Processing math: 100%
Research article Special Issues

Photovoltaic models parameter estimation via an enhanced Rao-1 algorithm

  • Received: 18 October 2021 Accepted: 24 November 2021 Published: 30 November 2021
  • The accuracy of unknown parameters determines the accuracy of photovoltaic (PV) models that occupy an important position in the PV power generation system. Due to the complexity of the equation equivalent of PV models, estimating the parameters of the PV model is still an arduous task. In order to accurately and reliably estimate the unknown parameters in PV models, in this paper, an enhanced Rao-1 algorithm is proposed. The main point of enhancement lies in i) a repaired evolution operator is presented; ii) to prevent the Rao-1 algorithm from falling into a local optimum, a new evolution operator is developed; iii) in order to enable population size to change adaptively with the evolutionary process, the population size linear reduction strategy is employed. To verify the validity of ERao-1 algorithm, we embark a study on parameter estimation of three different PV models. Experimental results show that the proposed ERao-1 algorithm performs better than existing parameter estimation algorithms in terms of the accuracy and reliability, especially for the double diode model with RMSE 9.8248E-04, three diode model with RMSE 9.8257E-04 for the R.T.C France silicon cell, and 2.4251E-03 for the three diode model of Photowatt- PWP201 cell. In addition, the fitting curve of the simulated data and the measured data also shows the accuracy of the estimated parameters.

    Citation: Junhua Ku, Shuijia Li, Wenyin Gong. Photovoltaic models parameter estimation via an enhanced Rao-1 algorithm[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1128-1153. doi: 10.3934/mbe.2022052

    Related Papers:

    [1] Yuriĭ G. Nikonorov, Irina A. Zubareva . On the behavior of geodesics of left-invariant sub-Riemannian metrics on the group $ \operatorname{Aff}_{0}(\mathbb{R}) \times \operatorname{Aff}_{0}(\mathbb{R}) $. Electronic Research Archive, 2025, 33(1): 181-209. doi: 10.3934/era.2025010
    [2] Lakehal Belarbi . Ricci solitons of the $ \mathbb{H}^{2} \times \mathbb{R} $ Lie group. Electronic Research Archive, 2020, 28(1): 157-163. doi: 10.3934/era.2020010
    [3] Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157
    [4] Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063
    [5] Shanshan Liu, Abdenacer Makhlouf, Lina Song . The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141
    [6] Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124
    [7] Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061
    [8] Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214
    [9] Pengliang Xu, Xiaomin Tang . Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29(4): 2771-2789. doi: 10.3934/era.2021013
    [10] Shaban Khidr, Salomon Sambou . $ L^p $-theory for the $ {\partial }\overline{\partial} $-equation and isomorphisms results. Electronic Research Archive, 2025, 33(1): 68-86. doi: 10.3934/era.2025004
  • The accuracy of unknown parameters determines the accuracy of photovoltaic (PV) models that occupy an important position in the PV power generation system. Due to the complexity of the equation equivalent of PV models, estimating the parameters of the PV model is still an arduous task. In order to accurately and reliably estimate the unknown parameters in PV models, in this paper, an enhanced Rao-1 algorithm is proposed. The main point of enhancement lies in i) a repaired evolution operator is presented; ii) to prevent the Rao-1 algorithm from falling into a local optimum, a new evolution operator is developed; iii) in order to enable population size to change adaptively with the evolutionary process, the population size linear reduction strategy is employed. To verify the validity of ERao-1 algorithm, we embark a study on parameter estimation of three different PV models. Experimental results show that the proposed ERao-1 algorithm performs better than existing parameter estimation algorithms in terms of the accuracy and reliability, especially for the double diode model with RMSE 9.8248E-04, three diode model with RMSE 9.8257E-04 for the R.T.C France silicon cell, and 2.4251E-03 for the three diode model of Photowatt- PWP201 cell. In addition, the fitting curve of the simulated data and the measured data also shows the accuracy of the estimated parameters.



    Einstein metrics are pivotal in numerous domains of mathematical physics and differential geometry. They are also of interest in pure mathematics, particularly in the fields of geometric analysis and algebraic geometry. An Einstein metric can be regarded as a fixed solution (up to diffeomorphism and scaling) of the Hamilton Ricci flow equation. On a Riemannian manifold (M,g), a Ricci soliton is said to exist when there is a smooth vector field X and a constant λ in the reals that satisfy the condition stated below:

    Rij+12(LXg)ij=λgij,

    where Rij is the Ricci curvature tensor, and LXg stands for the Lie derivative of g with respect to the vector field X. This concept was introduced by Hamilton in [1], and later utilized by Perelman in his proof of the long-standing Poincare conjecture [2]. Lauret further generalized the notion of Einstein metrics to algebraic Ricci solitons in the Riemannian context, introducing them as a natural extension in [3]. Subsequently, Onda and Batat applied this framework to pseudo-Riemannian Lie groups, achieving a complete classification of algebraic Ricci solitons in three-dimensional Lorentzian Lie groups in [4]. Additionally, they proved that within the framework of pseudo-Riemannian manifolds, there is algebraic Ricci solitons that are not of the conventional Ricci soliton type.

    In [5], Etayo and Santamaria explored the concept of distinguished connections on (J2=±1)-metric manifolds. This sparked interest among mathematicians in studying Ricci solitons linked to various affine connections, which can be found in [6,7,8]. The Bott connection was introduced in earlier works (see[9,10,11]). In [12], the authors developed a theory on geodesic variations under metric changes in a geodesic foliation, with the Bott connection serving as the primary natural connection respecting the foliation's structure. In [13], Wu and Wang studied affine Ricci solitons and quasi-statistical structures on three-dimensional Lorentzian Lie groups associated with the Bott connection. Furthermore, in [14,15], the authors examined the algebraic schouten solitons and affine Ricci solitons concerning various affine connections.

    Inspired by Lauret's work, Wears introduced algebraic T-solitons, linking them to T-solitons in [16]. Later, in [7], Azami introduced Schouten solitons, as a new type of generalized Ricci soliton. In this paper, I focus on algebraic Schouten solitons concerning the Bott connection with three distributions, aiming to classify and describe them on three-dimensional Lorentzian Lie groups.

    In Section 2, I introduce the fundamental notions associated with three-dimensional Lie groups and algebraic Schouten soliton. In Sections 3–5, I discuss and present algebraic Schouten solitons concerning the Bott connection on three-dimensional Lorentzian Lie groups, each focusing on a different type of distribution.

    In [17], Milnor conducted a survey of both classical and recent findings on left-invariant Riemannian metrics on Lie groups, particularly on three-dimensional unimodular Lie groups. Furthermore, in [18], Rahmani classified three-dimensional unimodular Lie groups in the Lorentzian context. The non-unimodular cases were handled in [19,20]. Throughout this paper, I use {Gi}7i=1 for connected, simply connected three-dimensional Lie groups equipped with a left-invariant Lorentzian metric g. Their corresponding Lie algebras are denoted by {gi}7i=1, and each possess a pseudo-orthonormal basis {e1,e2,e3} (with e3 timelike, see [4]). Let LC and RLC denote the Levi-Civita connection and curvature tensor of Gi, respectively, then

    RLC(X,Y)Z=LCXLCYZLCYLCXZLC[X,Y]Z.

    The Ricci tensor of (Gi,g) is defined as follows:

    ρLC(X,Y)=g(RLC(X,e1)Y,e1)g(RLC(X,e2)Y,e2)+g(RLC(X,e3)Y,e3).

    Moreover, I have the expression for the Ricci operator RicLC:

    ρLC(X,Y)=g(RicLC(X),Y).

    Next, recall the Bott connection, denoted by B. Consider a smooth manifold (M,g) that is equipped with the Levi-Civita connection , and let TM represent its tangent bundle, spanned by {e1,e2,e3}. I introduce a distribution D spanned by {e1,e2} and its orthogonal complement D, which is spanned by {e3}. The Bott connection B associated with distribution D is then defined as follows:

    BXY={πD(LCXY),X,YΓ(D),πD([X,Y]),XΓ(D),YΓ(D),πD([X,Y]),XΓ(D),YΓ(D),πD(LCXY),X,YΓ(D), (2.1)

    where πD (respectively, πD) denotes the projection onto D (respectively, D). For a more detailed discussion, refer to [9,10,11,21]. I denote the curvature tensor of the Bott connection B by RB, which is defined as follows:

    RB(X,Y)Z=BXBYZBYBXZB[X,Y]Z. (2.2)

    The Ricci tensor ρB associated to the connection B is defined as:

    ρB(X,Y)=B(X,Y)+B(Y,X)2,

    where

    B(X,Y)=g(RB(X,e1)Y,e1)g(RB(X,e2)Y,e2)+g(RB(X,e3)Y,e3).

    Using the Ricci tensor ρB, the Ricci operator RicB is given by:

    ρB(X,Y)=g(RicB(X),Y). (2.3)

    Then, I have the definition of the Schouten tensor as follows:

    SB(ei,ej)=ρB(ei,ej)sB4g(ei,ej),

    where sB represents the scalar curvature. Moreover, I generalized the Schouten tensor to:

    SB(ei,ej)=ρB(ei,ej)sBλ0g(ei,ej),

    where λ0 is a real number. By [22], I obtain the expression of sB as

    sB=ρB(e1,e1)+ρB(e2,e2)ρB(e3,e3).

    Definition 1. A manifold (Gi,g) is called an algebraic Schouten soliton with associated to the connection B if it satisfies:

    RicB=(sBλ0+c)Id+DB,

    where c is a constant, and DB is a derivation of gi, i.e.,

    DB[X1,X2]=[DBX1,X2]+[X1,DBX2],forX1,X2gi. (2.4)

    In this section, I derive the algebraic criterion for the three-dimensional Lorentzian Lie group to exhibit an algebraic Schouten soliton related to the connection B. Moreover, I indicate that G4 and G7 do not have such solitons.

    According to [4], I have the expression for g1:

    [e1,e2]=αe1βe3,[e1,e3]=αe1βe2,[e2,e3]=βe1+αe2+αe3,

    where α0. From this, I derive the following theorem.

    Theorem 2. If (G1,g) constitutes an algebraic Schouten soliton concerning connection B; then, it fulfills the conditions: β=0 and c=12α2+2(α2+β2)λ0.

    Proof. From [23], the expression for RicB is as follows:

    RicB(e1e2e3)=((α2+β2)αβ12αβαβ(α2+β2)12α212αβ12α20)(e1e2e3).

    The scalar curvature is sB=2(α2+β2). Now, I can express DB as follows:

    {DBe1=(α2+β2+sλ0+c)e1+αβe2+αβ2e3,DBe2=αβe1(α2+β2+sλ0+c)e2α22e3,DBe3=αβ2e1+α22e2+(2(α2+β2)λ0c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B on (G1,g), if and only if the following condition satisfies:

    {52α2β+2β32λ0β(α2+β2)+cβ=0,α32+2αβ22λ0α(α2+β2)+cα=0,α2β=0,2α2β+β34λ0β(α2+β2)+2cβ=0,α32+32αβ22λ0α(α2+β2)+cα=0.

    Since α0, I have β=0 and c=12α2+2(α2+β2)λ0.

    According to [4], I have the expression for g2:

    [e1,e2]=γe2βe3,[e1,e3]=βe2γe3,[e2,e3]=αe1,

    where γ0. From this, I derive the following theorem.

    Theorem 3. If (G2,g) constitutes an algebraic Schouten soliton concerning the connection B, then it fulfills the conditions: α=0 and c=β2γ2+(β2+2γ2)λ0.

    Proof. From [23], the expression for RicB is as follows:

    RicB(e1e2e3)=((β2+γ2)000(γ2+αβ)αγ20αγ20)(e1e2e3).

    The scalar curvature is sB=(β2+2γ2+αβ). Now, I can express DB as follows:

    {DBe1=(β2+γ2(β2+2γ2+αβ)λ0+c)e1,DBe2=(γ2+αβ(β2+2γ2+αβ)λ0+c)e2+αγ2e3,DBe3=αγ2e2+((β2+2γ2+αβ)λ0c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B on (G2,g), if and only if the following condition satisfies:

    {αγ2β3+αβ2+(β2+2γ2+αβ)βλ0cβ=0,γ(β2+γ2+αβ(β2+2γ2+αβ)λ0+c)=0,αγ2β32βγ2αβ2+(β2+2γ2+αβ)βλ0cβ=0,α(β2+αβ(β2+2γ2+αβ)λ0+c)=0.

    Suppose that α=0, then c=β2γ2+(β2+2γ2)λ0. If α0, I have

    {β(β2+γ2(β2+2γ2+αβ)λ0+c)=0,β2+γ2+αβ(β2+2γ2+αβ)λ0+c=0,β2+αβ(β2+2γ2+αβ)λ0+c=0.

    Since γ0, solving the equations of the above system gives 2β2+γ2=0, which is a contradiction.

    According to [4], I have the expression for g3:

    [e1,e2]=γe3,[e1,e3]=βe2,[e2,e3]=αe1.

    From this, I derive the following theorem.

    Theorem 4. If (G3,g) is an algebraic Schouten soliton concerning connection B; then, one of the following cases holds:

    i. α=β=γ=0, for all c;

    ii. α0, β=γ=0, c=0;

    iii. α=γ=0, β0, c=0;

    iv. α0, β0, γ=0, c=0;

    v. α=β=0, γ0, c=0;

    vi. α0, β=0, γ0, c=αγ+αγλ0;

    vii. α=0, β0, γ0, c=βγ+βγλ0.

    Proof. From [23], the expression for RicB is as follows:

    RicB(e1e2e3)=(βγ000αγ0000)(e1e2e3).

    The scalar curvature is sB=γ(α+β). Now, I can express DB as follows:

    {DBe1=(βγγ(α+β)λ0+c)e1,DBe2=(αγγ(α+β)λ0+c)e2,DBe3=(γ(α+β)λ0c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B on (G3,g), if and only if the following condition satisfies:

    {βγ2+αγ2γ2(α+β)λ0+cγ=0,β2γβγ(α+β)λ0+cβ=0,α2γαβγαγ(α+β)λ0+cα=0. (3.1)

    Assuming that γ=0. In this case, (3.1) becomes:

    {βc=0,αc=0. (3.2)

    If β=0, for Cases i and ii, system (3.1) holds. If β0, for Cases iii and iv, system (3.1) holds. Then, I assume that γ0. Thus, system (3.1) becomes:

    {βγ+αγγ(α+β)λ0+c,αβ=0. (3.3)

    If β=0, I have Cases v and vi. If β0, for Case vii, system (3.1) holds

    According to [4], g4 takes the following form:

    [e1,e2]=e2+(2ηβ)e3,[e1,e3]=e3βe2,[e2,e3]=αe1,

    where η=1or1. From this, I derive the following theorem.

    Theorem 5. (G4,g) is not an algebraic Schouten soliton concerning connection B.

    Proof. According to [23], the expression for RicB is derived as follows:

    RicB(e1e2e3)=((βη)20002αηαβ112α012α0)(e1e2e3).

    The scalar curvature is sB=((βη)2+αβ2αη+1). Now, I can express DB as follows:

    {DBe1=((βη)2((βη)2+αβ2αη+1)λ0+c)e1,DBe2=(2αηαβ1+((βη)2+αβ2αη+1)λ0c)e2a2e3,DBe3=α2e2+(((βη)2+αβ2αη+1)λ0c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B on (G4,g), if and only if the following condition satisfies:

    {(2ηβ)((βη)22αη+αβ+1((βη)2+αβ2αη+1)λ0+c)=α,β((βη)2+2αηαβ1((βη)2+αβ2αη+1)λ0+c)=α,(βη)2((βη)2+αβ2αη+1)λ0+c=α(ηβ),α((βη)2+2αηαβ1+((βη)2+αβ2αη+1)λ0c)=0. (3.4)

    I now analyze the system under different assumptions.

    Assuming that α=0. Then, system (3.4) becomes:

    {(2ηβ)((βη)2+1((βη)2+1)λ0+c)=0,β((βη)21((βη)2+1)λ0+c)=0,(βη)2((βη)2+1)λ0+c=0.

    Upon direct calculation, it is evident that (2ηβ)=β=0, which leads to a contradiction.

    If α0, we have

    {(2ηβ)(αη1)=α,β(3αη2αβ1)=α,(βη)2α(ηβ)((βη)22αη+αβ+1)λ0+c=0,α((βη)2+2αηαβ1+((βη)22αη+αβ+1)λ0c)=0. (3.5)

    From the last two equations in (3.5), we have (βη)2=(1αη). Substituting into the first two equations in (3.5) yields α=η, which is a contradiction. Therefore, system (3.4) has no solutions. Then, the theorem is true.

    According to [4], we have the expression for g5:

    [e1,e2]=0,[e1,e3]=αe1+βe2,[e2,e3]=γe1+δe2,

    where α+δ0 and αγβδ=0. From this, we derive the following theorem.

    Theorem 6. If (G5,g) constitutes an algebraic Schouten soliton concerning connection B, then c=0.

    Proof. According to [23], the expression for RicB is derived as follows:

    RicB(e1e2e3)=(000000000)(e1e2e3).

    The scalar curvature is sB=0. Now, I can express DB as follows:

    {DBe1=ce1,DBe2=ce2,DBe3=ce3.

    Hence, by (2.4), I conclude that there is an algebraic Schouten soliton associated with B on (G5,g). Furthermore, for this algebraic Schouten soliton, I have c=0.

    According to [4], I have the expression for g6:

    [e1,e2]=αe2+βe3,[e1,e3]=γe2+δe3,[e2,e3]=0,

    where α+δ0 and αγβδ=0. From this, I derive the following theorem.

    Theorem 7. If (G6,g) constitutes an algebraic Schouten soliton concerning connection B, then one of the following cases holds:

    i. α=β=γ=0, δ0, c=0;

    ii. α=β=0, γ0, δ0, c=0;

    iii. α0, β=γ=δ=0, c=α2+2α2λ0;

    iv. α0, β=γ=0, δ0, c=α2+2α2λ0.

    Proof. From [23], I have the expression for RicB as follows:

    RicB(e1e2e3)=((α2+βγ)2000α20000)(e1e2e3).

    The scalar curvature is sB=(2α2+βγ). Now, I can express DB as follows:

    {DBe1=(α2+βγ(2α2+βγ)λ0+c)e1,DBe2=(α2(2α2+βγ)λ0+c)e2,DBe3=((2α2+βγ)λ0c)e3. (3.6)

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B on (G6,g), if and only if the following condition satisfies:

    {β(2α2+βγ(2α2+βγ)λ0+c)=0,α(α2+βγ(2α2+βγ)λ0+c)=0,γ(βγ(2α2+βγ)λ0+c)=0,δ(α2+βγ(2α2+βγ)λ0+c)=0.

    From the first equation above, we have either β=0 or β0. I now analyze the system under different assumptions.

    Assuming that β=0, I have:

    {α(α22α2λ0+c)=0,γ(2α2λ0+c)=0,δ(α22α2λ0+c)=0. (3.7)

    Given αγβδ=0 and α+δ0, assume first that α=0. In this case, system (3.7) can be simplified to:

    sBλ0+c=0.

    Then, I have Cases i and ii. If β0, system (3.7) becomes:

    α2+sBλ0+c=0. (3.8)

    Then, I have Cases iii and iv.

    If β0, system (3.7) becomes:

    {β(2α2+βγ(2α2+βγ)λ0+c)=0,α(α2+βγ(2α2+βγ)λ0+c)=0, (3.9)

    which is a contradiction.

    According to [4], I have the expression for g7:

    [e1,e2]=αe1βe2βe3,[e1,e3]=αe1+βe2+βe3,[e2,e3]=γe1+δe2+δe3,

    where α+δ0 and αδ=0. From this, I derive the following theorem.

    Theorem 8. (G7,g) is not an algebraic Schouten soliton concerning connection B.

    Proof. From [23], I have the expression for RicB as follows:

    RicB(e1e2e3)=(α212β(δα)δ(α+δ)12β(δα)(α2+β2+βδ)δ212(βγ+αδ)δ(α+δ)δ2+12(βγ+αδ)0)(e1e2e3).

    The scalar curvature is sB=(2α2+β2+βδ). Now, I can express DB as follows:

    {DBe1=(α2(2α2+β2+βδ)λ0+c)e1+12β(δα)e2δ(α+δ)e3,DBe2=12β(δα)e1(α2+β2+βδ(2α2+β2+βδ)λ0+c)e2(δ2+12(βγ+αδ))e3,DBe3=δ(α+δ)e1+(δ2+12(βγ+αδ))e2+((2α2+β2+βδ)λ0c)e3. 

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B on (G7,g), if and only if the following condition satisfies:

    {α(α2+β2+βα+sBλ0+c)+(γ+β)δ(α+δ)+12β2(δα)=α(δ2+12(βγ+αδ)),β(α+sBλ0+c)+δ2(α+δ)+12αβ(δα)=0,β(2α2+β2+βα+sBλ0+c)+δ(δα)(α+δ)=2β(δ2+12(βγ+αδ)),α(sBλ0+c)+α(δ2+12(βγ+αδ))+12β(βγ)(δα)+βδ(α+δ)=0,β(β2βα+sBλ0+c)12β(δα)2+2β(δ2+12(βγ+αδ))=0,β(α2+sBλ0+c)=αδ(α+δ)+12βδ(δα),γ(β2+βα+sBλ0+c)=δ(αδ)(α+δ)12β(δα)2,δ(sBλ0+c)+δ(δ2+12(βγ+αδ))=βδ(α+δ)+12β(δα)(βγ),δ(α2+β2+βα+sBλ0+c)δ(δ2+12(βγ+αδ))=(β+γ)δ(α+δ)+12β2(δα).

    Recall that α+δ0 and αγ=0. I now analyze the system under different assumptions:

    Assume first that α0, γ=0. Then, the above system becomes:

    {α(α2+β2+βα+sλ0+c)+βδ(α+δ)+12β2(δα)=α(δ2+12αδ),β(α+sλ0+c)+δ2(α+δ)+12αβ(δα)=0,β(2α2+β2+βα+sλ0+c)+δ(δα)(α+δ)=2β(δ2+12αδ),α(sλ0+c)+α(δ2+12αδ)+12β2(δα)+βδ(α+δ)=0,β(β2βα+sλ0+c)12β(δα)2+2β(δ2+12αδ)=0,β(α2+sλ0+c)=αδ(α+δ)+12βδ(δα),δ(αδ)(α+δ)12β(αδ)2=0,βδ(α+δ)+12β2(δα)=δ(sλ0+c)+δ(δ2+12αδ),βδ(α+δ)+12β2(δα)=δ(α2+β2+βα+sλ0+c)δ(δ2+12αδ). (3.10)

    Next, suppose that β=0, I have:

    {α(α2+sλ0+c)α(δ2+12αδ)=0,δ2(α+δ)=0. (3.11)

    Which is a contradiction.

    If β0, we further assume that δ=0. Under this assumption, the last equation in (3.10) yields α2β=0, which leads to a contradiction. If we presume α=δ, then the equations in (3.10) imply that αδ(α+δ)=δ2(α+δ), which is a contradiction. Additionally, if I assume that δ0 and δα, then from equation system (3.10), I have the following equation:

    {α2+sλ0+c=(δα)22,β2αβ=(δα)22(δ2+αδ2). (3.12)

    Substituting (3.12) into the third equation in system (3.10) yields α2=12(δα)2, which is a contradiction.

    Second, let α=0, γ0. Then, if β=0, the second equation in (3.10) reduces to δ3=0, which contradicts with α+δ0. On the other hand, if β0, I can derive from the second and sixth equations in system (3.10) that δ+12β=0. Substituting into the fourth equation in (3.10) yields γ=0, which is a contradiction.

    In this section, I formulate the algebraic criterion necessary for a three-dimensional Lorentzian Lie group to have an algebraic Schouten soliton related to the Bott connection B1. Recall the Bott connection, denoted by B1, with the second distribution. Consider a smooth manifold (M,g) that is equipped with the Levi-Civita connection , and let TM represent its tangent bundle, spanned by {e1,e2,e3}. I introduce a distribution D1 spanned by {e1,e3} and its orthogonal complement D1, which is spanned by {e2}. The Bott connection B1 associated with the distribution D1 is then defined as follows:

    B1XY={πD1(LCXY),X,YΓ(D1),πD1([X,Y]),XΓ(D1),YΓ(D1),πD1([X,Y]),XΓ(D1),YΓ(D1),πD1(LCXY),X,YΓ(D1),

    where πD1 (respectively, πD1) denotes the projection onto D1 (respectively, D1).

    Lemma 9. [13] The Ricci tensor ρB1 concerning connection B1 of (G1,g) is given by:

    ρB1(ei,ej)=(α2β212αβαβ12αβ012α2αβ12α2β2α2). (4.1)

    From this, I derive the following theorem.

    Theorem 10. If (G1,g) constitutes an algebraic Schouten soliton concerning connection B1, then it fulfills the conditions: β=0 and c=12α22α2λ0.

    Proof. According to (4.1), the expression for RicB1 is derived as follows:

    RicB1(e1e2e3)=(α2β212αβαβ12αβ012α2αβ12α2α2β2)(e1e2e3).

    The scalar curvature is sB1=2(α2β2). Now, I can express DB1 as follows:

    {DB1e1=(α2β22(α2β2)λ0c)e1+12αβe2+αβe3,DB1e2=12αβe1(2(α2β2)λ0+c)e2α22e3,DB1e3=αβe1+12α2e2+(α2β22(α2β2)λ0c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B1 on (G1,g), if and only if the following condition satisfies:

    {α(2(α2β2)λ0+c)+2αβ212α3=0,α2β=0,β(2(α2β2)λ0+c)2α2β=0,α(α2β22(α2β2)λ0c)αβ212α3=0,β(α22β22(α2β2)λ0c)=0,α(2(α2β2)λ0+c)12α3+2αβ2=0. (4.2)

    Since α0, the second equation in (4.2) yields β=0. Then, I have c=12α22α2λ0.

    Lemma 11. [13] The Ricci tensor ρB1 concerning the connection B1 of (G2,g) is given by:

    ρB1(ei,ej)=((β2+γ2)000012αγ012αγαβ+γ2). (4.3)

    From this, I derive the following theorem.

    Theorem 12. If (G2,g) constitutes an algebraic Schouten soliton concerning connection B1; then, it fulfills the conditions: α=β=0 and c=γ2+γ2λ0.

    Proof. According to (4.3), the expression for RicB1 is derived as follows:

    RicB1(e1e2e3)=((β2+γ2)000012αγ012αγαβγ2)(e1e2e3).

    The scalar curvature is sB1=(β2+γ2+αβ). Now, I can express DB1 as follows:

    {DB1e1=(β2+γ2(β2+γ2+αβ)λ0+c)e1,DB1e2=((β2+γ2+αβ)λ0c)e2+12αγe3,DB1e3=12αγe2(αβ+γ2(β2+γ2+αβ)λ0+c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B1 on (G2,g), if and only if the following condition satisfies:

    {α(β2+γ2(β2+γ2+αβ)λ0+c)+12αβγ=0,β((β2+γ2+αβ)λ0c)+αγ2=0,β(β2+2γ2+αβ(β2+γ2+αβ)λ0+c)αγ2=0,γ(β2+γ2(β2+γ2+αβ)λ0+c)+12αβγ=0,α(αββ2(β2+γ2+αβ)λ0+c)=0. (4.4)

    By solving (4.4), I get α=β=0, c=γ2+γ2λ0.

    Lemma 13. [13] The Ricci tensor ρB1 concerning connection B1 of (G3,g) is given by:

    ρB1(ei,ej)=(βγ0000000αβ). (4.5)

    From this, I derive the following theorem.

    Theorem 14. If (G3,g) constitutes an algebraic Schouten soliton concerning connection B1; then, one of the following cases holds:

    i. α=β=γ=0, for all c;

    ii. α0, β=γ=0, c=0;

    iii. α=0, β0, γ=0, c=0;

    iv. α0, β0, γ=0, c=αβλ0;

    v. α=β=0, γ0, c=0, ;

    vi. α0, β=0, γ0, c=0;

    vii. α=0, β0, γ0, c=βγ+βγλ0.

    Proof. According to (4.5), the expression for RicB1 is derived as follows:

    RicB1(e1e2e3)=(βγ0000000αβ)(e1e2e3).

    The scalar curvature is sB1=(βγ+αβ). Now, I can express DB1 as follows:

    {DB1e1=(βγ(βγ+αβ)λ0+c)e1,DB1e2=((βγ+αβ)λ0c)e2,DB1e3=(αβ(βγ+αβ)λ0+c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B1 on (G3,g), if and only if the following condition satisfies:

    {γ(βγαβ(βγ+αβ)λ0+c)=0,β(αβ+βγ(βγ+αβ)λ0+c)=0,α(αββγ(βγ+αβ)λ0+c)=0. (4.6)

    Assume first that γ=0; then, (4.6) reduces to:

    {β(αβαβλ0+c)=0,α(αβαβλ0+c)=0.

    Then, I have Cases iiv.

    Now, let γ0. From the last two equations in (4.6), I obtain αβγ=0. If β=0, then it follows that c=0. Therefore, Cases v and vi are valid. If β0, we deduce c=βγ+βγλ0; then, for Case vii, system (4.6) holds.

    Lemma 15. [13] The Ricci tensor ρB1 concerning connection B1 of (G4,g) is given by:

    ρB1(ei,ej)=((βη)2000012α012ααβ+1). (4.7)

    From this, I derive the following theorem.

    Theorem 16. If (G4,g) constitutes an algebraic Schouten soliton concerning connection B1; then, it fulfills the conditions: β=η, α=β and c=0.

    Proof. According to (4.7), the expression for RicB1 is derived as follows:

    RicB1(e1e2e3)=((βη)2000012α012ααβ1)(e1e2e3).

    The scalar curvature is sB1=((βη)2+αβ+1). Now, I can express DB1 as follows:

    {DB1e1=((βη)2((βη)2+αβ+1)λ0+c)e1,DB1e2=(((βη)2+αβ+1)λ0c)e212αe3,DB1e3=12α(αβ+1((βη)2+αβ+1)λ0+c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B1 on (G4,g), if the following condition satisfies:

    {(βη)2((βη)2+αβ+1)λ0+cα(ηβ)=0,(2ηβ)((βη)2αβ1((βη)2+αβ+1)λ0+c)+α=0,β((βη)2+αβ+1((βη)2+αβ+1)λ0+c)α=0,α(αβ+1(βη)2((βη)2+αβ+1)λ0+c)=0. (4.8)

    By solving the above system, I obtain the solutions β=η, α=β and c=0. In this case, the theorem is true.

    Lemma 17. [13] The Ricci tensor ρB1 concerning connection B1 of (G5,g) is given by:

    ρB1(ei,ej)=(α20000000(βγ+α2)). (4.9)

    From this, I derive the following result.

    Theorem 18. If (G5,g) constitutes an algebraic Schouten soliton concerning connection B1; then, one of the following cases holds:

    i. α=β=γ=0, c=0;

    ii. α=β=0, γ0, c=0;

    iii. α=0, β0, γ0, c=βγ+βγλ0;

    iv. α0, β=δ=γ=0, c=α22α2λ0;

    v. α0, β=γ=0, δ0, c=α22α2λ0.

    Proof. From (4.9), I have the expression for RicB1 as follows:

    RicB1(e1e2e3)=(α20000000(βγ+α2))(e1e2e3).

    The scalar curvature is sB1=(2α2+βγ). Now, I can express DB1 as follows:

    {DB1e1=(α2(2α2+βγ)λ0c),DB1e2=((2α2+βγ)λ0+c)e2DB1e3=(βγ+α2(2α2+βγ)λ0c)e3.

    Therefore, based on Eq (2.4), there exists an algebraic Schouten soliton associated to B1 on (G5,g), if and only if the following condition satisfies:

    {α(βγ+α2(βγ+2α2)λ0c)=0,β(βγ+2α2(βγ+2α2)λ0c)=0,γ(βγ(βγ+2α2)λ0c)=0,δ(βγ+α2(βγ+2α2)λ0c)=0. (4.10)

    Assume first that α=0, so I have:

    {β(βγβγλ0c)=0,γ(βγβγλ0c)=0,δ(βγβγλ0c)=0. (4.11)

    Then, for Cases iiii, system (4.10) holds.

    Now, I let α0. The second equation in (4.10) leads to β=0, then system (4.10) reduces to:

    {α(α22α2λ0c)=0,γ(2α2λ0+c)=0,δ(α22α2λ0c)=0. (4.12)

    This proves that Cases iv and v hold.

    Lemma 19. [13] The Ricci tensor ρB1 concerning connection B1 of (G6,g) is given by:

    ρB1(ei,ej)=((δ2+βγ)0000000δ2). (4.13)

    From this, I derive the following result.

    Theorem 20. If (G6,g) constitutes an algebraic Schouten soliton concerning connection B1; then, one of the following cases holds:

    1) α=β=γ=0, δ0, c=δ2+2δ2λ0;

    2) α0, β=δ=γ=0, c=0;

    3) α0, β0, δ=γ=0, c=0;

    4) α0, β=γ=0, δ0, c=δ2+2δ2λ0.

    Proof. From (4.13), I have the expression for RicB1 as follows:

    RicB1(e1e2e3)=((δ2+βγ)0000000δ2)(e1e2e3).

    The scalar curvature is sB1=(2δ2+βγ). Now, I can express DB1 as follows:

    {DB1e1=(δ2+βγ(2δ2+βγ)λ0+c)e1,DB1e2=((2δ2+βγ)λ0c)e2,DB1e3=(δ2(2δ2+βγ)λ0+c).

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B1 on (G6,g), if and only if the following condition satisfies:

    {α(δ2+βγ(2δ2+βγ)λ0+c)=0,β(βγ(2δ2+βγ)λ0+c)=0,γ(2δ2+βγ(2δ2+βγ)λ0+c)=0,δ(δ2+βγ(2δ2+βγ)λ0+c)=0. (4.14)

    Assume first α=0. Then, α+δ0 and αγβδ=0 leads to β=0 and δ0. Therefore, system (4.14) reduces to:

    {γ(2δ22δ2λ0+c)=0,δ(δ22δ2λ0+c)=0. (4.15)

    Then, for Case 1), system (4.14) holds.

    Now, let α0. Suppose δ=0, from the equations in (4.14) I can derive that γ=0. Then, I have c=0. Consequently, I have Cases 2) and 3). If δ0, the equations in (4.14) imply that γ=0. Substituting into the second equation in (4.14) leads to β=0. Then, we have 4).

    Lemma 21. [13] The Ricci tensor ρB1 concerning connection B1 of (G7,g) is given by:

    ρB1(ei,ej)=(α2β(α+δ)12β(δα)β(α+δ)0δ2+12(βγ+αδ)12β(δα)δ2+12(βγ+αδ)β2α2βγ). (4.16)

    From this, we derive the following theorem.

    Theorem 22. If (G7,g) constitutes an algebraic Schouten soliton concerning connection B1; then, it fulfills the conditions: α=2δ, β=γ=0, c=α222α2λ0.

    Proof. From (4.16), I have the expression for RicB1 as follows:

    RicB1(e1e2e3)=(α2β(α+δ)12β(δα)β(α+δ)0δ212(βγ+αδ)12β(δα)δ2+12(βγ+αδ)β2+α2+βγ)(e1e2e3).

    The scalar curvature is sB1=2α2β2+βγ. Now, I can express DB1 as follows:

    {DB1e1=(α2(2α2β2+βγ)λ0c)e1+β(α+δ)e212β(δα)e3,DB1e2=β(α+δ)e1((2α2β2+βγ)λ0+c)e2(δ2+12(βγ+αδ))e3,DB1e3=12β(δα)e1+(δ2+12(βγ+αδ))e2+(α2β2+βγ(2α2β2+βγ)λ0c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B1 on (G7,g), if and only if the following condition satisfies:

    {α(sB1λ0+c)12β(β+γ)(δα)β2(α+δ)α(δ2+12(βγ+αδ))=0,β(α2+sB1λ0+c)+12βδ(δα)+αβ(α+δ)=0,β(β2+βγ+sB1λ0+c)+12β(δα)22β(δ2+12(βγ+αδ))=0,α(α2+βγβ2sB1λ0c)+β(γβ)(α+δ)β2(δα)2α(δ2+βγ+αδ2)=0,β(2α2+βγβ2sB1λ0c)+β(δα)(α+δ)2β(δ2+βγ+αδ2)=0,β(α2sB1λ0c)+βδ(α+δ)+12αβ(δα)=0,γ(β2+βγsB1λ0c)+β(αδ)(α+δ)12β(αδ)2=0,δ(α2β2+βγsB1λ0c)+β(βγ)(α+δ)+β2(δα)2δ(δ2+βγ+αδ2)=0,δ(sB1λ0+c)+β2(α+δ)+12β(β+γ)(δα)+δ(δ2+12(βγ+αδ))=0. (4.17)

    Since αγ=0 and α+δ0, I now analyze the system under different assumptions.

    First, if α=0 and γ0, from the equations above, and after simple calculation, we have β=0. Furthermore, the seventh and eighth equations imply that δ3=0, which leads to a contradiction.

    Second, if α0 and γ=0. the seventh equation gives rise to three possible subcases: β=0, α=δ, or α+3δ=0. Initially, let's assume β=0. In this case, the equations in system (4.17), imply that (α2δ)(α+δ)=0, leading to α=2δ, and the theorem is true. Next, I consider the subcase where α=δ and β0. Then, the fifth and sixth equations result in 4α2+β2=0, which leads to a contradiction. Additionally, I consider that α+3δ=0 and β0. The first and last equations provide (2α2β2+βγ)λ0+c=0. Substituting this into the third equation derives β=0, which leads to a contradiction.

    Finally, if α=γ=0. The first equation in system (4.17) leads to β=0. Then, using the equations in (4.17), we have δ3=0, which leads to a contradiction.

    In this section, I formulate the algebraic criterion necessary for a three-dimensional Lorentzian Lie group to have an algebraic Schouten soliton related to the given Bott connection B2. Let us recall the Bott connection with the third distribution, denoted by B2. Consider a smooth manifold (M,g) that is equipped with the Levi-Civita connection , and let TM represent its tangent bundle, spanned by {e1,e2,e3}. I introduce a distribution D2 spanned by {e2,e3} and its orthogonal complement D2, which is spanned by {e1}. The Bott connection B2 associated with the distribution D2 is then defined as follows:

    B2XY={πD2(LCXY),X,YΓ(D2),πD2([X,Y]),XΓ(D2),YΓ(D2),πD2([X,Y]),XΓ(D2),YΓ(D2),πD2(LCXY),X,YΓ(D2), (5.1)

    where πD2 (respectively, πD2) denotes the projection onto D2 (respectively, D2).

    Lemma 23. [13] The Ricci tensor ρB2 concerning connection B2 of (G1,g) is given by:

    ρB2(ei,ej)=(012αβ12αβ12αββ2012αβ0β2). (5.2)

    From this, I derive the following theorem.

    Theorem 24. If (G1,g) constitutes an algebraic Schouten soliton concerning connection B2; then, it fulfills the conditions: α0, β=0 and c=0.

    Proof. According to (5.2), the expression for RicB2 is derived as follows:

    RicB2(e1e2e3)=(012αβ12αβ12αββ2012αβ0β2)(e1e2e3).

    The scalar curvature is sB2=2β2. Now, I can express DB2 as follows:

    {DB2e1=(2β2λ0c)e1+12αβe2+12αβe3,DB2e2=12αβe1(β22β2λ0+c)e2,DB2e3=12αβe1(β22β2λ0+c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B2 on (G1,g), if and only if the following condition satisfies:

    {α(β22β2λ0+c)+αβ2=0,α2β=0,α(2β2λ0+c)αβ2=0,β(2β2λ0+c)+α2β=0. (5.3)

    By solving (5.3), I have α0, β=0 and c=0.

    Lemma 25. [13] The Ricci tensor ρB2 concerning connection B2 of (G2,g) is given by:

    ρB2(ei,ej)=(0000αβαγ0αγαβ). (5.4)

    From this, I derive the following theorem.

    Theorem 26. If (G2,g) constitutes an algebraic Schouten soliton concerning connection B2; then, one of the following cases holds:

    1) α=0, β=0, c=0;

    2) α=0, β0, c=0.

    Proof. From (5.4), I have the expression for RicB2 as follows:

    RicB2(e1e2e3)=(0000αβαγ0αγαβ)(e1e2e3).

    The scalar curvature is sB2=2αβ. Now, I can express DB2 as follows:

    {DB2e1=(2αβλ0c)e1,DB2e2=(αβ2αβλ0+c)e2+αγe3,DB2e3=αγe2(αβ2αβλ0+c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B2 on (G2,g), if and only if the following condition satisfies:

    {γ(2αβλ0+c)2αβγ=0,β(2αβλ0+c)2αγ2=0,α(2αβ2αβλ0+c)=0. (5.5)

    Since γ0, I assume first that α=0. Under this assumption, the first two equations in (5.5) yield c=0. Therefore, Cases 1) and 2) hold. Now, let α0, then I have β=0, and the second equation in (5.5) becomes 2αγ2=0, which is a contradiction.

    Lemma 27. [13] The Ricci tensor ρB2 concerning connection B2 of (G3,g) is given by:

    ρB2(ei,ej)=(00000000αβ). (5.6)

    From this, I derive the following theorem.

    Theorem 28. If (G3,g) constitutes an algebraic Schouten soliton concerning connection B2; then, one of the following cases holds:

    1) α=β=γ=0, for all c;

    2) α=γ=0, β0, c=0;

    3) α0, β=γ=0, c=0;

    4) α0, β0, γ=0, c=αβ+αβλ0;

    5) α=β=0, γ0, c=0.

    Proof. According to (5.6), the expression for RicB2 is derived as follows:

    RicB2(e1e2e3)=(00000000αβ)(e1e2e3).

    The scalar curvature is sB2=αβ. Now, I can express DB2 as follows:

    {DB2e1=(αβλ0c)e1,DB2e2=(αβλ0c)e2,DB2e3=(αβαβλ0+c)e3. (5.7)

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B2 on (G3,g), if and only if the following condition satisfies:

    {γ(αβαβλ0+c)=0,β(αβαβλ0+c)=0,α(αβαβλ0+c)=0. (5.8)

    Assuming that γ=0, I have

    {β(αβαβλ0+c)=0,α(αβαβλ0+c)=0. (5.9)

    Then, for Cases 1)–4), system (5.8) holds. Now, let γ0, then we have α=β=0. Then, the Case 5) is true.

    Lemma 29. [13] The Ricci tensor ρB2 concerning connection B2 of (G4,g) is given by:

    ρB2(ei,ej)=(0000α(2ηβ)α0ααβ). (5.10)

    From this, I derive the following theorem.

    Theorem 30. If (G4,g) constitutes an algebraic Schouten soliton concerning connection B2, then one of the following cases holds:

    1) α=0, c=0;

    2) α0, β=η, c=0.

    Proof. From (5.10), I have the expression for RicB2 as follows:

    RicB2(e1e2e3)=(0000α(2ηβ)α0ααβ)(e1e2e3).

    The scalar curvature is sB2=α(2ηβ)αβ. Now, I can express DB2 as follows:

    {DB2e1=((α(2ηβ)αβ)λ0+c)e1,DB2e2=(α(2ηβ)(α(2ηβ)αβ)λ0c)e2αe3,DB2e3=αe2(αβ+(α(2ηβ)αβ)λ0+c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B2 on (G4,g), if and only if the following condition satisfies:

    {2α(ηβ)((α(2ηβ)αβ)λ0+c)=0,(2ηβ)(2αη(α(2ηβ)αβ)λ0c)2α=0,β(2αη+(α(2ηβ)αβ)λ0+c)2α=0,α(α(2ηβ)αβ(α(2ηβ)αβ)λ0c)=0. (5.11)

    Assume first that α=0, then system (5.11) holds trivially. Therefore, Case 1) holds. Now, let α0 I have β=η; then, for Case 2), system (5.11) holds.

    Lemma 31. [13] The Ricci tensor ρB2 concerning connection B2 of (G5,g) is given by:

    ρB2(ei,ej)=(0000δ2000(βγ+δ2)). (5.12)

    From this, I derive the following theorem.

    Theorem 32. If (G5,g) constitutes an algebraic Schouten soliton concerning connection B2, then one of the following cases holds:

    i. α=β=γ=0, δ0, c=δ22δ2λ0;

    ii. α0, β=δ=γ=0, c=0;

    iii. α0, β0, δ=γ=0, c=0;

    iv. α0, β=γ=0, δ0, c=δ22δ2λ0.

    Proof. From (5.12), I have the expression for RicB2 as follows:

    RicB2(e1e2e3)=(0000δ2000βγ+δ2)(e1e2e3).

    The scalar curvature is sB2=βγ+2δ2. Now, I can express DB2 as follows:

    {DB2e1=((βγ+2δ2)λ0+c)e1,DB2e2=(δ2(βγ+2δ2)λ0c)e2,DB2e3=(βγ+δ2(βγ+2δ2)λ0c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B2 on (G5,g), if and only if the following condition satisfies:

    {α(βγ+δ2(βγ+2δ2)λ0c)=0,β(βγ(βγ+2δ2)λ0c)=0,γ(βγ+2δ2(βγ+2δ2)λ0c)=0,δ(βγ+δ2(βγ+2δ2)λ0c)=0. (5.13)

    Let α=0, then I have β=0 and δ0. In this case, (5.13) reduces to:

    {γ(2δ22δ2λ0c)=0,δ(δ22δ2λ0c)=0. (5.14)

    Therefore, I conclude that γ=0, and we have Case i.

    Next, I consider the case where α0. By combining the first and third equations from (5.13), we obtain γδ2=0. If γ=δ=0, then c=0. Therefore, Cases ii and iii hold. If γ=0 and δ0, then β=0. Therefore, Case iv holds.

    Lemma 33. [13] The Ricci tensor ρB2 concerning connection B2 of (G6,g) is given by:

    ρB2(ei,ej)=(000000000). (5.15)

    From this, I derive the following theorem.

    Theorem 34. If (G6,g) constitutes an algebraic Schouten soliton concerning connection B2, then we have c=0.

    Proof. According to (5.15), the expression for RicB2 is derived as follows:

    RicB2(e1e2e3)=(000000000)(e1e2e3).

    The scalar curvature is sB2=0. Now, I can express DB2 as follows:

    {DB2e1=ce1,DB2e2=ce2,DB2e3=ce3.

    Hence, by (2.4), I have c=0.

    Lemma 35. [13] The Ricci tensor ρB2 concerning connection B2 of (G7,g) is given by:

    ρB2(ei,ej)=(0000βγβγ0βγβγ). (5.16)

    From this, I derive the following theorem.

    Theorem 36. If (G7,g) constitutes an algebraic Schouten soliton concerning connection B2, then one of the following cases holds:

    1) α=β=0, γ0, c=0;

    2) α0, γ=0, c=0;

    3) α=γ=0, c=0.

    Proof. From (5.16), I have the expression for RicB2 as follows:

    RicB2(e1e2e3)=(0000βγβγ0βγβγ)(e1e2e3).

    The scalar curvature is sB2=0. Now, I can express DB2 as follows:

    {DB2e1=(sλ0+c)e1,DB2e2=(βγ+sλ0+c)e2βγe3,DB2e3=βγe2+(βγsλ0c)e3.

    Therefore, based on Eq (2.4), there is an algebraic Schouten soliton associated with B2 on (G7,g), if and only if the following condition satisfies:

    {α(βγ+c)αβγ=0,βc=0,β(2βγ+c)2β2γ=0,α(βγc)=αβγ,βc+2β2γ=0,γc=0,δ(βγ+c)+βγδ=0,δ(βγ+c)βγδ=0. (5.17)

    Since αγ=0 and α+δ0, I now analyze the system under different assumptions.

    First, if α=0 and γ0, under this assumption, the fifth and sixth equations of (5.17) jointly imply that β=c=0. Therefore, Case 1) holds.

    Second, if α0 and γ=0, then the first equation of (5.17) gives c=0, and for Case 2), system (5.17) holds.

    Finally, if α=γ=0, then δ0, and the last equation of (5.17) gives c=0. Therefore, Case 3) holds.

    I present algebraic conditions for three-dimensional Lorentzian Lie groups to be an algebraic Schouten soliton associated with the Bott connection, considering three distributions. The main result indicates that G4 and G7 do not have such solitons with the first distribution, while the result for G5 with the first distribution is trivial, and the other cases all possess algebraic Schouten solitons. In the future, we will explore algebraic Schouten solitons in higher dimensions, as in [24,25].

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors deeply appreciate the anonymous reviewers for their insightful feedback and valuable suggestions, greatly enhancing our paper.

    The authors declare there is no conflicts of interest.



    [1] S. Li, W. Gong, Q. Gu, A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models, Renew. Sustain. Energy Rev., 141 (2021), 110828. doi: 10.1016/j.rser.2021.110828. doi: 10.1016/j.rser.2021.110828
    [2] G. Xiong, J. Zhang, D. Shi, Y. He, Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm, Energy Convers. Manage., 174 (2018), 388–405. doi: 10.1016/j.enconman.2018.08.053. doi: 10.1016/j.enconman.2018.08.053
    [3] T. Ayodele, A. Ogunjuyigbe, E. Ekoh, Evaluation of numerical algorithms used in extracting the parameters of a single-diode photovoltaic model, Sustain. Energy Technol. Assess, 13 (2016), 51–59. doi: 10.1016/j.seta.2015.11.003. doi: 10.1016/j.seta.2015.11.003
    [4] T. Babu, J. Ram, K. Sangeetha, A. Laudani, N. Rajasekar, Parameter extraction of two diode solar pv model using fireworks algorithm, Sol. Energy, 140 (2016), 265–276. doi: 10.1016/j.solener.2016.10.044. doi: 10.1016/j.solener.2016.10.044
    [5] S. Li, W. Gong, X. Yan, C. Hu, D. Bai, L. Wang, Parameter estimation of photovoltaic models with memetic adaptive differential evolution, Sol. Energy, 190 (2019), 465–474. doi: 10.1016/j.solener.2019.08.022. doi: 10.1016/j.solener.2019.08.022
    [6] T. Easwarakhanthan, J. Bottin, I. Bouhouch, C. Boutrit, Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers, Int. J. Sol. Energy, 4 (1986), 1–12. doi: 10.1080/01425918608909835. doi: 10.1080/01425918608909835
    [7] A. Conde, F. S ˊa nchez, J. Muci, New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated characteristics, Sol. Energy Mater. Sol. Cells, 90 (2006), 352–361. doi: 10.1016/j.solmat.2005.04.023. doi: 10.1016/j.solmat.2005.04.023
    [8] R. Messaoud, Extraction of uncertain parameters of single-diode model of a photovoltaic panel using simulated annealing optimization, Energy Rep., 6 (2020), 350–357. doi: 10.1016/j.egyr.2020.01.016. doi: 10.1016/j.egyr.2020.01.016
    [9] M. AlHajri, K. Naggar, M. AlRashidi, A. Othman, Optimal extraction of solar cell parameters using pattern search, Renew. Energy, 44 (2012), 238–245. doi: 10.1016/j.renene.2012.01.082. doi: 10.1016/j.renene.2012.01.082
    [10] S. Ebrahimi, E. Salahshour, M. Malekzadeh, F. Gordillo, Parameters identification of pv solar cells and modules using flexible particle swarm optimization algorithm, Energy, 179 (2019), 358–372. doi: 10.1016/j.energy.2019.04.218. doi: 10.1016/j.energy.2019.04.218
    [11] S. Li, Q. Gu, W. Gong, B. Ning, An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models, Energy Convers. Manage., 205 (2020), 112443. doi: 10.1016/j.enconman.2019.112443. doi: 10.1016/j.enconman.2019.112443
    [12] Z. Yan, S. Li, W. Gong, An adaptive differential evolution with decomposition for photovoltaic parameter extraction, Math. Biosci. Eng., 18 (2021), 7363–7388. doi: 10.3934/mbe.2021364. doi: 10.3934/mbe.2021364
    [13] S. Li, W. Gong, L. Wang, X. Yan, C. Hu, A hybrid adaptive teaching-learning-based optimization and differential evolution for parameter identification of photovoltaic models, Energy Convers. Manage., 225 (2020), 113474. doi: 10.1016/j.enconman.2020.113474. doi: 10.1016/j.enconman.2020.113474
    [14] D. Oliva, M. Aziz, A. Hassanien, Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm, Appl. Energy, 200 (2017), 141–154. doi: 10.1016/j.apenergy.2017.05.029. doi: 10.1016/j.apenergy.2017.05.029
    [15] X. Chen, K. Yu, W. Du, W. Zhao, G. Liu, Parameters identification of solar cell models using generalized oppositional teaching learning based optimization, Energy, 99 (2016), 170–180. doi: 10.1016/j.energy.2016.01.052. doi: 10.1016/j.energy.2016.01.052
    [16] K. Yu, J. Liang, B. Qu, X. Chen, H. Wang, Parameters identification of photovoltaic models using an improved jaya optimization algorithm, Energy Convers. Manage., 150 (2017), 742–753. doi: 10.1016/j.enconman.2017.08.063. doi: 10.1016/j.enconman.2017.08.063
    [17] K. Yu, J. Liang, B. Qu, Z. Cheng, H. Wang, Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models, Appl. Energy, 226 (2018), 408–422. doi: 10.1016/j.apenergy.2018.06.010. doi: 10.1016/j.apenergy.2018.06.010
    [18] X. Chen, B. Xu, C. Mei, Y. Ding, K. Li, Teaching-learning-based artificial bee colony for solar photovoltaic parameter estimation, Appl. Energy, 212 (2018), 1578–1588. doi: 10.1016/j.apenergy.2017.12.115. doi: 10.1016/j.apenergy.2017.12.115
    [19] K. Yu, B. Qu, C. Yue, S. Ge, X. Chen, J. Liang, A performance-guided jaya algorithm for parameters identification of photovoltaic cell and module, Appl. Energy, 237 (2019), 241–257. doi: 10.1016/j.apenergy.2019.01.008. doi: 10.1016/j.apenergy.2019.01.008
    [20] S. Li, W. Gong, X. Yan, C. Hu, D. Bai, L. Wang, et al., Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization, Energy Convers. Manage., 186 (2019), 293–305. doi: 10.1016/j.enconman.2019.02.048. doi: 10.1016/j.enconman.2019.02.048
    [21] R. Rao, Rao algorithms: three metaphor-less simple algorithms for solving optimization problems, Int. J. Ind. Eng. Comput., 11 (2020), 107–130. doi: 10.5267/j.ijiec.2019.6.002. doi: 10.5267/j.ijiec.2019.6.002
    [22] R. Rao, R. Pawar, Constrained design optimization of selected mechanical system components using rao algorithms, Appl. Soft Comput., 89 (2020), 106141. doi: 10.1016/j.asoc.2020.106141. doi: 10.1016/j.asoc.2020.106141
    [23] M. Srikanth, N. Yadaiah, Analytical tuning rules for reduced-order active disturbance rejection control with fopdt models through multi-objective optimization and multi-criteria decision-making, ISA Trans., 114 (2021), 370–398. doi: 10.1016/j.isatra.2020.12.035. doi: 10.1016/j.isatra.2020.12.035
    [24] L. Wang, Z. Wang, H. Liang, C. Huang, Parameter estimation of photovoltaic cell model with rao-1 algorithm, Optik, 210 (2020), 163846. doi: 10.1016/j.ijleo.2019.163846. doi: 10.1016/j.ijleo.2019.163846
    [25] X. Jian, Y. Zhu, Parameters identification of photovoltaic models using modified rao-1 optimization algorithm, Optik, 231 (2021), 166439. doi: 10.1016/j.ijleo.2021.166439. doi: 10.1016/j.ijleo.2021.166439
    [26] M. Alrashidi, M. Alhajri, K. Elnaggar, A. Alothman, A new estimation approach for determining the i-v characteristics of solar cells, Sol. Energy, 85 (2011), 1543–1550. doi: 10.1016/j.solener.2011.04.013. doi: 10.1016/j.solener.2011.04.013
    [27] K. Naggar, M. AlRashidi, M. AlHajri, A. Othman, Simulated annealing algorithm for photovoltaic parameters identification, Sol. Energy, 86 (2012), 266–274. doi: 10.1016/j.solener.2011.09.032. doi: 10.1016/j.solener.2011.09.032
    [28] A. Askarzadeh, A. Rezazadeh, Parameter identification for solar cell models using harmony search-based algorithms, Sol. Energy, 86 (2012), 3241–3249. doi: 10.1016/j.solener.2012.08.018. doi: 10.1016/j.solener.2012.08.018
    [29] W. Huang, C. Jiang, L. Xue, D. Song, Extracting solar cell model parameters based on chaos particle swarm algorithm, In 2011 International Conference on Electric Information and Control Engineering, pages 398–402, April 2011. doi: 10.1109/ICEICE.2011.5777246.
    [30] K. Ishaque, Z. Salam, S. Mekhilef, A. Shamsudin, Parameter extraction of solar photovoltaic modules using penalty-based differential evolution, Appl. Energy, 99 (2012), 297–308. doi: 10.1016/j.apenergy.2012.05.017. doi: 10.1016/j.apenergy.2012.05.017
    [31] H. Hasanien, Shuffled frog leaping algorithm for photovoltaic model identification, IEEE Trans. Sustain. Energy, 6 (2015), 509–515. doi: 10.1109/TSTE.2015.2389858. doi: 10.1109/TSTE.2015.2389858
    [32] J. Ram, T. Babu, T. Dragicevic, N. Rajasekar, A new hybrid bee pollinator flower pollination algorithm for solar pv parameter estimation, Energy Convers. Manage., 135 (2017), 463–476. doi: 10.1016/j.enconman.2016.12.082. doi: 10.1016/j.enconman.2016.12.082
    [33] K. Yu, X. Chen, X. Wang, Z. Wang, Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization, Energy Convers. Manage., 145 (2017), 233–246. doi: 10.1016/j.enconman.2017.04.054. doi: 10.1016/j.enconman.2017.04.054
    [34] F. Zeng, H. Shu, J. Wang, Y. Chen, B. Yang, Parameter identification of pv cell via adaptive compass search algorithm, Energy Rep., 7 (2021), 275–282. doi: 10.1016/j.egyr.2021.01.069. doi: 10.1016/j.egyr.2021.01.069
    [35] G. Xiong, L. Li, A. Mohamed, X. Yuan, J. Zhang, A new method for parameter extraction of solar photovoltaic models using gaining sharing knowledge based algorithm, Energy Rep., 7 (2021), 3286–3301. doi: 10.1016/j.egyr.2021.05.030. doi: 10.1016/j.egyr.2021.05.030
    [36] W. Li, W. Gong, Differential evolution with quasi-reflection-based mutation, Math. Biosci. Eng., 18 (2021), 2425–2441. doi: 10.3934/MBE.2021123. doi: 10.3934/MBE.2021123
    [37] Q. Pang, X. Mi, J. Sun, H. Qin, Solving nonlinear equation systems via clustering-based adaptive speciation differential evolution, Math. Biosci. Eng., 18 (2021), 6034–6065. doi: 10.3934/MBE.2021302. doi: 10.3934/MBE.2021302
    [38] S. García, D. Molina, M. Lozano, F. Herrera, A study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: a case study on the cec 2005 special session on real parameter optimization, J. Heurist., 15 (2009), 617–644. doi: 10.1007/s10732-008-9080-4. doi: 10.1007/s10732-008-9080-4
    [39] L. Deotti, J. Pereira, I. J ˊe nior, Parameter extraction of photovoltaic models using an enhanced l ˊe vy flight bat algorithm, Energy Convers. Manage., 221 (2020), 113114. doi: 10.1016/j.enconman.2020.113114. doi: 10.1016/j.enconman.2020.113114
    [40] J. Liang, S. Ge, B. Qu, K. Yu, F. Liu, H. Yang, et al., Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models, Energy Convers. Manage., 203 (2020), 112138. doi: 10.1016/j.enconman.2019.112138. doi: 10.1016/j.enconman.2019.112138
    [41] X. Lin, Y. Wu, Parameters identification of photovoltaic models using niche-based particle swarm optimization in parallel computing architecture, Energy, 196 (2020), 117054. doi: 10.1016/j.energy.2020.117054. doi: 10.1016/j.energy.2020.117054
    [42] M. Basset, R. Mohamed, S. Mirjalili, R. Chakrabortty, M. Ryan, Solar photovoltaic parameter estimation using an improved equilibrium optimizer, Sol. Energy, 209 (2020), 694–708. doi: 10.1016/j.solener.2020.09.032. doi: 10.1016/j.solener.2020.09.032
    [43] X. Yang, W. Gong, Opposition-based jaya with population reduction for parameter estimation of photovoltaic solar cells and modules, Appl. Soft Comput., 104 (2021), 107218. doi: 10.1016/j.asoc.2021.107218. doi: 10.1016/j.asoc.2021.107218
    [44] W. Long, T. Wu, M. Xu, M. Tang, S. Cai, Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm, Energy, 229 (2021), 120750. doi: 10.1016/j.energy.2021.120750. doi: 10.1016/j.energy.2021.120750
    [45] Y. Liu, A. Heidari, X. Ye, C. Chi, X. Zhao, C. Ma, et al., Evolutionary shuffled frog leaping with memory pool for parameter optimization, Energy Rep., 7 (2021), 584–606. doi: 10.1016/j.egyr.2021.01.001. doi: 10.1016/j.egyr.2021.01.001
    [46] M. Basset, R. Mohamed, R. Chakrabortty, K. Sallam, M. Ryan, An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations, Energy Convers. Manage., 227 (2021), 113614. doi: 10.1016/j.enconman.2020.113614. doi: 10.1016/j.enconman.2020.113614
    [47] O. Hachana, B. Aoufi, G. Tina, M. Sid, Photovoltaic mono and bifacial module/string electrical model parameters identification and validation based on a new differential evolution bee colony optimizer, Energy Convers. Manage., 248 (2021), 114667. doi: 10.1016/j.enconman.2021.114667. doi: 10.1016/j.enconman.2021.114667
    [48] Y. Zhang, M. Ma, Z. Jin, Comprehensive learning jaya algorithm for parameter extraction of photovoltaic models, Energy, 211 (2020), 118644. doi: 10.1016/j.energy.2020.118644. doi: 10.1016/j.energy.2020.118644
    [49] Y. Zhang, M. Ma, Z. Jin, Backtracking search algorithm with competitive learning for identification of unknown parameters of photovoltaic systems, Expert Syst. Appl., 160 (2020), 113750. doi: 10.1016/j.eswa.2020.113750. doi: 10.1016/j.eswa.2020.113750
    [50] L. Tang, X. Wang, W. Xu, C. Mu, B. Zhao, Maximum power point tracking strategy for photovoltaic system based on fuzzy information diffusion under partial shading conditions, Sol. Energy, 220 (2021), 523–534. doi: 10.1016/j.solener.2021.03.047. doi: 10.1016/j.solener.2021.03.047
    [51] S. Li, W. Gong, L. Wang, X. Yan, C. Hu, Optimal power flow by means of improved adaptive differential evolution, Energy, 198 (2020), 117314. doi: 10.1016/j.energy.2020.117314. doi: 10.1016/j.energy.2020.117314
    [52] S. Li, W. Gong, C. Hu, X. Yan, L. Wang, Q. Gu, Adaptive constraint differential evolution for optimal power flow, Energy, 235 (2021), 121362. doi: 10.1016/j.energy.2021.121362. doi: 10.1016/j.energy.2021.121362
    [53] W. Gong, Z. Liao, X. Mi, L. Wang, Y. Guo, Nonlinear equations solving with intelligent optimization algorithms: a survey, Complex Syst. Model. Simul., 1 (2021), 15–32. doi: 10.23919/CSMS.2021.0002. doi: 10.23919/CSMS.2021.0002
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2774) PDF downloads(115) Cited by(5)

Figures and Tables

Figures(10)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog