Research article Special Issues

$ S $-asymptotically $ \omega $-periodic dynamics in a fractional-order dual inertial neural networks with time-varying lags

  • Received: 27 July 2021 Accepted: 16 November 2021 Published: 19 November 2021
  • MSC : 34C25, 34K20

  • This paper investigates global dynamics in fractional-order dual inertial neural networks with time lags. Firstly, according to some crucial features of Mittag-Leffler functions and Banach contracting mapping principle, the existence and uniqueness of $ S $-asymptotically $ \omega $-periodic oscillation of the model are gained. Secondly, by using the comparison principle and the stability criteria of delayed Caputo fractional-order differential equations, global asymptotical stability of the model is studied. In the end, the feasibility and effectiveness of the obtained conclusions are supported by two numerical examples. There are few papers focus on $ S $-asymptotically $ \omega $-periodic dynamics in fractional-order dual inertial neural networks with time-varying lags, apparently, the works in this paper fill some of the gaps.

    Citation: Huizhen Qu, Jianwen Zhou. $ S $-asymptotically $ \omega $-periodic dynamics in a fractional-order dual inertial neural networks with time-varying lags[J]. AIMS Mathematics, 2022, 7(2): 2782-2809. doi: 10.3934/math.2022154

    Related Papers:

  • This paper investigates global dynamics in fractional-order dual inertial neural networks with time lags. Firstly, according to some crucial features of Mittag-Leffler functions and Banach contracting mapping principle, the existence and uniqueness of $ S $-asymptotically $ \omega $-periodic oscillation of the model are gained. Secondly, by using the comparison principle and the stability criteria of delayed Caputo fractional-order differential equations, global asymptotical stability of the model is studied. In the end, the feasibility and effectiveness of the obtained conclusions are supported by two numerical examples. There are few papers focus on $ S $-asymptotically $ \omega $-periodic dynamics in fractional-order dual inertial neural networks with time-varying lags, apparently, the works in this paper fill some of the gaps.



    加载中


    [1] A. Mohammadzadeh, S. Ghaemi, Synchronization of uncertain fractional-order hyperchaotic systems by using a new self-evolving non-singleton type-$2$ fuzzy neural network and its application to secure communication, Nonlinear Dyn., 88 (2017), 1–19. doi: 10.1007/s11071-016-3227-x. doi: 10.1007/s11071-016-3227-x
    [2] S. Lakshmanan, M. Prakash, C. P. Lim, R. Rakkiyappan, P. Balasubramaniam, S. Nahavandi, Synchronization of an inertial neural network with time-varying delays and its application to secure communication, IEEE T. Neur. Net. Lear., 29 (2018), 195–207. doi: 10.1109/TNNLS.2016.2619345. doi: 10.1109/TNNLS.2016.2619345
    [3] S. H. Xu, K. Liu, X. G. Li, A fuzzy process neural network model and its application in process signal classification, Neurocomputing, 335 (2019), 1–8. doi: 10.1016/j.neucom.2019.01.050. doi: 10.1016/j.neucom.2019.01.050
    [4] M. Yilmaz, A. M. Ozbayoglu, B. Tavli, Efficient computation of wireless sensor network lifetime through deep neural networks, Wireless Netw., 27 (2021), 2055–2065. doi: 10.1007/s11276-021-02556-8. doi: 10.1007/s11276-021-02556-8
    [5] J. Xu, Q. H. Tao, Z. Li, X. M. Xi, J. A. K. Suykens, S. N. Wang, Efficient hinging hyperplanes neural network and its application in nonlinear system identification, Automatica, 116 (2020), 108906. doi: 10.1016/j.automatica.2020.108906. doi: 10.1016/j.automatica.2020.108906
    [6] M. Prakash, P. Balasubramaniam, S. Lakshmanan, Synchronization of Markovian jumping inertial neural networks and its applications in image encryption, Neural Networks, 83 (2016), 86–93. doi: 10.1016/j.neunet.2016.07.001. doi: 10.1016/j.neunet.2016.07.001
    [7] K. Babcock, R. Westervelt, Stability and dynamics of simple electronic neural networks with added inertia, Physica D, 23 (1986), 464–469. doi: 10.1016/0167-2789(86)90152-1. doi: 10.1016/0167-2789(86)90152-1
    [8] S. Y. Han, C. Hu, J. Yu, H. J. Jiang, S. P. Wen, Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach, Chaos Soliton. Fract., 142 (2021), 110432. doi: 10.1016/j.chaos.2020.110432. doi: 10.1016/j.chaos.2020.110432
    [9] J. F. Wang, L. X. Tian, Stability of inertial neural network with time-varying delays via sampled-data control, Neural Process. Lett., 50 (2019), 1123–1138. doi: 10.1007/s11063-018-9905-6. doi: 10.1007/s11063-018-9905-6
    [10] Z. Q. Zhang, Z. Y. Quan, Global exponential stability via inequality technique for inertial BAM neural networks with time delays, Neurocomputing, 151 (2015), 1316–1326. doi: 10.1016/j.neucom.2014.10.072. doi: 10.1016/j.neucom.2014.10.072
    [11] M. Shi, J. Guo, X. W. Fang, C. X. Huang, Glaobal exponential stability of delayed inertial competitive neural networks, Adv. Differ. Equ., 2020 (2020), 87. doi: 10.1186/s13662-019-2476-7. doi: 10.1186/s13662-019-2476-7
    [12] L. Ke, Mittag-Leffler stability and asymptotic $\omega$-periodicity of fractional-order inertial neural networks with time-delays, Neurocomputing, 465 (2021), 53–62. doi: 10.1016/j.neucom.2021.08.121. doi: 10.1016/j.neucom.2021.08.121
    [13] L. G. Yao, Q. Cao, Anti-periodicity on high-order inertial Hopfield neural networks involving mixed delays, J. Inequal. Appl., 2020 (2020), 182. doi: 10.1186/s13660-020-02444-3. doi: 10.1186/s13660-020-02444-3
    [14] F. C. Kong, Y. Ren, R. sakthivel, Delay-dependent criteria for periodicity and exponential stability of inertial neural networks with time-varying delays, Neurocomputing, 419 (2021), 261–272. doi: 10.1016/j.neucom.2020.08.046. doi: 10.1016/j.neucom.2020.08.046
    [15] A. Chaouki, A. El Abed, Finite-time and fixed-time synchronization of inertial neural networks with mixed delays, J. Syst. Sci. Complex., 34 (2021), 206–-235. doi: 10.1007/s11424-020-9029-8. doi: 10.1007/s11424-020-9029-8
    [16] S. Lakshmanan, M. Prakash, C. P. Lim, R. Rakkiyappan, P. Balasubramaniam, S. Nahavandi, Synchronization of an inertial neural network with time-varying delays and its application to secure communication, IEEE T. Neur. Net. Lear., 29 (2018), 195–207. doi: 10.1109/TNNLS.2016.2619345. doi: 10.1109/TNNLS.2016.2619345
    [17] F. M. Zheng, Dynamic behaviors for inertial neural networks with reaction-diffusion terms and distributed delays, Adv. Differ. Equ., 2021 (2021), 166. doi: 10.1186/s13662-021-03330-y. doi: 10.1186/s13662-021-03330-y
    [18] L. M. Wang, M. F. Ge, J. H. Hu, G. D. Zhang, Global stability and stabilization for inertial memristive neural networks with unbounded distributed delays, Nonlinear Dyn., 95 (2019), 943–955. doi: 10.1007/s11071-018-4606-2. doi: 10.1007/s11071-018-4606-2
    [19] Q. Tang, J. G. Jian, Global exponential convergence for impulsive inertial complex-valued neural networks with time-varying delays, Math. Comput. Simulat., 159 (2019), 39–56. doi: 10.1016/j.matcom.2018.10.009. doi: 10.1016/j.matcom.2018.10.009
    [20] R. Rakkiyappan, S. Premalatha, A. Chandrasekar, J. D. Cao, Stability and synchronization analysis of inertial memristive neural networks with time delays, Cogn. Neurodyn., 10 (2016), 437–451. doi: 10.1007/s11571-016-9392-2. doi: 10.1007/s11571-016-9392-2
    [21] N. Cui, H. J. Jiang, C. Hu, A. Abdurahman, Global asymptotic and robust stability of inertial neural networks with proportional delays, Neurocomputing, 272 (2018), 326–333. doi: 10.1016/j.neucom.2017.07.001. doi: 10.1016/j.neucom.2017.07.001
    [22] T. W. Zhang, Y. K. Li, $S$-asymptotically periodic fractional functional differential equations with off-diagonal matrix Mittag-Leffler function kernels, Math. Comput. Simulat., 193 (2022), 331–347. doi: 10.1016/j.matcom.2021.10.006. doi: 10.1016/j.matcom.2021.10.006
    [23] T. W. Zhang, Y. K. Li, Exponential Euler scheme of multi-delay Caputo–Fabrizio fractional-order differential equations, Appl. Math. Lett., 124 (2022), 107709. doi: 10.1016/j.aml.2021.107709. doi: 10.1016/j.aml.2021.107709
    [24] Y. Yang, Y. He, Y. Wang, M. Wu, Stability analysis of fractional-order neural networks: An LMI approach, Neurocomputing, 285 (2018), 82–93. doi: 10.1016/j.neucom.2018.01.036. doi: 10.1016/j.neucom.2018.01.036
    [25] P. Wan, J. G. Jian, Impulsive stabilization and synchronization of fractional-order complex-valued neural networks, Neural Process. Lett., 50 (2019), 2201–2218. doi: 10.1007/s11063-019-10002-2. doi: 10.1007/s11063-019-10002-2
    [26] H. Z. Qu, T. W. Zhang, J. W. Zhou, Global stability analysis of $S$-asymptotically $\omega$-periodic oscillation in fractional-order cellular neural networks with time variable delays, Neurocomputing, 399 (2020), 390–398. doi: 10.1016/j.neucom.2020.03.005. doi: 10.1016/j.neucom.2020.03.005
    [27] X. L. Hu, Global finite-time stability for fractional-order neural networks, Opt. Mem. Neural Networks, 29 (2020), 77–99. doi: 10.3103/S1060992X20020046. doi: 10.3103/S1060992X20020046
    [28] X. X. You, Q. K. Song, Z. J. Zhao, Global Mittag-Leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay, Neural Networks, 122 (2020), 382–394. doi: 10.1016/j.neunet.2019.11.004. doi: 10.1016/j.neunet.2019.11.004
    [29] K. Udhayakumar, R. Rakkiyappan, J. D. Cao, X. G. Tan, Mittag-Leffler stability analysis of multiple equilibrium points in impulsive fractional-order quaternion-valued neural networks, Front. Inform. Techol. Electron. Eng., 21 (2020), 234–246. doi: 10.1631/FITEE.1900409. doi: 10.1631/FITEE.1900409
    [30] Y. J. Gu, H. Wang, Y. G. Yu, Synchronization for fractional-order discrete-time neural networks with time delays, Appl. Math. Comput., 372 (2020), 124995. doi: 10.1016/j.amc.2019.124995. doi: 10.1016/j.amc.2019.124995
    [31] F. X. Wang, F. Wang, X. G. Liu, Further results on Mittag-Leffler synchronization of fractional-order coupled neural networks, Adv. Differ. Equ., 2021 (2021), 240. doi: 10.1186/s13662-021-03389-7. doi: 10.1186/s13662-021-03389-7
    [32] Y. J. Gu, H. Wang, Y. G. Yu, Stability and synchronization for Riemann-Liouville fractional-order time-delayed inertial neural networks, Neurocomputing, 340 (2019), 270–280. doi: 10.1016/j.neucom.2019.03.005. doi: 10.1016/j.neucom.2019.03.005
    [33] S. L. Zhang, M. L. Tang, X. G. Liu, Synchronization of a Riemann-Liouville fractional time-delayed neural network with two inertial terms, Circuits Syst. Signal Process., 40 (2021), 5280–5308. doi: 10.1007/s00034-021-01717-6. doi: 10.1007/s00034-021-01717-6
    [34] X. Y. Yang, J. G. Lu, Synchronization of fractional order memristor-based inertial neural networks with time delay, In: 2020 Chinese Control And Decision Conference (CCDC), 2020, 3853–3858. doi: 10.1109/CCDC49329.2020.9164036.
    [35] T. W. Zhang, L. L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072. doi: 10.1016/j.aml.2019.106072. doi: 10.1016/j.aml.2019.106072
    [36] T. W. Zhang, J. W. Zhou, Y. Z. Liao, Exponentially stable periodic oscillation and Mittag-Leffler stabilization for fractional-order impulsive control neural networks with piecewise Caputo derivatives, IEEE T. Cybernetics, 2021. doi: 10.1109/TCYB.2021.3054946.
    [37] R. Rakkiyappan, R. Sivaranjani, G. Velmurugan, J. D. Cao, Analysis of global $O(t^{-\alpha})$ stability and global asymptotical periodicity for a class of fractional-order complex-valued neural networks with time varying delays, Neural Networks, 77 (2016), 51–69. doi: 10.1016/j.neunet.2016.01.007. doi: 10.1016/j.neunet.2016.01.007
    [38] A. L. Wu, Z. G. Zeng, Boundedness, Mittag-Leffler stability and asymptotical $\omega$-periodicity of fractional-order fuzzy neural networks, Neural Networks, 74 (2016), 73–84. doi: 10.1016/j.neunet.2015.11.003. doi: 10.1016/j.neunet.2015.11.003
    [39] B. S. Chen, J. J. Chen, Global asymptotical $\omega$-periodicity of a fractional-order non-autonomous neural networks, Neural Networks, 68 (2015), 78–88. doi: 10.1016/j.neunet.2015.04.006. doi: 10.1016/j.neunet.2015.04.006
    [40] L. G. Wan, A. L. Wu, Multiple Mittag-Leffler stability and locally asymptotical $\omega$-periodicity for fractional-order neural networks, Neurocomputing, 315 (2018), 272–282. doi: 10.1016/j.neucom.2018.07.023. doi: 10.1016/j.neucom.2018.07.023
    [41] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Boston: Elsevier, 2006.
    [42] C. P. Li, W. H. Deng, Remarks on fractional derivatives, Appl. Math. Comput., 187 (2007), 777–784. doi: 10.1016/j.amc.2006.08.163. doi: 10.1016/j.amc.2006.08.163
    [43] S. T. Qin, L. Y. Gu, X. Y. Pan, Exponential stability of periodic solution for a memristor-based inertial neural network with time delays, Neural Comput. Appl., 32 (2020), 3265–3281. doi: 10.1007/s00521-018-3702-z. doi: 10.1007/s00521-018-3702-z
    [44] C. Aouiti, E. A. Assali, I. B. Gharbia, Y. E. Foutayeni, Existence and exponential stability of piecewise pseudo almost periodic solution of neutral-type inertial neural networks with mixed delay and impulsive perturbations, Neurocomputing, 357 (2019), 292–309. doi: 10.1016/j.neucom.2019.04.077. doi: 10.1016/j.neucom.2019.04.077
    [45] H. Y. Liao, Z. Q. Zhang, L. Ren, W. L. Peng, Global asymptotic stability of periodic solutions for inertial delayed BAM neural networks via novel computing method of degree and inequality techniques, Chaos Soliton. Fract., 104 (2017), 785–797. doi: 10.1016/j.chaos.2017.09.035. doi: 10.1016/j.chaos.2017.09.035
    [46] R. Rajan, V. Gandhi, P. Soundharajan, Y. H. Joo, Almost periodic dynamics of memristive inertial neural networks with mixed delays, Inform. Sciences, 536 (2020), 332–350. doi: 10.1016/j.ins.2020.05.055. doi: 10.1016/j.ins.2020.05.055
    [47] Y. Q. Ke, C. F. Miao, Stability and existence of periodic solutions in inertial BAM neural networks with time delay, Neural Comput. Appl., 23 (2013), 1089–1099. doi: 10.1007/s00521-012-1037-8. doi: 10.1007/s00521-012-1037-8
    [48] Y. G. Kao, H. Li, Asymptotic multistability and local $S$-asymptotic $\omega$-periodicity for the nonautonomous fractional-order neural networks with impulses, Sci. China Inf. Sci., 64 (2021), 112207. doi: 10.1007/s11432-019-2821-x. doi: 10.1007/s11432-019-2821-x
    [49] N. Aguila-Camacho, M. A. Duarte-Mermoud, J. A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci., 19 (2014), 2951–2957. doi: 10.1016/j.cnsns.2014.01.022. doi: 10.1016/j.cnsns.2014.01.022
    [50] J. Y. Xiao, J. D. Cao, J. Cheng, S. P. Wen, R. M. Zhang, S. M. Zhong, Novel inequalities to global mittag-leffler synchronization and stability analysis of fractional-order quaternion-valued neural networks, IEEE T. Neur. Net. Lear., 32 (2021), 3700–3709. doi: 10.1109/TNNLS.2020.3015952. doi: 10.1109/TNNLS.2020.3015952
    [51] J. Y. Xiao, J. D. Cao, J. Cheng, S. M. Zhong, S. P. Wen, Novel methods to finite-time Mittag-Leffler synchronization problem of fractional-order quaternion-valued neural networks, Inform. Sciences, 526 (2020), 221–244. doi: 10.1016/j.ins.2020.03.101. doi: 10.1016/j.ins.2020.03.101
    [52] J. Y. Xiao, J. Cheng, K. B. Shi, R. M. Zhang, A general approach to fixed-time synchronization problem for fractional-order multi-dimension-valued fuzzy neural networks based on memristor, IEEE T. Fuzzy Syst., 2021. doi: 10.1109/TFUZZ.2021.3051308. doi: 10.1109/TFUZZ.2021.3051308
    [53] J. Y. Xiao, S. M. Zhong, S. P. Wen, Improved approach to the problem of the global Mittag-Leffler synchronization for fractional-order multi-dimension-valued BAM neural networks based on new inequalities, Neural Networks, 133 (2021), 87–100. doi: 10.1016/j.neunet.2020.10.008. doi: 10.1016/j.neunet.2020.10.008
    [54] J. Y. Xiao, S. M. Zhong, S. P. Wen, Unified analysis on the global dissipativity and stability of fractional-order multi-dimension-valued memristive neural networks with time delay, IEEE T. Neur. Net. Lear., 2021. doi: 10.1109/TNNLS.2021.3071183. doi: 10.1109/TNNLS.2021.3071183
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1694) PDF downloads(100) Cited by(1)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog