In this work we consider the three-dimensional Lie group denoted by $ \mathbb{H}^{2} \times \mathbb{R} $, equipped with left-invariant Riemannian metric. The existence of non-trivial (i.e., not Einstein) Ricci solitons on three-dimensional Lie group $ \mathbb{H}^{2} \times \mathbb{R} $ is proved. Moreover, we show that there are not gradient Ricci solitons.
Citation: Lakehal Belarbi. Ricci solitons of the $ \mathbb{H}^{2} \times \mathbb{R} $ Lie group[J]. Electronic Research Archive, 2020, 28(1): 157-163. doi: 10.3934/era.2020010
In this work we consider the three-dimensional Lie group denoted by $ \mathbb{H}^{2} \times \mathbb{R} $, equipped with left-invariant Riemannian metric. The existence of non-trivial (i.e., not Einstein) Ricci solitons on three-dimensional Lie group $ \mathbb{H}^{2} \times \mathbb{R} $ is proved. Moreover, we show that there are not gradient Ricci solitons.
[1] | Three-dimensional Ricci solitons which project to surfaces. J. Reine Angew. Math. (2007) 608: 65-91. |
[2] | Curvature properties and Ricci soliton of Lorentzian pr-waves manifolds. J. Geom. Phys. (2014) 75: 7-16. |
[3] | Ricci solitons on Lorentzian manifolds with large isometry groups. Bull. Lond. Math. Soc. (2011) 43: 1219-1227. |
[4] | Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups. J. Geom. Phys. (2017) 114: 138-152. |
[5] | On the symmetries of the $Sol_{3}$ Lie group. J. Korean Math. Soc. (2020) 57: 523-537. |
[6] | M. Božek, Existence of generalized symmetric Riemannian spaces with solvable isometry group, Časopis Pěst. Mat., 105 (1980), 368–384. |
[7] | Three-dimensional Lorentzian homogeneous Ricci solitons. Israel J. Math. (2012) 188: 385-403. |
[8] | Ricci solitons on Lorentzian Walker three-manifolds. Acta Math. Hungar. (2011) 132: 269-293. |
[9] | Ricci solitons and geometry of four-dimensional non-reductive homogeneous spaces. Canad. J. Math. (2012) 64: 778-804. |
[10] | G. Calvaruso and A. Fino, Four-dimensional pseudo-Riemannian homogeneous Ricci solitons, Int. J. Geom. Methods Mod. Phys., 12 (2015), 21pp. doi: 10.1142/S0219887815500565 |
[11] | Homogeneous geodesics in solvable Lie groups. Acta. Math. Hungar. (2003) 101: 313-322. |
[12] | H. D. Cao, Recent progress on Ricci solitons, in Recent Advances in Geometric Analysis, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010, 1-38. |
[13] | H. D. Cao, Geometry of complete gradient shrinking Ricci solitons, in Geometry and Analysis, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2011,227-246. |
[14] | Generic properties of homogeneous Ricci solitons. Adv. Geom. (2014) 14: 225-237. |
[15] | Nonlinear models in $2+$ $\varepsilon$ dimensions. Ann. Physics (1985) 163: 318-419. |
[16] | R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and General Relativity, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988,237–262. doi: 10.1090/conm/071/954419 |
[17] | Three manifolds with positive Ricci curvature. J. Differential Geometry (1982) 17: 255-306. |
[18] | Ricci nilsoliton black holes. J. Geom. Phys. (2008) 58: 1253-1264. |
[19] | O. Kowalski, Generalized Symmetric Spaces, Lectures Notes in Mathematics, 805, Springer-Verlag, Berlin-New York, 1980. doi: 10.1007/BFb0103324 |
[20] | Ricci soliton solvmanifolds. J. Reine Angew. Math. (2011) 650: 1-21. |
[21] | On the symmetries of five-dimensional Solvable Lie group. J. Lie Theory (2020) 30: 155-169. |
[22] | Ricci solitons of five-dimensional Solvable Lie group. PanAmer. Math J. (2019) 29: 1-16. |
[23] | Lorentz Ricci solitons on 3-dimensional Lie groups. Geom. Dedicata (2010) 147: 313-322. |
[24] | The existence of soliton metrics for nilpotent Lie groups. Geom. Dedicata (2010) 145: 71-88. |