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Abstract: To study the Mittag-Leffler projective synchronization (MLPS) problem of fractional-order
fuzzy neural networks (FOFNNSs), in this work we introduced the FOFNNs model. On this basis, we
discussed the MLPS of uncertain fractional-order fuzzy complex valued neural networks (FOFCVNNs)
with distributed and time-varying delays. Utilizing Banach contraction mapping principle, we proved
the existence and uniqueness of the model solution. Moreover, employing the construction of a
new hybrid controller, an adaptive hybrid controller, and the fractional-order Razumikhin theorem,
algebraic criteria was obtained for implementing MLPS. The algebraic inequality criterion obtained in
this article improves and extends the previously published results on MLPS, making it easy to prove
and greatly reducing the computational complexity. Finally, different Caputo derivatives of different
orders were given, and four numerical examples were provided to fully verify the accuracy of the
modified criterion.
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1. Introduction

In the last few decades, more and more scholars have studied fractional-order neural
networks (FONNs) due to their powerful functions [1,2]. FONNs have been accurately applied to
image processing, biological systems and so on [3—6] because of their powerful computing power and
information storage capabilities. In the past, scholars have studied many types of neural network (NN)
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models. For example, bidirectional associative memory neural networks (BAMNNSs) [7], recurrent
NN [8], Hopfield NNs [9], Cohen-Grossberg NNs [10], and fuzzy neural networks (FNNs) [11]. With
the development of fuzzy mathematics, Yang et al. proposed fuzzy logic (fuzzy OR and fuzzy AND)
into cellular NNs and established FNNs. Moreover, when dealing with some practical problems, it
is inevitable to encounter approximation, uncertainty, and fuzziness. Fuzzy logic is considered to be
a promising tool to deal with these phenomena. Therefore, the dynamical behaviors of FNNs have
attracted extensive research and obtained abundant achievements [12—15].

The CVNNSs are extended from real-valued NNs (RVNNs). In CVNNSs, the relevant variables in
CVNNSs belong to the complex field. In addition, CVNNs can also address issues that can not be
addressed by RVNNs, such as machine learning [16] and filtering [17]. In recent years, the dynamic
behavior of complex valued neural networks has been a hot topic of research for scholars. In [16], Nitta
derived some results of an analysis on the decision boundaries of CVNNSs. In [17], the author studied
an extension of the RBFN for complex-valued signals. In [18], Li et al. obtained some synchronization
results of CVNNs with time delay. Overall, CVNNs outperform real-valued neural networks in terms
of performance, as they can directly process two-dimensional data.

Time delays are inescapable in neural systems due to the limited propagation velocity between
different neurons. Time delay has been extensively studied by previous researchers, such as general
time delay [19], leakage delays [20], proportional delays [21], discrete delays [22], time-varying
delays [23], and distributed delays [24]. In addition, the size and length of axonal connections between
neurons in NNs can cause time delays, so scholars have introduced distributed delays in NNs. For
example, Si et al. [25] considered a fractional NN with distributed and discrete time delays. It not only
embodies the heredity and memory characteristics of neural networks but also reflects the unevenness
of delay in the process of information transmission due to the addition of distributed time delays.
Therefore, more and more scholars have added distributed delays to the NNs and have made some
new discoveries [26,27]. On the other hand, due to the presence of external perturbations in the
model, the actual values of the parameters in the NNs cannot be acquired, which may lead to parameter
uncertainties. Parameter uncertainty has also affected the performance of NNs. Consequently, scholars
are also closely studying the NNs model of parameter uncertainty [28,29].

The synchronization control of dynamical systems has always been the main aspect of
dynamical behavior analysis, and the synchronization of NNs has become a research hotspot. In
recent years, scholars have studied some important synchronization behaviors, such as complete
synchronization (CS) [30], global asymptotic synchronization [31], quasi synchronization [32],
finite time synchronization [33], projective synchronization (PS) [34], and Mittag-Lefller
synchronization (MLS) [35]. In various synchronizations, PS is one of the most interesting, being
characterized by the fact that the drive-response systems can reach synchronization according to a
scaling factor. Meanwhile, the CS can be regarded as a PS with a scale factor of 1. Although PS
has its advantages, MLS also has its unique features. Unlike CS, MLS can achieve synchronization
at a faster speed. As a result, some scholars have combined the projective synchronization and ML
synchronization to study MLPS [36,37]. However, there are few papers on MLPS of FOFNNs. Based
on the above discussion, the innovative points of this article are as follows:

e According to the FNNs model, parameter uncertainty and distributed delays are added, and the
influence of time-varying delay, distributed delay, and uncertainty on the global MLPS of FOFCVNNs
is further considered in this paper.
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e The algebraic criterion for MLPS was obtained by applying the complex valued direct method.
Direct methods and algebraic inequalities greatly reduce computational complexity.

e The design of nonlinear hybrid controllers and adaptive hybrid controllers greatly reduces control
costs.

Notations: In this article, C refers to the set of complex numbers, where O = OR +i0" € C and
OR, 0" € R, i represents imaginary units, C" can describe a set of n-dimensional complex vectors, O_¢

refers to the conjugate of Oy. |0, = +/ OwO_w indicating the module of O,. For O = (0, 0,, ..., 0, €
chLlol= (X |0(,,|2)% denotes the norm of O.
y=1

2. Preliminaries
In this section, we provide the definitions, lemmas, assumptions, and model details required for
this article.
Definition 2.1. [38] The Caputo fractional derivative with 0 < Y < 1 of function O(t) is defined as
" O(s)
Tl-a)J, t-sr

1w DO =

Definition 2.2. [38] The one-parameter ML function is described as

NP
Ex(p) = 6; TGT+ 1)

Lemma 2.1. [39] Make Q,,0, € C(w,¢¥ = 1,2,...,n,), then the fuzzy operators in the system satisfy

| N\ £ Q) = N\ s £y (O < D sl (@) = £ (O,
y=1 y=1 y=1

n

1\ i@ = \/ v fu O < Y gl fi(Qu) = F( O
y=1 w=1

=1
Lemma 2.2. [40] If the function 9(t) € C is differentiable, then it has

DI @D9(0)) < O D) + (DFIDID).
Lemma 2.3. [41] Leta,a € C, then the following condition:
= = = 1=~
§16 + 686 S x&iér + );é‘“zé:z
holds for any positive constant y > 0.

Lemma 2.4. [42] If the function ¢(t) is nondecreasing and differentiable on [t,, o], the following
inequality holds:
¢ D (s(t) — ))* < 2(s(1) — i DI(s(1), 0 < a <1,

where constant J is arbitrary.
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Lemma 2.5. [43] Suppose that function h(t) is continuous and satisfies
¢ DIA(t) < —yh(1),
where 0 < a < 1, v € R, the below inequality can be obtained:
(1) < hli0) Eol—y(t = 10)"].

Next, a FOFCVNNS model with distributed and time-varying delays with uncertain coefficients is
considered as the driving system:

CDFO(D) = =, 0u(D) + > (i + Ay (O)f(Oy(t = TO) + /\ fo buy(0)f, (04 (1)d1
y=1 y=1

+\/ vy fo Cuu (D[, (0, (D)1 + 1,(2), 2.1)
y=1

where 0 < a < 1; O(t) = ((O,(v), ...,0,()"; O,,(t),w = 1,2, ...,n is the state vector; a,, € R denotes
the self-feedback coeflicient; m,, € C stands for a feedback template element; Am,, € C refers
to uncertain parameters; u,, € C and v,, € C are the elements of fuzzy feedback MIN and MAX
templates; \/ and /\ indicate that the fuzzy OR and fuzzy AND operations; 7(¢) indicates delay; 7,,(¢)
denotes external input; and fy () is the neuron activation function.

Correspondingly, we define the response system as follows:

WD Q1) = —a, 0, (1) + Z(mW + Ay (0) fu(Qy(t = 7(2))) + /\ﬂw j; by () fy(Qy(1))dt
y=1

y=1

+\/ v fo Cun(DFp(QuO)dt + 1, (D) + U0, (22)
y=1

where U,,(f) € C stands for controller. In the following formula, ,COD,“ is abbreviated as D”.
Defining the error as k,,(t) = Q,(t) — SO,(t), where S is the projective coefficient. Therefore,
we have

DPkey(1) = = @k (t) + D (g + Ay (0) fiky 7= 7(2))
y=1

D (g + Ay (D) fy (S Oyt = T(0)) = D S (Mg + Aoy (0) fy (Ot = 7(2))
- y=1
0

u=1
# Nt [ a0+ Nty [ b4 O
w=1 w=1 0
=5 Nttw [ b 000001+ \[ vy [ stk
y=1 0 y=1 0

Vo [ w0 =5\ vy [ e, 010uonr
y=1 w=1

+ (1 =51, + Uy, (2.3)
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where fyk, (1) = f,(Qu(1) — £,(S 04 (1)).
Assumption 2.1. VO, Q € C and VL, > 0, f,(-) satisfy

[f=(0) = fo(O)| < Lo|O = Q).

Assumption 2.2. The nonnegative functions b, (t) and c,,,(t) are continuous, and satisfy
+00
(i) f by (Dt = 1,
0

+00
(ii)f cwy(D)dt = 1.
0
Assumption 2.3. The parameter perturbations Am,,,(t) bounded, then it has
|Amww(t)| < MW{//a
where M., is all positive constants.

Assumption 2.4. Based on the assumption for fuzzy OR and AND operations, the following
inequalities hold:

(1) [/\ My f(; Dy (D(fy(Oy) — fw(Qw))df][/\ My fo Dy (D(fy(Oy) = f4(Oy))dt]
y=1 w=1

n

< D Syl P(fy(Oy) = Fl( QS (0y) = fu(Qy)),

y=1

(i) [\/ v fo s y(0y) = F(QuNAN\/ vy fo Cws O[Oy = fy(Qy))di]
y=1 w=1

< Z Myl (f(Op) = fy(Q)(fu(Oy) = fu(Qy)),

y=1
where 6, and n, are positive numbers.

Definition 2.3. The constant vector O* = (O5,...,0:)" € C" and satisfy

0= —(ZWOZ;/ + Z(mwxp + Amwxp(t))fl//(O:;,) + /\ﬂwzp L wap(t)fw(oz;/)dt
y=1 w=1

+ \/ Uw¢f wa(t)fl//(Oz)dt + Iw(t)’
y=1 0

whereupon, O* is called the equilibrium point of (2.1).

Definition 2.4. System (2.1) achieves ML stability if and only if O* = (O%,...,0:)" € C" is the
equilibrium point, and satisfies the following condition:

o)l < [0t Ea(—p(t - 10))]',
where 0 < a < 1, p, n>0, E(0) =0.
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Definition 2.5. If FOFCVNNS (2.1) and (2.2) meet the following equation:
lim |0,,(t) - S 0,1}l = 0
so we can say it has achieved projective synchronization, where S € R is projective coefficient.

3. Main results

In this part, we mainly investigate three theorems. According to the Banach contraction mapping
principle, we can deduce the result of Theorem 3.1. Next, we construct a linear hybrid controller and
an adaptive hybrid controller, and establish two MLPS criteria.

Theorem 3.1. B is a Banach space. Let ||O||; = }. |Oy|. Under Assumptions 2.1-2.4, if the following
y=1
equality holds:

Z_:l My |Ly + | M,y |Ly + |yl Ly + Uyl Ly

p:W <1, wy=17273,..,n,
ay

3.1

then FOFCVNNS (2.1) has a unique equilibrium point with O* = (O3, ...,0")" € C".

Proof. Let O = (5;, 0,,...,0,)7 = (a,01,a,0,,...,a,0,)" € R", and construct a mapping ¢ : B —
B, p(x) = (¢1(0), 92(0), ..., ¢,(0))" and

n ’0"’ n +00 ’0"
0u(0) = > My + Amyy () fy (=) + /\ thu f by (D) fy (=)t
y=1 Ay g 0 ay

. \"/ +00 0([/ ~
Uy wa(f)fz//(a—)dl + 1, wy=1,2,...,n. 3.2)
y=1 0 i

For two different points @ = (@, ...,a,)",8=(B;,...,B,)", it has

leu(@) = @Bl <| Z(mww * Amww(t))fw(—) - Z(mww * Amww(t))fw(@)l

alw +00 ﬁ¢,
+|¢/:\1“W‘” fo Dus Ot = ﬁﬂw fo bun(D )

1V v | cww(t)fw(Z—Z)dt—\/vW [ cww(t)fw(&)dtl

< Z s + Aty (O ) fw(—)l +] /\,uwwfw(—) Auwmﬁ -
+| V vwfp(—) -\/ wafw(ﬁ—wﬂ (3.3)
y=1 y=1
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According to Assumption 2.1, we get

. |mww + Amww(t)le |ﬂvvw| |wa|Lw
lpu(@) = B < ) : oty = Byl + Z “lory — Byl + Z lay =B,
v

w=1 2 y=1 y=1

Next, we have

k(@) = @)l = Y lpu(@) - ¢y (B)l

y=1

<y e il g 35 e,

y=1 y=1 w=1 y=1

R w“"'L‘”| Bl

w=1 y=1

<Z(Z 11, +Amww(1)|L¢ Z |ﬂv2ple Z lv ww| ‘N —y

y=1 y=1 y=1 w=1

|,y + Amwz//(t)le |ty | Ly |Uwz//|
<( + ) — N ey = Byl
I )

w=1 w=1

From Assumption 2.3, then it has

S gl Ly + Mgl + g Ly + gL
le(@) = @Bl < (), = ).
w=1 4

Finally, we obtain

lle(@) = Bl < plla = BlI1,

(3.4)

(3.5)

(3.6)

(3.7)

where ¢ is obviously a contraction mapping. From Eq (3.2), there must exist a unique fixed point

O* € C", such that ¢(O*) = O".

~ —_—

+00 O*
0, —Z(mw¢+Amw¢(t))f¢(—)+ Auw I pton

a 0,
+ Uy f Cuy (D) fy(—)dt + I,
Let Oy, = -~ we have
ay
—+00
0=-a,0,+ Z(mww + Amyy (1)) f3(Oy) + /\,waf by (1) f4(O,)dt
o 0

+ v Uy j; Cus(Df(O))dt + 1.
y=1

(3.8)

(3.9)
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Consequently, Theorem 3.1 holds.
Under the error system (2.3), we design a suitable hybrid controller

Uy (1) = U1y (1) + 12, (7). (3.10)

Few (1)
Oa kw(t) = 0.

N Ay Dk (=7(1))
up, (1) = { ko (£) + > k(D) # 0, (3.11)
up () = Z(mww + Ay (D) f5(S Oyt — (1)) + Z S (Myy + Anyy (1)) f3,(Oy(t — (1))
y=1 Vel
0

A f by f (S Oyt + 5 N\ proy fo by (1) fy(Oy(D)dt
y=1 w=1

=\ v f oS Oy)dr + S \ [ vy f Cus (D f(Oy )t — (1 = W),.  (3.12)
el 0 el 0
By substituting (3.10)—(3.12) into (2.3), it yields

DAley(1) = = @k (D) + Y (g + Aimyy () fyky = (1))
y=1

n +00 n —+00
+ )\ t fo bus (D) fyky et + \ [ vy fo Co(0) fyky (Dt
¥=1 w=1

A, (Do (F = T(0))
k(1) '

Theorem 3.2. Based on the controller (3.10) and Assumptions 2.1-2.4, systems (2.1) and (2.2) can
achieve MLPS if the following formula holds:

— 7k, (1) +

(3.13)

@) = min {2a, - 1+ 27— 4n - Z SulitgwPL2 — Z DulvgPLE} > 0,
y=1 y=1

1<w<n
- (3.14)
@y = max {1+ ;qmwwﬁ + M )L,
W —ZD'Q.Q.I > O,Ql > 1.
Proof. Picking the Lyapunov function as
Vi) = > k(). (3.15)
w=1
By application about derivative v;(¢), we derive
Dvi(t) = ) Dk (1)K (D). (3.16)

w=1

AIMS Mathematics Volume 9, Issue 9, 25577-25602.



25585

Following Lemma 2.2, it has
D™, (1) < Z k,,(£) D%, (1) + Z & () Dk, (£). (3.17)
w=1 w=1

Substituting Eq (3.13) to (3.17), we can get

Dvi(1) < Z (D = k(D) + Z (Mo + 5105 (0) fihey (£ = (1))

+ Auw f by (1) fikey (D)1 + va fo Cup (D) fyky (D)1
y=1

Ak (D, (1 = T(t))}
k(1)

' Z kO] = ak,(0) + ;<m + Ay (D) fyko{ = 7(1)

— k., (1) +

+ /\/"w«//f(; bww(f)fz//k’w‘(;)df + \/ wafo Cw«//(f)fwk:b‘(;)df
y=1 =1

k) + Ak (0)k, (1 — T(t))}_ (3.18)
k(1)
Combining Lemma 2.3, one gets
- ﬂkw(t)k (1 — (1)) — Ak, (D, (t — T(D))
k,, k,,
D k) ™0 Z @) —
<A (ko Oka@) + kit = Tt = 7(0)). (3.19)
w=1
Based on (3.19), we derive
- — Ak (Dk(t - 7(2))
Zl kO = k() = 7k, (1) + === )
N Z m( = ank(f) — k() + Ak (0)k, (1 — T(t)))
w=1 kw(t)
<- Z [Zaw -1+ 2n]kw(t)m +1 Z k,,(t — T(0))k, (1 — T(2)). (3.20)
w=1 w=1
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According to Assumptions 2.1 and 2.3, Lemma 2.3, we can get

Do [y fikey (= (00) + ko (0) Ay () kg 8 = 7(2)) + KOs fkis = T(0))

w=1 y=1
+ K(I)Amw(f)fwktﬁf(}\:dt))]

< > D [ 2RO + s P ey (=) fik T =7(0)) + |amyy (O fyky 6 = T(0) fikey (£ = 7(0))|

w=1 y=1

<3 2k Ok + Y D Iy PLE K, = (0D (= (1)

w=1 y=1 w=1 y=1

+ 0 M PL Ryt = 1)k, (= 7(0))
w=1 y=1

< 2Ue (D) + > (gl + My L ey (1 = T(0))ky E = 7(0)). (3.21)

w=1 y=1 w=1 y=1

=

Based on Lemma 2.3, one has

D160 Nt [ busosksTde s 50 A [ okt
w y=1 y=1

=1

n

< Z; [kw(t)m + /\ Hwy L bww(t)f,pk/:;(;)dt /\ Hwy fo bww(t)fzpkjp‘(;)dt]- (3.22)

y=1 w=1
Combining Assumption 2.4 and Lemma 2.1, one obtains

> Nt [ b0t s [ bk
w=1 y=1 0 w=1 0
< Syl L Ry (K, D). (3.23)

w=1 y=1
Substituting (3.23) into (3.22), it has

D160 Nt [ busosksTde s 50 Asus [ butofikiton]
w=1 w=1 w=1

<) ko OkD + > SylptyPLEK, (0K, D). (3.24)
w=1 w=1 y=1

Thus,

n

D60V v [ ekl + B\ v [ ikl
v=1 w=1

w=1
< Z; e (1) (1) + ; ; MoV P L2y (DK (1), (3.25)
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Substituting (3.20)—(3.25) into (3.18), we get

n

D™, (1) < — Z (24, — A+ 27|, (1) (1)

w=1
F A ket = Okt = T(0) + > > 2Kk ()
w=1 w=1 y=1
U + Moy YLy (1 = 7Dyt = 70) + > k(D)
w=1 y=1 w=1
0 ultasPL Ok @) + D ko0k(D) + > > mulvnagPLE (0K, (1)
w=l y=1 w=1 y=1 w=l y=1
<= |20 = A+ 2m—an = SulugPLE = D mulvgnPL e (e (0)
w=1 y=1 y=1
[+ D gl + 1My PIL Jleut = 7))k (= 7). (3.26)
w=1 y=1
Applying the fractional Razumikhin theorem, the inequality (3.26) is as follows:
D*v((t) £ (@ — @ QVvi(1) = —@3v1(2). (3.27)
Apparently, from Lemma 2.5, it has
v1(0) < VO Eo[~(m1 — mrQ)"], (3.28)
and
Vi) = D k(@) = IOIP < vO)Eg[~(m = @2 Q)"
w=1
IOl < OV Eo(~(m1 — Q1)) (3.29)
Moreover,
llim k()| = 0. (3.30)

From Definition 2.4, system (2.1) is Mittag-Leffler stable. From Definition 2.5 and lim,_,, ||k(?)|| =
0, the derive-response systems (2.1) and (2.2) can reach MLPS. Therefore, Theorem 3.2 holds.
Unlike controller (3.11), we redesign an adaptive hybrid controller as follows:

(1) = Un, (1) + 13, (D), (3.31)
U3,o(1) = =, (D, (1), D6, (1) = Lk, (DK, () — p(si(t) — 7). (3.32)
Taking (3.12) and (3.32) into (3.31), then
D k(1) = = @k (t) + (Mg + Ay (D) fyky T = 7(0) + [\ oy fo Dy () fyky (D)t

y=1 y=1

+\/ v fo Cun () fiky (D)t = G, (K (1) (333)
y=1
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Theorem 3.3. Assume that Assumptions 2.1-2.4 hold and under the controller (3.31), if the positive

constants Y1, Yo, 1, and €, such that

T, = lr;lvgn [ZZaW —4n? - Z Z(S g P L2, — ZZUW|UW| L+ Z(S‘w(f) + S'W

w=1 y=1 w=1 y=1

Y, = max Z Zamwmz + My DL,
w=1 y=1

1<w<n
Ql - TQQZ > O,Qz > 1,
we can get systems (2.1) and (2.2) to achieve MLPS.

Proof. Taking into account the Lyapunov function

va(t) = ka(t)kw(r>+2 —(Gu(D) = 637

wlW

va1(1) v (t)

By utilizing Lemmas 2.2 and 2.4, then it has

Dvs(1) < Z (DD K (1) + Z kDD k(1) + Z —(6u(t) = SID 5 (1) .

w=1 wlw

R Ry

Substituting (3.32) into (3.36), one has
N : — 2P 2
Ry =2 ;(gw(r) — G (DK (1) Z; TG0 =5

Substituting (3.33) into R, yields

R = 21 k(0 = @,k () + ; (g + Dty D) fo ke (F = 7(1))

e PN [ b0+ \ vy [ cnst0 ik - s, 0500}
y=1 y=1

+ Zl k(] = ayk, (1) + ;ww + Ay (0) fiky (7= 7(2))

+ N\ fo by (D fyky @Ot +\ [ viy fo Coup (D fyky (Dt = 6, (DK, (D).
y=1 w=1

According to the inequality (3.20), it has

D k0 = awk® = SOk} + Y kaD] = auki(t) = GOk (1)]
w=1 w=1

=2 [aw + @ |k .
w=1

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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Substituting (3.39) and (3.21)—(3.25) into (3.38), we have
Ri <= ) [2an +6u) = 4n = > 8ulutgulPLy = > mulvgnsPL e (e (0)
w=1 U=1 u=1

# 7 (Ul + My YL et = Tk (1 = 7(0). (3.40)

w=1 y=1

Substituting (3.37) and (3.40) into (3.36), we finally get

n

Dyt <= )" [2(ay + ) — 4n - Z Suulbtyns 2L Z Mlg P L, | (0K, ()

w=1 y=1 =1
n n n 2
+ Z} ;qmm + 1My L2 ke (1 = T(D)eo(t — (D)) — Z} I—f(gwm —¢ . (34D

By applying fractional-order Razumikhin theorem, the following formula holds:

D*vy (1) < =(T1 = T2€0)va1 (1) — 2pvar(0). (3.42)
Let £ = min (') — T2Q, 2p), then

D™v,(1) < =Evy (1) — Evpa(t) < =Ewa(2). (3.43)

According to Lemma 2.5, one has

vo(t) < v(0)E,(—E1"). (3.44)
From Eq (3.35), we can deduce
V21(2) < (v21(0) + v (0) Eo[—(T1 — T2Q0)1%], (3.45)
and
@I = ) Tk (D) = v1(5) < va(t) < va(0)EQ(~E2). (3.46)
w=1
Therefore, it has
k)l < [v2(0)Ea (=227, (3.47)
and
tlim Ikl = 0. (3.48)

Obviously, from Definition 2.4, system (2.1) is Mittag-Lefller stable. From Definition 2.5 and
lim,_,e ||k(?)|| = 0, systems (2.1) and (2.2) can reach MLPS.
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Remark 3.1. Unlike adaptive controllers [12], linear feedback control [16], and hybrid
controller [34], this article constructs two different types of controllers: nonlinear hybrid controller
and adaptive hybrid controller. The hybrid controller has high flexibility, strong scalability, strong anti-
interference ability, and good real-time performance. At the same time, hybrid adaptive controllers not
only have the good performance of hybrid controllers but also the advantages of adaptive controllers.
Adaptive controllers reduce control costs, greatly shorten synchronization time, and can achieve stable
tracking accuracy. Different from the research on MLPS in literature [33-35], this paper adopts a
complex valued fuzzy neural network model, while fully considering the impact of delay and uncertainty
on actual situations. At the same time, it is worth mentioning that in terms of methods, we use complex-
value direct method, appropriate inequality techniques, and hybrid control techniques, which greatly
reduce the complexity of calculations.

4. Examples

In this section, we use the MATLAB toolbox to simulate theorem results.
Example 4.1. Study the following two-dimensional complex-valued FOFCVNNS:

2 2 +00
gD;YOW(t) = _awow(l) + Z(mwzl/ + Amww(t))flﬁ(ow(t - T(t))) + /\#WWL bww(t)fw(Ow(t))dt
y=1 =1
2 +00
+\/ vy fo Cuu (D f, (04 (D)t + 1,(1), 4.1)
=1
where 0,,(t) = OR@) +i0. (1) € C, OR(1),0\(t) € R, 71(t) = Ta(t) = |tan(t)| , [;(1) = L(1) =
0, ,(0,(1) = tanh(Oﬁ(t)) + itanh(Of,(t)).

A:Cl]:azzl,

B = (g + amy(0), . = —25+03i 2.6-1.9i ~0.4cost —0.6sint
S Wi o T\ =23 -1.2i 2.8+ 1.7 ~0.5sint  —0.3cost |’

~2.8+13i 25-12i ~2.9+0.7i 2.8-12i
C=hplre = ( ~22-1.1i 2.5+ 1.6i )’D‘(”W)M B ( ~2.1-1.9i 2.9+1.9i )

The response system is

2 2 +00
C DY 0,(1) = —a, Q,,(1) + Z(mwz// + Amyy (1)) fy(Qy(t — 7(2))) + /\#wwf(; by (1) 1y (Qy(0))dt

y=1 y=1

2 +00
+ \/ vwwfo Cwy (D fu(Qu(D))dt + L,(1) + U, (1), (4.2)
y=1

where Q,,(t) = QR(¢) + iQ! (r) € C. The initial values of (4.1) and (4.2) are

x1(0) = 1.1 = 0.27, x(0) = 1.3 - 0.44,
y1(0) =1.3-0.3i, y,(0) = 1.5-0.1i.
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The phase portraits of system (4.1) are shown in Figure 1. The nonlinear hybrid controller is
designed as (3.10), and picking @« = 0.95, S =0.55,6, =6, = 1.1, 5, =nm =13, L, = L, = 0.11,
A = 0.5. By calculation, we get @w; = 4.47 > 0, @, = 0.71. Taking Q, = 1.5, then @, —@,Q; > 0. This
also confirms that the images drawn using the MATLAB toolbox conform to the theoretical results of
Theorem 3.2. Figures 2 and 3 show the state trajectory of k,,(¢) and ||k,,(¢)|| without the controller (3.10).
Figures 4 and 5 show state trajectories and error norms with the controller (3.10), respectively.

05

o
T

Im(X1(t))

Im(X2(t))

-0.5

0
T

s ‘ ‘ ! ! 4 ! ! ! ! ‘
2 -1 0 1 2 3 3 2 -1 0 1 2 3
Re(X1(t)) Re(X2(t))

Figure 1. The phase portrait of state O(¢) and O,(t) of system (2.1).

0.6 T T T T

Re(e1(t))
Im(e1(t))
= = = Re(e2(t)) | |
= = = Im(e2(t))

50

Figure 2. Error state trajectories of k,,(f) without the controllers and @ = 0.95.
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Figure 3. Time response curve of error norm |k, (7)|| without the controllers (3.10) and
a = 0.95.

Re(el(t) = = Re(e2(t))
1.2 Ime1(t) = = Im(e2(t) | |
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Figure 4. State trajectories of k,,(#) under the controllers (3.10) and @ = 0.95.
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Figure 5. Time response curve of error norm |k, (¢)|| without the controllers (3.10) and
a = 0.95.

Example 4.2. Taking @ = 0.95,§ =097,k =k, =5.1,61 =6 =02,6] =5,¢; =8,6, =6, = 1.1,
m =mn, =15, L, = L, = 0.1. The remaining parameters follow the ones mentioned earlier. According
to calculation, Ty = 12.49, T, = 7.36. Let , = 1.1, then we have Q; — 1,€, > 0. Figure 6 depicts
the state trajectory diagram of k,,(#) with adaptive controller (3.31). Figure 7 describes the error norm
||k, (t)|| with controller (3.31). According to Figure 8, it is easy to see that the control parameters g, (?)
are constant.

0.3

Re(el(t) — = Re(e2(t)
Imel(t) = = Im(e2(t)) |

0.25

0 2 4 6 8 10

Figure 6. Time response curve of error norm ||k, (?)|| under the controllers (3.31) and @ =
0.95.

AIMS Mathematics Volume 9, Issue 9, 25577-25602.



25594

0.5

0.45

0.4

0.35

0.3

0.25

lle(oll

021

0.15 -

0.1

0.05 -

0 2 4 6 8 10
t

Figure 7. Time response curve of error norm ||k, (?)|| under the controllers (3.31) and o =
0.95.

0 5 10 15 20 25
t

Figure 8. Time response curve of error ¢,,(f),w = 1,2 and @ = 0.95.

Example 4.3. Consider the following data:

A:alzazzl,

B—(m + Am (t)) [ -1.6+0.5i 1.8-1.6i —0.4cost  —0.6sint
S Wi ) T\ —1.6-1.2i 2.1+ 1.7i ~0.5sint —0.3cost |’

~1.8+1.3i 1.5-1.1i ~1.9+0.7i 1.9-1.4i
C‘(“WP)ZXZ‘( ~1.8-1.1i 1.8+ 1.6i )’D‘(wa)m‘( ~1.7-13i 2.1+ 1.8i )
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Let the initial value be

x1(0) =3.2 - 1.2i, x(0) =3.0 - 1.44,
y1(0) =3.1 -1.3i, y,(0) =33 -1.1i.

Picking = 0.88,5 =09,6, =6, =12, 11 =n=15,L; =L, =0.1, 24 = 0.5, Q; = 2. After
calculation, @w; = 6.62 > 0, @, = 2.28, and @w; — @,Q; > 0. Similar to Example 4.1, Figures 9 and 10

show the state trajectory of k,,(¢) and ||k,,(?)|| without the controller (3.10). Figures 11 and 12 show state
trajectories and error norms with the controller (3.10), respectively.

Re(e1(t)) | 1
Im(e1(t))
- = —Re(e2(t)| |
- = = Im(e2(t))

0.8 1 1 1 1
0 10 20 30 40 50

Figure 9. Error state trajectories of k,, () without the controllers and a = 0.88.

lle(ll

t

Figure 10. Time response curve of error norm |k, (#)|| without the controllers (3.10) and
a = 0.88.
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Figure 11. State trajectories of k,,(¢) under the controllers (3.10) and @ = 0.88.
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Figure 12. Time response curve of error norm |k, (7)|| without the controllers (3.10) and
a = 0.88.

Example 4.4. Taking a = 0.88,5 =09,k =k, =22,6=6=02,61=4,65=9,6, =6, = 1.1,
m=mn,=15,L =L, =0.1, Q, = 2. The other parameters are the same as Example 4.3, where 1| =
22.29, T, = 10.67, and Q; — T,Q, > 0. Thus, the conditions of Theorem 3.3 are satisfied. Figure 13
depicts the state trajectory diagram of k,,(f) with adaptive controller (3.31). Figure 14 describes the
error norm ||k, (¢)|| with controller (3.31). Control parameters ¢,,(f) are described in Figure 15.
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Figure 13. Time response curve of error norm ||k,,(¢)|| under the controllers (3.31) and a =

0.88.
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Figure 14. Time response curve of error norm ||k,,(¢)|| under the controllers (3.31) and a =

0.88.
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Figure 15. Time response curve of error ¢,,(#),w = 1,2 and @ = 0.88.

5. Conclusions

In this paper, we studied MLPS issues of delayed FOFCVNN:Ss. First, according to the principle of
contraction and projection, a sufficient criterion for the existence and uniqueness of the equilibrium
point of FOFCVNNSs is obtained. Second, based on the basic theory of fractional calculus, inequality
analysis techniques, Lyapunov function method, and fractional Razunikhin theorem, the MLPS
criterion of FOFCVNNSs is derived. Finally, we run four simulation experiments to verify the
theoretical results. At present, we have fully considered the delay and parameter uncertainty of
neural networks and used continuous control methods in the synchronization process. However,
regarding fractional calculus, there is a remarkable difference between continuous-time systems and
discrete-time systems [14]. Therefore, in future work, we can consider converting the continuous
time system proposed in this paper into discrete time system and further research discrete-time MLPS.
Alternatively, we can consider studying finite-time MLPS based on the MLPS presented in this paper.
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