This study is devoted to investigating the regularity criterion of the 3D MHD equations in terms of pressure in the framework of anisotropic Lebesgue spaces. The result shows that if a weak solution $ (u, b) $ satisfies
$ \begin{equation} \int_{0}^{T}{\frac{\left\Vert \left\Vert \partial _{3}\pi (\cdot , t)\right\Vert _{L_{x_{3}}^{\gamma }}\right\Vert _{L_{x_{1}x_{2}}^{\alpha }}^{q}}{1+\ln \left( e+\left\Vert \pi (\cdot , t)\right\Vert _{L^{2}}^{2}\right) }}\ dt<\infty , ~~~~~~~~~~~~~~~~~~~(1)\end{equation} $
where
$ \begin{equation*} \frac{1}{\gamma }+\frac{2}{q}+\frac{2}{\alpha } = \lambda \in \lbrack 2, 3)\text{ and }\frac{3}{\lambda }\leq \gamma \leq \alpha <\frac{1}{\lambda -2}, \end{equation*} $
then $ (u, b) $ is regular at $ t = T $, which improve the previous results on the MHD equations
Citation: Ahmad Mohammad Alghamdi, Sadek Gala, Chenyin Qian, Maria Alessandra Ragusa. The anisotropic integrability logarithmic regularity criterion for the 3D MHD equations[J]. Electronic Research Archive, 2020, 28(1): 183-193. doi: 10.3934/era.2020012
This study is devoted to investigating the regularity criterion of the 3D MHD equations in terms of pressure in the framework of anisotropic Lebesgue spaces. The result shows that if a weak solution $ (u, b) $ satisfies
$ \begin{equation} \int_{0}^{T}{\frac{\left\Vert \left\Vert \partial _{3}\pi (\cdot , t)\right\Vert _{L_{x_{3}}^{\gamma }}\right\Vert _{L_{x_{1}x_{2}}^{\alpha }}^{q}}{1+\ln \left( e+\left\Vert \pi (\cdot , t)\right\Vert _{L^{2}}^{2}\right) }}\ dt<\infty , ~~~~~~~~~~~~~~~~~~~(1)\end{equation} $
where
$ \begin{equation*} \frac{1}{\gamma }+\frac{2}{q}+\frac{2}{\alpha } = \lambda \in \lbrack 2, 3)\text{ and }\frac{3}{\lambda }\leq \gamma \leq \alpha <\frac{1}{\lambda -2}, \end{equation*} $
then $ (u, b) $ is regular at $ t = T $, which improve the previous results on the MHD equations