In order to maximize the acquisition of photovoltaic energy when applying photovoltaic systems, the efficiency of photovoltaic system depends on the accuracy of unknown parameters in photovoltaic models. Therefore, it becomes a challenge to extract the unknown parameters in the photovoltaic model. It is well known that the equations of photovoltaic models are nonlinear, and it is very difficult for traditional methods to accurately extract its unknown parameters such as analytical extraction method and key points method. Therefore, with the aim of extracting the parameters of the photovoltaic model more efficiently and accurately, an enhanced hybrid JAYA and Rao-1 algorithm, called EHRJAYA, is proposed in this paper. The evolution strategies of the two algorithms are initially mixed to improve the population diversity and an improved comprehensive learning strategy is proposed. Individuals with different fitness are given different selection probabilities, which are used to select different update formulas to avoid insufficient using of information from the best individual and overusing of information from the worst individual. Therefore, the information of different types of individuals is utilized to the greatest extent. In the improved update strategy, there are two different adaptive coefficient strategies to change the priority of information. Finally, the combination of the linear population reduction strategy and the dynamic lens opposition-based learning strategy, the convergence speed of the algorithm and ability to escape from local optimum can be improved. The results of various experiments prove that the proposed EHRJAYA has superior performance and rank in the leading position among the famous algorithms.
Citation: Yujun Zhang, Yufei Wang, Shuijia Li, Fengjuan Yao, Liuwei Tao, Yuxin Yan, Juan Zhao, Zhengming Gao. An enhanced adaptive comprehensive learning hybrid algorithm of Rao-1 and JAYA algorithm for parameter extraction of photovoltaic models[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 5610-5637. doi: 10.3934/mbe.2022263
In order to maximize the acquisition of photovoltaic energy when applying photovoltaic systems, the efficiency of photovoltaic system depends on the accuracy of unknown parameters in photovoltaic models. Therefore, it becomes a challenge to extract the unknown parameters in the photovoltaic model. It is well known that the equations of photovoltaic models are nonlinear, and it is very difficult for traditional methods to accurately extract its unknown parameters such as analytical extraction method and key points method. Therefore, with the aim of extracting the parameters of the photovoltaic model more efficiently and accurately, an enhanced hybrid JAYA and Rao-1 algorithm, called EHRJAYA, is proposed in this paper. The evolution strategies of the two algorithms are initially mixed to improve the population diversity and an improved comprehensive learning strategy is proposed. Individuals with different fitness are given different selection probabilities, which are used to select different update formulas to avoid insufficient using of information from the best individual and overusing of information from the worst individual. Therefore, the information of different types of individuals is utilized to the greatest extent. In the improved update strategy, there are two different adaptive coefficient strategies to change the priority of information. Finally, the combination of the linear population reduction strategy and the dynamic lens opposition-based learning strategy, the convergence speed of the algorithm and ability to escape from local optimum can be improved. The results of various experiments prove that the proposed EHRJAYA has superior performance and rank in the leading position among the famous algorithms.
[1] | S. Li, W. Gong, X. Yan, C. Hu, D. Bai, L. Wang, Parameter estimation of photovoltaic models with memetic adaptive differential evolution, Sol. Energy, 190 (2019), 465–474. https://doi.org/10.1016/j.solener.2019.08.022 doi: 10.1016/j.solener.2019.08.022 |
[2] | Z. Liao, Q. Gu, S. Li, Z. Hu, B. Ning, An improved differential evolution to extract photovoltaic cell parameters, IEEE Access, 8 (2020), 177838–177850. https://doi.org/10.1109/ACCESS.2020.3024975 doi: 10.1109/ACCESS.2020.3024975 |
[3] | S. Li, Q. Gu, W. Gong, B. Ning, An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models, Energy Convers. Manage., 205 (2020), 112443. https://doi.org/10.1016/j.enconman.2019.112443 doi: 10.1016/j.enconman.2019.112443 |
[4] | Z. Liao, Z. Chen, S. Li, Parameters Extraction of Photovoltaic Models Using Triple-Phase Teaching-Learning-Based Optimization, IEEE Access, 8 (2020), 69937-69952. https://doi.org/10.1109/ACCESS.2020.2984728 doi: 10.1109/ACCESS.2020.2984728 |
[5] | H. M. Ridha, H. Hizam, C. Gomes, A. A. Heidari, H. Chen, M. Ahmadipour, et al., Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method, Energy, 224 (2021), 120136. https://doi.org/10.1016/j.energy.2021.120136 doi: 10.1016/j.energy.2021.120136 |
[6] | S. Li, W. Gong, Q. Gu, A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models, Renewable Sustainable Energy Rev., 141 (2021), 110828. https://doi.org/10.1016/j.rser.2021.110828 doi: 10.1016/j.rser.2021.110828 |
[7] | D. Chan, J. Phang, Analytical methods for the extraction of solar-cell single- and double-diode model parameters from Ⅰ-Ⅴ characteristics, IEEE Trans. Electron Devices, 34 (1987), 286-293. https://doi.org/10.1109/T-ED.1987.22920 doi: 10.1109/T-ED.1987.22920 |
[8] | H. Saleem, S. Karmalkar, An Analytical Method to Extract the Physical Parameters of a Solar Cell From Four Points on the Illuminated, IEEE Electron Device Lett.s, 30 (2009), 349–352. https://doi.org/10.1109/LED.2009.2013882 doi: 10.1109/LED.2009.2013882 |
[9] | T. Easwarakhanthan, J. Bottin, I. Bouhouch, C. Boutrit, Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers, Int. J. Sol. Energy, 4 (1986), 1–12. https://doi.org/10.1080/01425918608909835 doi: 10.1080/01425918608909835 |
[10] | A. Ortiz-Conde, F. J. García Sánchez, J. Muci, New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated Ⅰ–Ⅴ characteristics, Sol. Energy Mate. Sol. Cells, 90 (2006), 352–361. https://doi.org/10.1016/j.solmat.2005.04.023 doi: 10.1016/j.solmat.2005.04.023 |
[11] | R. Messaoud, Extraction of uncertain parameters of single-diode model of a photovoltaic panel using simulated annealing optimization, Energy Rep., 6 (2020), 350–357. https://doi.org/10.1016/j.egyr.2020.01.016 doi: 10.1016/j.egyr.2020.01.016 |
[12] | M. Abd Elaziz, D. Oliva, Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm, Energy Convers. Manage., 171 (2018), 1843–1859. https://doi.org/10.1016/j.enconman.2018.05.062. doi: 10.1016/j.enconman.2018.05.062 |
[13] | J. Liang, K. Qiao, M. Yuan, K. Yu, B. Qu, S. Ge, et al., Evolutionary multi-task optimization for parameters extraction of photovoltaic models, Energy Convers. Manage., 207 (2020), 112509. https://doi.org/10.1016/j.enconman.2020.112509 doi: 10.1016/j.enconman.2020.112509 |
[14] | A. Askarzadeh, A. Rezazadeh, Parameter identification for solar cell models using harmony search-based algorithms, Sol. Energy, 86 (2012), 3241–3249. https://doi.org/10.1016/j.solener.2012.08.018 doi: 10.1016/j.solener.2012.08.018 |
[15] | T. Kang, J. Yao, M. Jin, S. Yang, T. Duong, A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models, Energies, 11 (2018), 1–31. https://doi.org/10.3390/en11051060 doi: 10.3390/en11051060 |
[16] | M. R. AlRashidi, M. F. AlHajri, K. M. El-Naggar, A. K. Al-Othman, A new estimation approach for determining the Ⅰ–Ⅴ characteristics of solar cells, Sol. Energy, 85 (2011), 1543–1550. https://doi.org/10.1016/j.solener.2011.04.013 doi: 10.1016/j.solener.2011.04.013 |
[17] | A. Askarzadeh, A. Rezazadeh, Artificial bee swarm optimization algorithm for parameters identification of solar cell models, Appl. Energy, 102 (2013), 943–949. https://doi.org/10.1016/j.apenergy.2012.09.052 doi: 10.1016/j.apenergy.2012.09.052 |
[18] | S. Li, W. Gong, L. Wang, X. Yan, C. Hu, A hybrid adaptive teaching–learning-based optimization and differential evolution for parameter identification of photovoltaic models, Energy Convers. Manage., 225 (2020), 113474. https://doi.org/10.1016/j.enconman.2020.113474 doi: 10.1016/j.enconman.2020.113474 |
[19] | G. Kanimozhi, K. Harish, Modeling of solar cell under different conditions by Ant Lion Optimizer with LambertW function, Appl. Soft Comput., 71 (2018), 141–151. https://doi.org/10.1016/j.asoc.2018.06.025. doi: 10.1016/j.asoc.2018.06.025 |
[20] | H. M. Ridha, H. Hizam, S. Mirjalili, M. L. Othman, M. E. Ya'acob, L. Abualigah, A novel theoretical and practical methodology for extracting the parameters of the single and double diode photovoltaic models, IEEE Access, 10 (2022), 11110–11137. https://doi.org/10.1109/ACCESS.2022.3142779 doi: 10.1109/ACCESS.2022.3142779 |
[21] | W. Zhou, P. Wang, A. A. Heidari, X. Zhao, H. Turabieh, M. Mafarja, et al., Metaphor-free dynamic spherical evolution for parameter estimation of photovoltaic modules, Energy Rep., 7 (2021), 5175–5202. https://doi.org/10.1016/j.egyr.2021.07.041 doi: 10.1016/j.egyr.2021.07.041 |
[22] | A. Farah, A. Belazi, F. Benabdallah, A. Almalaq, M. Chtourou, M.A. Abido, Parameter extraction of photovoltaic models using a comprehensive learning Rao-1 algorithm, Energy Convers. Manage., 252 (2022), 115057. https://doi.org/10.1016/j.enconman.2021.115057 doi: 10.1016/j.enconman.2021.115057 |
[23] | J. Luo, J. Zhou, X. Jiang, A Modification of the Imperialist Competitive Algorithm With Hybrid Methods for Constrained Optimization Problems, IEEE Access, 9 (2021), 161745–161760. https://doi.org/10.1109/ACCESS.2021.3133579 doi: 10.1109/ACCESS.2021.3133579 |
[24] | M. Sattar, A. Al Sumaiti, H. Ali, A. Diab, Marine predators algorithm for parameters estimation of photovoltaic modules considering various weather conditions, Neural Comput. Appl., 33 (2021), 11799–11819. https://doi.org/10.1007/s00521-021-05822-0 doi: 10.1007/s00521-021-05822-0 |
[25] | S. Jiao, G. Chong, C. Huang, H. Hu, M. Wang, A. A. Heidari, et al., Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models, Energy, 203 (2020), 117804. https://doi.org/10.1016/j.energy.2020.117804 doi: 10.1016/j.energy.2020.117804 |
[26] | H. Shaban, E. H. Houssein, M. Pérez-Cisneros, D. Oliva, A. Y. Hassan, A. Ismaeel, et al., Identification of parameters in photovoltaic models through a runge kutta optimizer, Mathematics, 9 (2021). https://doi.org/10.3390/math9182313 doi: 10.3390/math9182313 |
[27] | A. Ramadan, S. Kamel, M. H. Hassan, E. M. Ahmed, H. M. Hasanien, Accurate photovoltaic models based on an adaptive opposition artificial hummingbird algorithm, Electronics, 11 (2022). https://doi.org/10.3390/electronics11030318 doi: 10.3390/electronics11030318 |
[28] | A. Al-Shamma'a, H. Omotoso, F. Alturki, H. Farh, A. Alkuhayli, K. Alsharabi, et al., Parameter estimation of photovoltaic cell/modules using bonobo optimizer, Energies, 15 (2022), 140. https://doi.org/10.3390/en15010140 doi: 10.3390/en15010140 |
[29] | Y. Chen, D. Pi, B. Wang, J. Chen, Y. Xu, Bi-subgroup optimization algorithm for parameter estimation of a PEMFC model, Expert Syst. Appl., 196 (2022), 116646. https://doi.org/10.1016/j.eswa.2022.116646 doi: 10.1016/j.eswa.2022.116646 |
[30] | H. Rezk, S. Ferahtia, A. Djeroui, A. Chouder, A. Houari, M. Machmoum, et al., Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer, Energy, 239 (2022), 122096. https://doi.org/10.1016/j.energy.2021.122096 doi: 10.1016/j.energy.2021.122096 |
[31] | H. Rezk, T. S. Babu, M. Al-Dhaifallah, H.A. Ziedan, A robust parameter estimation approach based on stochastic fractal search optimization algorithm applied to solar PV parameters, Energy Rep., 7 (2021), 620–640. doi: DOI:10.1016/j.egyr.2021.01.024 |
[32] | R. V. Rao, Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, Int. J. Ind. Eng. Comput., 7 (2016), 19–34. https://doi.org/10.5267/j.ijiec.2015.8.004 doi: 10.5267/j.ijiec.2015.8.004 |
[33] | R. V. Rao, Rao algorithms: three metaphor-less simple algorithms for solving optimization problems, Int. J. Ind. Eng. Comput., 11 (2020), 107–130. https://doi.org/10.5267/j.ijiec.2019.6.002 doi: 10.5267/j.ijiec.2019.6.002 |
[34] | Y. Zhang, Z. Jin, Comprehensive learning Jaya algorithm for engineering design optimization problems, J. Intell. Manuf., https://doi.org/10.1007/s10845-020-01723-6 |
[35] | Y. Zhang, A. Chi, S. Mirjalili, Enhanced Jaya algorithm: A simple but efficient optimization method for constrained engineering design problems, Knowl. Based Syst., 233 (2021), 107555. https://doi.org/10.1016/j.knosys.2021.107555 doi: 10.1016/j.knosys.2021.107555 |
[36] | M. Afifi, H. Rezk, M. Ibrahim, M. El-Nemr, Multi-objective optimization of switched reluctance machine design using Jaya algorithm (MO-Jaya), Mathematics, 9 (2021), 1107. https://doi.org/10.3390/math9101107 doi: 10.3390/math9101107 |
[37] | S. Basak, B. Bhattacharyya, B. Dey, Combined economic emission dispatch on dynamic systems using hybrid CSA-JAYA Algorithm, Int. J. Syst. Assur. Eng. Manage., (2022). https://doi.org/10.1007/s13198-022-01635-z doi: 10.1007/s13198-022-01635-z |
[38] | D. Saadaoui, M. Elyaqouti, K. Assalaou, D. B. hmamou, S. Lidaighbi, Multiple learning JAYA algorithm for parameters identifying of photovoltaic models, Mater. Today Proc., (2021). https://doi.org/10.1016/j.matpr.2021.11.106 doi: 10.1016/j.matpr.2021.11.106 |
[39] | L. Wang, Z. Wang, H. Liang, C. Huang, Parameter estimation of photovoltaic cell model with Rao-1 algorithm, Optik, 210 (2020), 163846. https://doi.org/10.1016/j.ijleo.2019.163846 doi: 10.1016/j.ijleo.2019.163846 |
[40] | K. Junhua, L. Shuijia, G. Wenyin, Photovoltaic models parameter estimation via an enhanced Rao-1 algorithm, Math. Biosci. Eng., 19 (2022), 1128–1153. https://doi.org/10.3934/mbe.2022052 doi: 10.3934/mbe.2022052 |
[41] | L. Bhukya, A. Annamraju, S. Nandiraju, A novel maximum power point tracking technique based on Rao-1 algorithm for solar PV system under partial shading conditions, Int. Trans. Electr. Energy Syst., 31 (2021), e13028. https://doi.org/10.1002/2050-7038.13028 doi: 10.1002/2050-7038.13028 |
[42] | X. Yu, X. Wu, W. Luo, Parameter Identification of Photovoltaic Models by Hybrid Adaptive JAYA Algorithm, Mathematics, 10 (2022), 183. https://doi.org/10.3390/math10020183 doi: 10.3390/math10020183 |
[43] | X. Yang, W. Gong, Opposition-based JAYA with population reduction for parameter estimation of photovoltaic solar cells and modules, Appl. Soft Comput., 104 (2021), 107218. https://doi.org/10.1016/j.asoc.2021.107218 doi: 10.1016/j.asoc.2021.107218 |
[44] | E. H. Houssein, E. Çelik, M. A. Mahdy, R. M. Ghoniem, Self-adaptive Equilibrium Optimizer for solving global, combinatorial, engineering, and Multi-Objective problems, Expert Syst. Appl., 195 (2022), 116552. https://doi.org/10.1016/j.eswa.2022.116552 doi: 10.1016/j.eswa.2022.116552 |
[45] | Y.Xiao, X. Sun, Y. Guo, S. Li, Y. Zhang, Y. Wang, An improved gorilla troops optimizer based on Lens opposition-based learning and adaptive β-Hill climbing for global optimization, Comput. Model. Eng. Sci. 131 (2022). https://doi.org/10.32604/cmes.2022.019198 doi: 10.32604/cmes.2022.019198 |
[46] | A. W. Mohamed, A. K. Mohamed, Adaptive guided differential evolution algorithm with novel mutation for numerical optimization, Int. J. Mach. Learn. Cybern., 10 (2019), 253–277. https://doi.org/10.1007/s13042-017-0711-7 doi: 10.1007/s13042-017-0711-7 |
[47] | K. Yu, J. J. Liang, B. Y. Qu, Z. Cheng, H. Wang, Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models, Appl. Energy, 226 (2018), 408–422. https://doi.org/10.1016/j.apenergy.2018.06.010 doi: 10.1016/j.apenergy.2018.06.010 |
[48] | X. Xia, L. Gui, F. Yu, H. Wu, B. Wei, Y.L. Zhang, et al., Triple Archives Particle Swarm Optimization, IEEE Trans. Cybern., 50 (2020), 4862–4875. https://doi.org/10.1109/TCYB.2019.2943928 doi: 10.1109/TCYB.2019.2943928 |
[49] | X. Chen, K. Yu, W. Du, W. Zhao, G. Liu, Parameters identification of solar cell models using generalized oppositional teaching learning based optimization, Energy, 99 (2016), 170–180. https://doi.org/10.1016/j.energy.2016.01.052 doi: 10.1016/j.energy.2016.01.052 |
[50] | K. Yu, J. J. Liang, B. Y. Qu, X. Chen, H. Wang, Parameters identification of photovoltaic models using an improved JAYA optimization algorithm, Energy Convers.Manage., 150 (2017), 742–753. https://doi.org/10.1016/j.enconman.2017.08.063. doi: 10.1016/j.enconman.2017.08.063 |
[51] | S. Li, W. Gong, X. Yan, C. Hu, D. Bai, L. Wang, et al., Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization, Energy Convers.Manage., 186 (2019), 293–305. https://doi.org/10.1016/j.enconman.2019.02.048 doi: 10.1016/j.enconman.2019.02.048 |
[52] | K. Yu, B. Qu, C. Yue, S. Ge, X. Chen, J. Liang, A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module, Appl. Energy, 237 (2019), 241–257. https://doi.org/10.1016/j.apenergy.2019.01.008 doi: 10.1016/j.apenergy.2019.01.008 |
[53] | X. Chen, B. Xu, C. Mei, Y. Ding, K. Li, Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation, Appl. Energy, 212 (2018), 1578–1588. https://doi.org/10.1016/j.apenergy.2017.12.115 doi: 10.1016/j.apenergy.2017.12.115 |
[54] | D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67–82. https://doi.org/10.1109/4235.585893 doi: 10.1109/4235.585893 |
[55] | K. Yu, X. Chen, X. Wang, Z. Wang, Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization, Energy Convers. Manage. 145 (2017), 233–246. https://doi.org/10.1016/j.enconman.2017.04.054 doi: 10.1016/j.enconman.2017.04.054 |
[56] | D. Oliva, M. Abd El Aziz, A. Ella Hassanien, Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm, Appl. Energy, 200 (2017), 141–154. https://doi.org/10.1016/j.apenergy.2017.05.029 doi: 10.1016/j.apenergy.2017.05.029 |
[57] | G. Xiong, J. Zhang, X. Yuan, D. Shi, Y. He, G. Yao, Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm, Sol. Energy, 176 (2018), 742–761. https://doi.org/10.1016/j.solener.2018.10.050 doi: 10.1016/j.solener.2018.10.050 |
[58] | X. Chen, K. Yu, Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters, Sol. Energy, 180 (2019), 192–206. https://doi.org/10.1016/j.solener.2019.01.025. doi: 10.1016/j.solener.2019.01.025 |
[59] | S. M. Ebrahimi, E. Salahshour, M. Malekzadeh, G. Francisco, Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm, Energy, 179 (2019), 358–372. https://doi.org/10.1016/j.energy.2019.04.218 doi: 10.1016/j.energy.2019.04.218 |
[60] | N. Pourmousa, S. M. Ebrahimi, M. Malekzadeh, M. Alizadeh, Parameter estimation of photovoltaic cells using improved Lozi map based chaotic optimization Algorithm, Sol. Energy, 180 (2019), 180–191. https://doi.org/10.1016/j.solener.2019.01.026 doi: 10.1016/j.solener.2019.01.026 |
[61] | Y. Zhang, C. Huang, Z. Jin, Backtracking search algorithm with reusing differential vectors for parameter identification of photovoltaic models, Energy Convers. Manage., 223 (2020), 113266. https://doi.org/10.1016/j.enconman.2020.113266 doi: 10.1016/j.enconman.2020.113266 |
[62] | J. Liang, S. Ge, B. Qu, K. Yu, F. Liu, H. Yang, et al., Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models, Energy Convers. Manage., 203 (2020), 112138. https://doi.org/10.1016/j.enconman.2019.112138 doi: 10.1016/j.enconman.2019.112138 |
[63] | X. Lin, Y. Wu, Parameters identification of photovoltaic models using niche-based particle swarm optimization in parallel computing architecture, Energy, 196 (2020), 117054. doi: DOI:10.1016/j.energy.2020.117054 |
[64] | Y. Zhang, M. Ma, Z. Jin, Backtracking search algorithm with competitive learning for identification of unknown parameters of photovoltaic systems, Expert Syst. Appl., 160 (2020), 113750. https://doi.org/10.1016/j.eswa.2020.113750 doi: 10.1016/j.eswa.2020.113750 |
[65] | W. Long, T. Wu, M. Xu, M. Tang, S. Cai, Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm, Energy, 229 (2021), 120750. https://doi.org/10.1016/j.energy.2021.120750 doi: 10.1016/j.energy.2021.120750 |
[66] | Y. Liu, A. A. Heidari, X. Ye, C. Chi, X. Zhao, C. Ma, et al., Evolutionary shuffled frog leaping with memory pool for parameter optimization, Energy Rep., 7 (2021), 584–606. https://doi.org/10.1016/j.egyr.2021.01.001 doi: 10.1016/j.egyr.2021.01.001 |
[67] | Z. Hu, W. Gong, S. Li, Reinforcement learning-based differential evolution for parameters extraction of photovoltaic models, Energy Rep., 7 (2021), 916–928. https://doi.org/10.1016/j.egyr.2021.01.096 doi: 10.1016/j.egyr.2021.01.096 |
[68] | Y. Zhang, M. Ma, Z. Jin, Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models, Energy, 211 (2020), 118644. https://doi.org/10.1016/j.energy.2020.118644 doi: 10.1016/j.energy.2020.118644 |
[69] | M. Abdel-Basset, R. Mohamed, S. Mirjalili, R. K. Chakrabortty, M. J. Ryan, Solar photovoltaic parameter estimation using an improved equilibrium optimizer, Sol. Energy, 209 (2020), 694–708. https://doi.org/10.1016/j.solener.2020.09.032 doi: 10.1016/j.solener.2020.09.032 |
[70] | M. Abdel-Basset, R. Mohamed, R. K. Chakrabortty, K. Sallam, M. J. Ryan, An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations, Energy Convers. Manage., 227 (2021), 113614. https://doi.org/10.1016/j.enconman.2020.113614 doi: 10.1016/j.enconman.2020.113614 |
[71] | X. Jian, Y. Zhu, Parameters identification of photovoltaic models using modified Rao-1 optimization algorithm, Optik, 231 (2021), 166439. https://doi.org/10.1016/j.ijleo.2021.166439 doi: 10.1016/j.ijleo.2021.166439 |
[72] | A. M. Beigi, A. Maroosi, Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms, Sol. Energy, 171 (2018), 435–446. https://doi.org/10.1016/j.solener.2018.06.092 doi: 10.1016/j.solener.2018.06.092 |
[73] | L. Deotti, J. Pereira, I. d. Silva Júnior, Parameter extraction of photovoltaic models using an enhanced Lévy flight bat algorithm, Energy Convers. Manage., 221 (2020), 113114. https://doi.org/10.1016/j.enconman.2020.113114 doi: 10.1016/j.enconman.2020.113114 |