To study the Mittag-Leffler projective synchronization (MLPS) problem of fractional-order fuzzy neural networks (FOFNNs), in this work we introduced the FOFNNs model. On this basis, we discussed the MLPS of uncertain fractional-order fuzzy complex valued neural networks (FOFCVNNs) with distributed and time-varying delays. Utilizing Banach contraction mapping principle, we proved the existence and uniqueness of the model solution. Moreover, employing the construction of a new hybrid controller, an adaptive hybrid controller, and the fractional-order Razumikhin theorem, algebraic criteria was obtained for implementing MLPS. The algebraic inequality criterion obtained in this article improves and extends the previously published results on MLPS, making it easy to prove and greatly reducing the computational complexity. Finally, different Caputo derivatives of different orders were given, and four numerical examples were provided to fully verify the accuracy of the modified criterion.
Citation: Yang Xu, Zhouping Yin, Yuanzhi Wang, Qi Liu, Anwarud Din. Mittag-Leffler projective synchronization of uncertain fractional-order fuzzy complex valued neural networks with distributed and time-varying delays[J]. AIMS Mathematics, 2024, 9(9): 25577-25602. doi: 10.3934/math.20241249
To study the Mittag-Leffler projective synchronization (MLPS) problem of fractional-order fuzzy neural networks (FOFNNs), in this work we introduced the FOFNNs model. On this basis, we discussed the MLPS of uncertain fractional-order fuzzy complex valued neural networks (FOFCVNNs) with distributed and time-varying delays. Utilizing Banach contraction mapping principle, we proved the existence and uniqueness of the model solution. Moreover, employing the construction of a new hybrid controller, an adaptive hybrid controller, and the fractional-order Razumikhin theorem, algebraic criteria was obtained for implementing MLPS. The algebraic inequality criterion obtained in this article improves and extends the previously published results on MLPS, making it easy to prove and greatly reducing the computational complexity. Finally, different Caputo derivatives of different orders were given, and four numerical examples were provided to fully verify the accuracy of the modified criterion.
[1] | E. Viera-Martin, J. F. Gomez-Aguilar, J. E. Solis-Perez, J. A. Hernandez-Perez, R. F. Escobar-Jimenez, Artificial neural networks: a practical review of applications involving fractional calculus, Eur. Phys. J. Spec. Top., 231 (2022), 2059–2095. https://doi.org/10.1140/epjs/s11734-022-00455-3 doi: 10.1140/epjs/s11734-022-00455-3 |
[2] | J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027 |
[3] | S. P. Wen, Z. G. Zeng, T. W. Huang, Q. G. Meng, W. Yao, Lag synchronization of switched neural networks via neural activation function and applications in image encryption, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1493–1502. https://doi.org/10.1109/TNNLS.2014.2387355 doi: 10.1109/TNNLS.2014.2387355 |
[4] | N. Ghosh, A. Garg, B. K. Panigrahi, J. Kim, An evolving quantum fuzzy neural network for online state-of-health estimation of Li-ion cell, Appl. Soft Comput., 143 (2023), 110263. https://doi.org/10.1016/j.asoc.2023.110263 doi: 10.1016/j.asoc.2023.110263 |
[5] | Y. Zhang, X. P. Wang, E. G. Friedman, Memristor-based circuit design for multilayer neural networks, IEEE Trans. Circuits Syst. I Regul. Pap., 65 (2018), 677–686. https://doi.org/10.1109/TCSI.2017.2729787 doi: 10.1109/TCSI.2017.2729787 |
[6] | C. J. Wang, Z. L. Xu, An intelligent fault diagnosis model based on deep neural network for few-shot fault diagnosis, Neurocomputing, 456 (2021), 550–562. https://doi.org/10.1016/j.neucom.2020.11.070 doi: 10.1016/j.neucom.2020.11.070 |
[7] | G. R. Murthy, Toward optimal synthesis of discrete-time Hopfield neural network, IEEE Trans. Neur. Netw. Learn. Syst., 34 (2023), 9549–9554. https://doi.org/10.1109/TNNLS.2022.3156107 doi: 10.1109/TNNLS.2022.3156107 |
[8] | H. Zhang, Z. G. Zeng, Synchronization of recurrent neural networks with unbounded delays and time-varying coefficients via generalized differential inequalities, Neural Netw., 143 (2021), 161–170. https://doi.org/10.1016/j.neunet.2021.05.022 doi: 10.1016/j.neunet.2021.05.022 |
[9] | S. L. Chen, H. L. Li, Y. G. Kao, L. Zhang, C. Hu, Finite-time stabilization of fractional-order fuzzy quaternion-valued BAM neural networks via direct quaternion approach, J. Franklin Inst., 358 (2021), 7650–7673. https://doi.org/10.1016/j.jfranklin.2021.08.008 doi: 10.1016/j.jfranklin.2021.08.008 |
[10] | Z. J. Zhang, T. T. Yu, X. Zhang, Algebra criteria for global exponential stability of multiple time-varying delay Cohen-Grossberg neural networks, Appl. Math. Comput., 435 (2022), 127461. https://doi.org/10.1016/j.amc.2022.127461 doi: 10.1016/j.amc.2022.127461 |
[11] | H. Zhang, Y. H. Cheng, W. W. Zhang, H. M. Zhang, Time-dependent and Caputo derivative order-dependent quasi-uniform synchronization on fuzzy neural networks with proportional and distributed delays, Math. Comput. Simul., 203 (2023), 846–857. https://doi.org/10.1016/j.matcom.2022.07.019 doi: 10.1016/j.matcom.2022.07.019 |
[12] | F. Zhao, J. G. Jian, B. X. Wang, Finite-time synchronization of fractional-order delayed memristive fuzzy neural networks, Fuzzy Sets Syst., 467 (2023), 108578. https://doi.org/10.1016/j.fss.2023.108578 doi: 10.1016/j.fss.2023.108578 |
[13] | F. F. Du, J. G. Lu, Adaptive finite-time synchronization of fractional-order delayed fuzzy cellular neural networks, Fuzzy Sets Syst., 466 (2023), 108480. https://doi.org/10.1016/j.fss.2023.02.001 doi: 10.1016/j.fss.2023.02.001 |
[14] | H. L. Li, J. D. Cao, C. Hu, L. Zhang, H. J. Jiang, Adaptive control-based synchronization of discrete-time fractional-order fuzzy neural networks with time-varying delays, Neural Netw., 168 (2023), 59–73. https://doi.org/10.1016/j.neunet.2023.09.019 doi: 10.1016/j.neunet.2023.09.019 |
[15] | J. T. Fei, Z. Wang, Q. Pan, Self-constructing fuzzy neural fractional-order sliding mode control of active power filter, IEEE Trans. Neural Netw. Learn. Syst., 34 (2023), 10600–10611. https://doi.org/10.1109/TNNLS.2022.3169518 doi: 10.1109/TNNLS.2022.3169518 |
[16] | T. Nitta, Orthogonality of decision boundaries in complex-valued neural networks, Neural Comput., 16 (2004), 73–97. https://doi.org/10.1162/08997660460734001 doi: 10.1162/08997660460734001 |
[17] | I. Cha, S. A. Kassam, Channel equalization using adaptive complex radial basis function networks, IEEE J. Sel. Areas Commun., 13 (1995), 122–131. https://doi.org/10.1109/49.363139 doi: 10.1109/49.363139 |
[18] | H. L. Li, C. Hu, J. D. Cao, H. J. Jiang, A. Alsaedi, Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays, Neural Netw., 118 (2019), 102–109. https://doi.org/10.1016/j.neunet.2019.06.008 doi: 10.1016/j.neunet.2019.06.008 |
[19] | X. L. Zhang, H. L. Li, Y. G. Yu, L. Zhang, H. J. Jiang, Quasi-projective and complete synchronization of discrete-time fractional-order delayed neural networks, Neural Netw., 164 (2023), 497–507. https://doi.org/10.1016/j.neunet.2023.05.005 doi: 10.1016/j.neunet.2023.05.005 |
[20] | S. Yang, H. J. Jiang, C. Hu, J. Yu, Synchronization for fractional-order reaction-diffusion competitive neural networks with leakage and discrete delays, Neurocomputing, 436 (2021), 47–57. https://doi.org/10.1016/j.neucom.2021.01.009 doi: 10.1016/j.neucom.2021.01.009 |
[21] | Z. Y. Yang, J. Zhang, J. H. Hu, J. Mei, New results on finite-time stability for fractional-order neural networks with proportional delay, Neurocomputing, 442 (2021), 327–336. https://doi.org/10.1016/j.neucom.2021.02.082 doi: 10.1016/j.neucom.2021.02.082 |
[22] | C. Chen, L. X. Li, H. P. Peng, Y. X. Yang, Fixed-time synchronization of inertial memristor-based neural networks with discrete delay, Neural Netw., 109 (2019), 81–89. https://doi.org/10.1016/j.neunet.2018.10.011 doi: 10.1016/j.neunet.2018.10.011 |
[23] | M. Hui, N. Yao, H. H. C. Iu, R. Yao, L. Bai, Adaptive synchronization of fractional-order complex-valued neural networks with time-varying delays, IEEE Access, 10 (2022), 45677–45688. https://doi.org/10.1109/ACCESS.2022.3170091 doi: 10.1109/ACCESS.2022.3170091 |
[24] | G. L. Chen, D. S. Li, L. Shi, O. van Gaans, S. V. Lunel, Stability results for stochastic delayed recurrent neural networks with discrete and distributed delays, J. Differ. Equ., 264 (2018), 3864–3898. https://doi.org/10.1016/j.jde.2017.11.032 doi: 10.1016/j.jde.2017.11.032 |
[25] | L. Z. Si, M. Xiao, G. P. Jiang, Z. S. Cheng, Q. K. Song, J. D. Cao, Dynamics of fractional-order neural networks with discrete and distributed delays, IEEE Access, 8 (2019), 46071–46080. https://doi.org/10.1109/ACCESS.2019.2946790 doi: 10.1109/ACCESS.2019.2946790 |
[26] | Z. Y. Yang, J. Zhang, J. H. Hu, J. Mei, Some new Gronwall-type integral inequalities and their applications to finite-time stability of fractional-order neural networks with hybrid delays, Neural Process. Lett., 55 (2023), 11233–11258. https://doi.org/10.1007/s11063-023-11373-3 doi: 10.1007/s11063-023-11373-3 |
[27] | W. Q. Gong, J. L. Liang, C. J. Zhang, Multistability of complex-valued neural networks with distributed delays, Neural Comput. Appl., 28 (2017), 1–14. https://doi.org/10.1007/s00521-016-2305-9 doi: 10.1007/s00521-016-2305-9 |
[28] | Y. J. Gu, Y. G. Yu, H. Wang, Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty, J. Franklin Inst., 353 (2016), 3657–3684. https://doi.org/10.1016/j.jfranklin.2016.06.029 doi: 10.1016/j.jfranklin.2016.06.029 |
[29] | Y. L. Huang, S. H. Qiu, S. Y. Ren, Z. W. Zheng, Fixed-time synchronization of coupled Cohen-Grossberg neural networks with and without parameter uncertainties, Neurocomputing, 315 (2018), 157–168. https://doi.org/10.1016/j.neucom.2018.07.013 doi: 10.1016/j.neucom.2018.07.013 |
[30] | Z. Chen, Complete synchronization for impulsive Cohen-Grossberg neural networks with delay under noise perturbation, Chaos Solitons Fract., 42 (2009), 1664–1669. https://doi.org/10.1016/j.chaos.2009.03.063 doi: 10.1016/j.chaos.2009.03.063 |
[31] | S. C. Jia, C. Hu, J. Yu, H. J. Jiang, Asymptotical and adaptive synchronization of Cohen-Grossberg neural networks with heterogeneous proportional delays, Neurocomputing, 275 (2018), 1449–1455. https://doi.org/10.1016/j.neucom.2017.09.076 doi: 10.1016/j.neucom.2017.09.076 |
[32] | L. Wang, H. L. Li, L. Zhang, C. Hu, H. J. Jiang, Quasi-synchronization of fractional-order complex-value neural networks with discontinuous activations, Neurocomputing, 560 (2023), 126856. https://doi.org/10.1016/j.neucom.2023.126856 doi: 10.1016/j.neucom.2023.126856 |
[33] | X. Wang, J. D. Cao, B. Yang, F. B. Chen, Fast fixed-time synchronization control analysis for a class of coupled delayed Cohen-Grossberg neural networks, J. Franklin Inst., 359 (2022), 1612–1639. https://doi.org/10.1016/j.jfranklin.2022.01.026 doi: 10.1016/j.jfranklin.2022.01.026 |
[34] | P. Liu, M. X. Kong, Z. G. Zeng, Projective synchronization analysis of fractional-order neural networks with mixed time delays, IEEE Trans. Cybernet., 52 (2022), 6798–6808. https://doi.org/10.1109/TCYB.2020.3027755 doi: 10.1109/TCYB.2020.3027755 |
[35] | I. Stamova, Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays, Nonlinear Dyn., 77 (2014), 1251–1260. https://doi.org/10.1007/s11071-014-1375-4 doi: 10.1007/s11071-014-1375-4 |
[36] | H. Zhang, Y. H. Cheng, H. M. Zhang, W. W. Zhang, J. D. Cao, Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects, Math. Comput. Simul., 197 (2022), 341–357. https://doi.org/10.1016/j.matcom.2022.02.022 doi: 10.1016/j.matcom.2022.02.022 |
[37] | J. Y. Chen, C. D. Li, X. J. Yang, Global Mittag-Leffler projective synchronization of nonidentical fractional-order neural networks with delay via sliding mode control, Neurocomputing, 313 (2018), 324–332. https://doi.org/10.1016/j.neucom.2018.06.029 doi: 10.1016/j.neucom.2018.06.029 |
[38] | I. Podlubny, Fractional differential equations, Academic Press, 1998. |
[39] | T. Yang, L. B. Yang, C. W. Wu, L. O. Chua, Fuzzy cellular neural networks: theory, In: 1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96), 1996,181–186. https://doi.org/10.1109/CNNA.1996.566545 |
[40] | S. Yang, J. Yu, C. Hu, H. J. Jiang, Quasi-projection synchronization of fractional-order complex-valued recurrent neural networks, Neural Netw., 104 (2018), 104–113. https://doi.org/10.1016/j.neunet.2018.04.007 doi: 10.1016/j.neunet.2018.04.007 |
[41] | Z. Y. Wu, G. R. Chen, X. C. Fu, Synchronization of a network coupled with complex-variable chaotic systems, Chaos, 22 (2012), 023127. https://doi.org/10.1063/1.4717525 doi: 10.1063/1.4717525 |
[42] | J. Yu, C. Hu, H. J. Jiang, Corrogendum to "projective synchronization for fractional neural networks", Neural Netw., 67 (2015), 152–154. https://doi.org/10.1016/j.neunet.2015.02.007 doi: 10.1016/j.neunet.2015.02.007 |
[43] | S. Liu, R. Yang, X. F. Zhou, W. Jiang, X. Y. Li, X. W. Zhao, Stability analysis of fractional delayed equations and its applications on consensus of multi-agent systems, Commun. Nonlinear Sci. Numer. Simul., 73 (2019), 351–362. https://doi.org/10.1016/j.cnsns.2019.02.019 doi: 10.1016/j.cnsns.2019.02.019 |