{], }}i = 1, 2, \cdots , n. |
Because 0 \leqslant {E_\alpha }(- {(\lambda t)^\alpha }) \leqslant 1, \lambda > 0, so the sequence \{ {(- 1)^{k + 1}}{x_i}(t + k\omega)\} is equicontinuous and bounded uniformly. Reapplication Arzela-Ascoli theorem {\{ {(- 1)^k}{x_i}(t + k\omega)\} _{k \in N}} converges to a continuous function x_i^*(t) uniformly on any compact set in [0, + \infty] by selecting a subsequence {\{ k\omega \} _{k \in N}}, that is \mathop {\lim }\limits_{k \to + \infty } {(- 1)^k}{x_i}(t + k\omega) = x_i^*(t), {\text{ }}i = 1, 2, \cdots, n.
On the other hand, owing to x_i^*(t + \omega) = \mathop {\lim }\limits_{k \to + \infty } {(- 1)^k}{x_i}(t + \omega + k\omega) = - \mathop {\lim }\limits_{k \to + \infty } {(- 1)^{k + 1}}{x_i}(t + (k + 1)\omega) = - x_i^*(t), {\text{ }}i = 1, 2, \cdots, n.
So {x^*}(t) is \omega -anti-periodic function. Owing {(- 1)^k}{x_i}(t + k\omega) is the solution of system (1) for any k \in N, we obtain from (1):
\begin{array}{l} D_t^\alpha [{( - 1)^k}{x_i}(t + k\omega )] = - {\beta _i}{( - 1)^k}{x_i}(t + k\omega ) + \sum\limits_{j = 1}^n {{a_{ij}}{f_j}({{( - 1)}^k}{x_j}(t + k\omega ))} \\ {\text{ }} + \sum\limits_{j = 1}^n {{b_{ij}}{f_j}({{( - 1)}^k}{x_j}(t + k\omega - {\tau _{ij}}(t))) + {I_i}(t)} , {\text{ }}i = 1, 2, \cdots , n. \\ \end{array} |
We can continue to get when {f_i}(\cdot) is continuous, then
\mathop {\lim }\limits_{k \to + \infty } D_t^\alpha [{( - 1)^k}{x_i}(t + k\omega )] = - {\beta _i}x_i^*(t) + \sum\limits_{j = 1}^n {{a_{ij}}{f_j}(x_j^*(t))} + \\ \sum\limits_{j = 1}^n {{b_{ij}}{f_j}(x_j^*(t + k\omega - {\tau _{ij}}(t))) + {I_i}(t)} , {\text{ }}i = 1, 2, \cdots , n. |
So {x^*}(t) is an anti-periodic solution of system (1). For any x(t), the inequality holds from (11):
\left\| {x(t) - {x^*}(t)} \right\| = \sum\limits_{i = 1}^n {\left| {{x_i}(t) - x_i^*(t)} \right|} \leqslant M(\varphi - {\varphi ^*}){E_\alpha }( - \eta {t^\alpha }), {\text{ }}t > 0, |
so {x^*}(t) is an anti-periodic solution and Mittag-Leffler stabilization.
Remark: The stabilization and existence of anti-periodic solutions of nonlinear differential equations are of great significance in dynamic behavior, which plays a key role in physical phenomena [1,2,3,4,5]. The model of integer- order neural network system is a nonlinear differential equation, and fractional-order neural network system is a generalization of integer-order neural network system, so fractional-order neural network system is also a model of nonlinear differential equation generalization. From previous data, there are only discussions on the boundedness and asymptotic stabilization of almost periodic solution and \omega -periodic solution for fractional-order neural networks (e.g., [11,12,13,14,15]), we have not seen the results of authors exploring the dynamic behavior of the anti-periodic solution of a system. In the article, we mainly give the sufficient conditions for the existence of anti-periodic solutions and Mittag-Leffler stabilization of fractional order neural network systems. The results are new. This provides a new basis to further explore the dynamic properties of a system in theoretical research and practical application.
We consider fractional-order neural networks with time-varying delays:
{\text{D}}_t^\alpha {x_i}(t) = - {\beta _i}{x_i}{\text{(}}t{\text{)}} + \sum\limits_{j = 1}^2 {{a_{ij}}{f_j}({x_j}(t)) + \sum\limits_{j = 1}^2 {{b_{ij}}{f_j}({x_j}(t - {\tau _{ij}}(t))) + {I_i}(t)} } {\text{, }}i = 1, 2. | (13) |
We get \alpha = 0.85, {\beta _1} = 1.85, {\text{ }}{\beta _2} = 1.9, {a_{11}} = \frac{1}{{16}}, {a_{12}} = \frac{1}{{32}}, {a_{21}} = - \frac{1}{{16}}, {a_{22}} = - \frac{1}{{32}}, {b_{11}} = - \frac{1}{{16}}, {b_{12}} = \frac{1}{{32}}, {b_{21}} = \frac{1}{{16}}, {b_{22}} = - \frac{1}{{32}}, {f_i}(x) = \frac{{\left| {{x_i} + 1} \right| - \left| {{x_i} - 1} \right|}}{{50}}, {I_i}(t) = \frac{{\cos (8t)}}{{150}}, {\tau _{ij}}(t) = \frac{{2 - {e^{ - t}}}}{3}, therefore {I_i}(t + \frac{\pi }{8}) = - {I_i}(t), {\text{ }}{f_i}(- x) = - \frac{{\left| {{x_i} + 1} \right| - \left| {{x_i} - 1} \right|}}{{50}} = - {f_i}(x), {\text{ }}i = 1, 2.
Let {l_i} = \frac{1}{{25}}, {\bar f_i} = \frac{1}{{25}}, {\bar I_i} = \frac{1}{{150}}, {\tau ^*} = \frac{1}{3}, \omega = \frac{\pi }{8}.
By calculating we have: \eta = \mathop {\min }\limits_{1 \leqslant i \leqslant 2} \{ 2{\beta _i} - \sum\limits_{j = 1}^2 {(\left| {{a_{ij}}} \right| + \left| {{b_{ij}}} \right|){\text{ }}} {l_j} - \sum\limits_{j = 1}^2 {(\left| {{a_{ji}}} \right| + \frac{{\left| {{b_{ji}}} \right|}}{{1 - {\tau ^*}}})} {\text{ }}{l_i}\} = 2.8884375 > 0 , so Theorem 3 holds, the system (13) has a \frac{\pi }{8}-anti-periodic solution with Mittag-Leffler stabilization.
On the other hand, giving the transient change of ({x_1}(t), {y_1}(t)) and ({x_2}(t), {y_2}(t)) for system (13) by numerical simulation, as shown in the figures below (see Figures 1 and 2).
We gain a \frac{\pi }{8}-anti-periodic solution from the figures, it is consistent with the conclusion of theorems.
We study the dynamic behavior of fractional-order neural networks with time-varying delays in the article. Frist deriving the relationship between fractional-order integrals of state functions with and without time delay through the division of time interval and the properties of fractional-order calculus, the research method is innovative. Moreover, constructing the sequence solution of the system function which converges to a continuous function uniformly with the Arzela-Asoli theorem. In addition, giving the sufficient conditions the Mittag-Leffler stabilization, boundedness, and the existence of anti-periodic solutions for systems. Finally, the conclusion is feasible by a numerical simulation. Similarly, we can use the theoretical basis of this article to study the Mittag-Leffler stabilization of anti-periodic solutions of fractional-order Cohen-Grossberg neural networks and inertial Cohen-Grossberg neural networks, and so on.
Funding: Scientific Research Project of Shaoxing University Yuanpei College (No. KY2021C04).
The authors declare no conflict of interest.
[1] |
A. R. Aftabizadeh, S. Aizicovici, N. H. Pavel, On a class of second-order anti-periodic boundary value problems, J. Math. Anal. Appl., 171 (1992), 301–320. https://doi.org/10.1016/0022-247X(92)90345-E doi: 10.1016/0022-247X(92)90345-E
![]() |
[2] |
S. Aizicovici, M. McKibben, S, Reich, Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities, J. Nonlinear Anal.-Theor., 43 (2001), 233–251. https://doi.org/10.1016/S0362-546X(99)00192-3 doi: 10.1016/S0362-546X(99)00192-3
![]() |
[3] |
Y. Chen, J. J. Nieto, D. Oregan, Anti-periodic solutions for fully nonlinear first-order differential equations, J. Math. Comput. Model., 46 (2007), 1183–1190. https://doi.org/10.1016/j.mcm.2006.12.006 doi: 10.1016/j.mcm.2006.12.006
![]() |
[4] | H. L. Chen, Anti-periodic wavelets, J. Comput. Math., 14 (1996), 32–39. https://doi.org/354ypepm40/160976 |
[5] |
Y. Li, L. Huang, Anti-periodic solutions for a class of Liénard-type systems with continuously distributed delays, Nonlinear Anal.-Real, 10 (2009), 2127–2132. https://doi.org/10.1016/j.nonrwa.2008.03.020 doi: 10.1016/j.nonrwa.2008.03.020
![]() |
[6] |
P. Cui, Z. B. Li, Anti-periodic solutions for BAM-type Cohen-Grossberg neural networks with time delays, J. Nonlinear Sci. Appl., 10 (2017), 2171–2180. https://doi.org/10.22436/jnsa.010.04.69 doi: 10.22436/jnsa.010.04.69
![]() |
[7] |
Y. K. Li, J. L. Qin, B. Li, Existence and global exponential Stabilization of anti-periodic solutions for delayed quaternion-valued cellular neural networks with impulsive effects, J. Math. Method. Appl. Sci., 42 (2019), 5–23. https://doi.org/10.1002/mma.5318 doi: 10.1002/mma.5318
![]() |
[8] | C. J. Xu, P. L. Li, Existence and exponential Stabilization of anti-periodic solutions for neutral BAM neural networks with time-varying delays in the leakage terms, J. Nonlinear Sci. Appl., 9 (2016), 1285–1305. http://dx.doi.org/10.22436/jnsa.009.03.52 |
[9] |
X. Y. Fu, F. C. Kong, Global exponential Stabilization analysis of anti-periodic solutions of discontinuous bidirectional associative memory (BAM) neural networks with time-varying delays, Int. J. Nonlin. Sci. Num., 21 (2020), 807–820. https://doi.org/10.1515/ijnsns-2019-0220 doi: 10.1515/ijnsns-2019-0220
![]() |
[10] |
C. F. Xu, F. C. Kong, Global exponential Stabilization of anti-periodic solutions for discontinuous Cohen-Grossberg neural networks with time-varying delays, J. Exp. Theor. Artif. Intell., 33 (2021), 263–281. https://doi.org/10.1080/0952813X.2020.1737244 doi: 10.1080/0952813X.2020.1737244
![]() |
[11] |
B. S. Chen, J. J. Chen, Global asymptotically omega-periodicity of a fractional-order non-autonomous neural network, J. Neur. Network., 68 (2015), 78–88. https://doi.org/10.1016/j.neunet.2015.04.006 doi: 10.1016/j.neunet.2015.04.006
![]() |
[12] |
Y. Y. Hou, L. H. Dai, S-asymptotically \omega -periodic solutions of fractional-order complex-valued recurrent neural networks with delays, J. IEEE Access, 9 (2021), 37883–37893. https://doi.org/10.1109/ACCESS.2021.3063746 doi: 10.1109/ACCESS.2021.3063746
![]() |
[13] |
A. L. Wu, Z. G. Zeng, Boundedness, Mittag-Leffler stabilization and asymptotical omega-periodicity of fractional-order fuzzy neural networks, J. Neur. Network., 74 (2016), 73–84. https://doi.org/10.1016/j.neunet.2015.11.003 doi: 10.1016/j.neunet.2015.11.003
![]() |
[14] |
Y. K. Li, M. Huang, B. Li, Besicovitch almost periodic solutions for a fractional-order quaternion-valued neural network with discrete and distributed delays, J. Math. Method. Appl. Sci., 45 (2022), 4791–4808. https://doi.org/10.1002/mma.8070 doi: 10.1002/mma.8070
![]() |
[15] |
A. P. Wan, D. H. Sun, M. Zhao, H. Zhao, Mono-stabilization and multi-stabilization for almost-periodic solutions of fractional-order neural networks with unsaturated piecewise linear activation functions, IEEE T. Neur. Net. Lear. Syst., 31 (2020), 5138–5152. https://doi.org/10.1109/TNNLS.2020.2964030 doi: 10.1109/TNNLS.2020.2964030
![]() |
[16] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional-order differential equations, Boston: Elsevier, 2006. |
[17] | I. Podlubny, Fractional-order differential equations, New York: Academic Press, 1998. |
[18] |
Y. Gu, H. Wang, Y. Yu, Stabilization and synchronization for Riemann-Liouville fractional-order time-delayed inertial neural networks, J. Neurocomput., 340 (2019), 270–280. https://doi.org/10.1016/j.neucom.2019.03.005 doi: 10.1016/j.neucom.2019.03.005
![]() |
[19] |
L. Ke, Exponential synchronization in inertial Cohen-Grossberg neural networks with time delays, J. Neurocomput., 465 (2021), 53–62. https://doi.org/10.1016/j.jfranklin.2019.07.027 doi: 10.1016/j.jfranklin.2019.07.027
![]() |
[20] |
Y. Q. Ke, C. F. Miao, Anti-periodic solutions of inertial neural networks with time delays, J. Neural Process. Lett., 45 (2017), 523–538. https://doi.org/10.1007/s11063-016-9540-z doi: 10.1007/s11063-016-9540-z
![]() |
1. | Mohra Zayed, Shahid Wani, Exploring the versatile properties and applications of multidimensional degenerate Hermite polynomials, 2023, 8, 2473-6988, 30813, 10.3934/math.20231575 | |
2. | Călin-Adrian Popa, Asymptotic and Mittag–Leffler Synchronization of Fractional-Order Octonion-Valued Neural Networks with Neutral-Type and Mixed Delays, 2023, 7, 2504-3110, 830, 10.3390/fractalfract7110830 | |
3. | Zhiying Li, Wei Liu, The anti-periodic solutions of incommensurate fractional-order Cohen-Grossberg neural network with inertia, 2025, 10, 2473-6988, 3180, 10.3934/math.2025147 |