In this paper, we main consider the non-existence of solutions $ u $ by approximation to the following quasilinear elliptic problem with principal part having degenerate coercivity:
$ \begin{align*} \left \{ \begin{array}{rl} -\text{div}\left(\frac{|\nabla u|^{p-2}\nabla u}{(1+|u|)^{(p-1)\theta}}\right)+|u|^{q-1}u = \lambda, \; &x\in\Omega, \\ u = 0, \; &x\in\partial\Omega, \end{array} \right. \end{align*} $
provided
$ \begin{align*} q>\frac{r(p-1)[1+\theta(p-1)]}{r-p}, \end{align*} $
where $ \Omega $ is a bounded smooth subset of $ \mathbb{R}^N(N>2) $, $ 1<p<N $, $ q>1 $, $ 0\leq\theta<1 $, $ \lambda $ is a measure which is concentrated on a set with zero $ r $ capacity $ (p<r\leq N) $.
Citation: Maoji Ri, Shuibo Huang, Canyun Huang. Non-existence of solutions to some degenerate coercivity elliptic equations involving measures data[J]. Electronic Research Archive, 2020, 28(1): 165-182. doi: 10.3934/era.2020011
In this paper, we main consider the non-existence of solutions $ u $ by approximation to the following quasilinear elliptic problem with principal part having degenerate coercivity:
$ \begin{align*} \left \{ \begin{array}{rl} -\text{div}\left(\frac{|\nabla u|^{p-2}\nabla u}{(1+|u|)^{(p-1)\theta}}\right)+|u|^{q-1}u = \lambda, \; &x\in\Omega, \\ u = 0, \; &x\in\partial\Omega, \end{array} \right. \end{align*} $
provided
$ \begin{align*} q>\frac{r(p-1)[1+\theta(p-1)]}{r-p}, \end{align*} $
where $ \Omega $ is a bounded smooth subset of $ \mathbb{R}^N(N>2) $, $ 1<p<N $, $ q>1 $, $ 0\leq\theta<1 $, $ \lambda $ is a measure which is concentrated on a set with zero $ r $ capacity $ (p<r\leq N) $.
[1] | A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura. Appl. (4), 182 (2003), 53-79. doi: 10.1007/s10231-002-0056-y |
[2] | P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An L1 theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4), 22 (1995), 241-273. |
[3] | P. Bénilan, H. Brézis and M. Crandall, A semilinear equation in $L^1(\mathbb{R}^N)$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 523-555. |
[4] | Some elliptic problems with degenerate coercivity. Adv. Nonlinear Stud. (2006) 6: 1-12. |
[5] | Some cases of weak continuity in nonlinear Dirichlet problems. J. Funct. Anal. (2019) 277: 3673-3687. |
[6] | L. Boccardo and H. Brézis, Some remarks on a class of elliptic equations with degenerate coercivity, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 6 (2003), 521-530. |
[7] | Nonlinear degenerate elliptic problems with $W^{1, 1}_0(\Omega)$ solutions. Manuscripta Math. (2012) 137: 419-439. |
[8] | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. H. Poincaré Anal. Non Linéaire (1996) 13: 539-551. |
[9] | H. Brézis, Nonlinear elliptic equations involving measures, in Contributions to Nonlinear Partial Differential Equations, Res. Notes Math., 89, Pitman, Boston, MA, 1983, 82–89. |
[10] | On the existence of solutions to non-linear degenerate elliptic equations with measures data. Ricerche Mat. (1993) 42: 315-329. |
[11] | G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions for elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 741-808. |
[12] | Exitence results for some nonuniformly elliptic equations with irregular data. J. Math. Anal. Appl. (2001) 257: 100-130. |
[13] | Elliptic equations with degenerate coercivity: Gradient regularity. Acta. Math. Sin. (Engl. Ser.) (2003) 19: 349-370. |
[14] | Quasilinear elliptic equations with exponential nonlinearity and measure data. Math. Methods Appl. Sci. (2020) 43: 2883-2910. |
[15] | Entropy solutions to noncoercive nonlinear elliptic equations with measure data. Electron. J. Differential Equations (2019) 2019: 1-22. |
[16] | Marcinkiewicz estimates for solution to fractional elliptic Laplacian equation. Comput. Math. Appl. (2019) 78: 1732-1738. |
[17] | S. Huang and Q. Tian, Harnack-type inequality for fractional elliptic equations with critical exponent, Math. Methods Appl. Sci., (2020), 1–18. doi: 10.1002/mma.6280 |
[18] | Stability for noncoercive elliptic equations. Electron. J. Differential Equations (2016) 2016: 1-11. |
[19] | Dynamics of an edge-based SEIR model for sexually transmitted diseases. Math. Biosci. Eng. (2020) 17: 669-699. |
[20] | Quelques résultats de Višik sur les problèmes elliptiques semi-linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France (1965) 93: 97-107. |
[21] | X. Li and S. Huang, Stability and bifurcation for a single-species model with delay weak kernel and constant rate harvesting, Complexity, 2019 (2019). doi: 10.1155/2019/1810385 |
[22] | Non-existence of solutions for some nonlinear elliptic equations involving measures. Proc. Roy. Soc. Edinburgh Sect. A (2000) 130: 167-187. |
[23] | Strong stability results for nonlinear elliptic equations with respect to very singular perturbation of the data. Commum. Contemp. Math. (2001) 3: 259-285. |
[24] | Strong stability results for solutions of elliptic equations with power-like lower order terms and measure data. J. Funct. Anal. (2002) 189: 549-566. |
[25] | M. M. Porzio and F. Smarrazzo, Radon measure-valued solutions for some quasilinear degenerate elliptic equations, Ann. Mat. Pura. Appl. (4), 194 (2015), 495-532. doi: 10.1007/s10231-013-0386-y |
[26] | Q. Tian and Y. Xu, Effect of the domain geometry on the solutions to fractional Brezis-Nirenberg problem, J. Funct. Spaces, 2019 (2019), 4pp. doi: 10.1155/2019/1093804 |
[27] | Y. Ye, H. Liu, Y. Wei, M. Ma and K. Zhang, Dynamic study of a predator-prey model with weak Allee effect and delay, Adv. Math. Phys., 2019 (2019), 15pp. doi: 10.1155/2019/7296461 |