This study is devoted to investigating the regularity criterion of the 3D MHD equations in terms of pressure in the framework of anisotropic Lebesgue spaces. The result shows that if a weak solution (u,b) satisfies
∫T0‖‖∂3π(⋅,t)‖Lγx3‖qLαx1x21+ln(e+‖π(⋅,t)‖2L2) dt<∞, (1)
where
1γ+2q+2α=λ∈[2,3) and 3λ≤γ≤α<1λ−2,
then (u,b) is regular at t=T, which improve the previous results on the MHD equations
Citation: Ahmad Mohammad Alghamdi, Sadek Gala, Chenyin Qian, Maria Alessandra Ragusa. The anisotropic integrability logarithmic regularity criterion for the 3D MHD equations[J]. Electronic Research Archive, 2020, 28(1): 183-193. doi: 10.3934/era.2020012
[1] | Ahmad Mohammad Alghamdi, Sadek Gala, Chenyin Qian, Maria Alessandra Ragusa . The anisotropic integrability logarithmic regularity criterion for the 3D MHD equations. Electronic Research Archive, 2020, 28(1): 183-193. doi: 10.3934/era.2020012 |
[2] | Kun Cheng, Yong Zeng . On regularity criteria for MHD system in anisotropic Lebesgue spaces. Electronic Research Archive, 2023, 31(8): 4669-4682. doi: 10.3934/era.2023239 |
[3] | Wenda Pei, Yong Zeng . Liouville-type theorem for the stationary fractional compressible MHD system in anisotropic Lebesgue spaces. Electronic Research Archive, 2025, 33(3): 1306-1322. doi: 10.3934/era.2025058 |
[4] | Xiaolei Dong . Well-posedness of the MHD boundary layer equations with small initial data in Sobolev space. Electronic Research Archive, 2024, 32(12): 6618-6640. doi: 10.3934/era.2024309 |
[5] | J. Bravo-Olivares, E. Fernández-Cara, E. Notte-Cuello, M.A. Rojas-Medar . Regularity criteria for 3D MHD flows in terms of spectral components. Electronic Research Archive, 2022, 30(9): 3238-3248. doi: 10.3934/era.2022164 |
[6] | Yazhou Wang, Yuzhu Wang . Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199 |
[7] | Jie Qi, Weike Wang . Global solutions to the Cauchy problem of BNSP equations in some classes of large data. Electronic Research Archive, 2024, 32(9): 5496-5541. doi: 10.3934/era.2024255 |
[8] | José Luis Díaz Palencia, Saeed Ur Rahman, Saman Hanif . Regularity criteria for a two dimensional Erying-Powell fluid flowing in a MHD porous medium. Electronic Research Archive, 2022, 30(11): 3949-3976. doi: 10.3934/era.2022201 |
[9] | Wenjuan Liu, Jialing Peng . Analyticity estimates for the 3D magnetohydrodynamic equations. Electronic Research Archive, 2024, 32(6): 3819-3842. doi: 10.3934/era.2024173 |
[10] | Cheng He, Changzheng Qu . Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28(4): 1545-1562. doi: 10.3934/era.2020081 |
This study is devoted to investigating the regularity criterion of the 3D MHD equations in terms of pressure in the framework of anisotropic Lebesgue spaces. The result shows that if a weak solution (u,b) satisfies
∫T0‖‖∂3π(⋅,t)‖Lγx3‖qLαx1x21+ln(e+‖π(⋅,t)‖2L2) dt<∞, (1)
where
1γ+2q+2α=λ∈[2,3) and 3λ≤γ≤α<1λ−2,
then (u,b) is regular at t=T, which improve the previous results on the MHD equations
Let us consider the following Cauchy problem of the incompressible magneto-hydrodynamic (MHD) equations in three-spatial dimensions :
{∂tu+(u⋅∇)u−Δu+∇π−(b⋅∇)b=0,∂tb−Δb+(u⋅∇)b−(b⋅∇)u=0,∇⋅u=∇⋅b=0,u(x,0)=u0(x), b(x,0)=b0(x), | (2) |
where
Due to the importance of both physics and mathematics, there is large literature on the well-posedness for weak solutions of magnetohydrodynamic equations. However, similar to the Navier-Stokes equations (
∂3π∈Lα(0,T;Lβ(R3)),for2α+3β=74,127≤β≤4. | (3) |
Later on, Jia and Zhou [7] improve (3) as
∂3π∈Lα(0,T;Lβ(R3)),for2α+3β=2,3≤β<∞. | (4) |
Recently, some interesting logarithmical pressure regularity criteria of MHD equations are studied. In particular, Benbernou et al. [1] refined (4) by imposing the following regularity criterion
∫T0‖∂3π(⋅,t)‖2λ3−2λLλ1+ln(e+‖b(⋅,t)‖L3) dt<∞ with32<λ≤∞. |
The aim of this paper is to establish the logaritmical regularity criterion in terms of the partial derivative of pressure in the framework of anisotropic Lebesgue space.
Throughout the rest of this paper, we endow the usual Lebesgue space
‖‖h‖Lpxi‖Lqxjxk=(∫R2(∫R|h(x)|pdxi)qpdxjdxk)1q, |
where
Before giving the main result, let us first recall the definition of weak solutions for MHD equations (2).
Definition 1.1 (weak solutions). Let
(ⅰ):
(ⅱ):
(ⅲ):
(ⅳ):
‖u(⋅,t)‖2L2+‖b(⋅,t)‖2L2+2∫t0(‖∇u(⋅,τ)‖2L2+‖∇b(⋅,τ)‖2L2)dτ≤‖u0‖2L2+‖b0‖2L2, |
for all
Now, our result read as follows.
Theorem 1.2. Let
∫T0‖‖∂3π(⋅,t)‖Lγx3‖qLαx1x21+ln(e+‖π(⋅,t)‖2L2) dt<∞, | (5) |
where
1γ+2q+2α=λ∈[2,3) and 3λ≤γ≤α<1λ−2, |
then the weak solution
This allows us to obtain the regularity criterion of weak solutions via only one directional derivative of the pressure. This extends and improve some known regularity criterion of weak solutions in term of one directional derivative, including the notable works of Jia and Zhou [7].
As an application of Theorem 1.2, we also obtain the following regularity criterion of weak solutions.
Corollary 1.3. Let
∫T0‖∂3π(⋅,t)‖qLα1+ln(e+‖π(⋅,t)‖2L2) dt<∞, | (6) |
where
2q+3α=λ∈[2,3) and 3λ≤α<1λ−2, |
then the weak solution
In order to prove the main result, we need to recall the following lemma, which is proved in [9] (see also [8]).
Lemma 1.4. Let us assume that
|∫R3fgφdx1dx2dx3|≤C‖‖∂3φ‖Lγx3‖1rLαx1x2‖‖∂3φ‖Lγx3‖θ(r−1)rLaθ(r−1)x1x2‖‖φ‖Lβx3‖(1−θ)(r−1)rLb(1−θ)(r−1)x1x2×‖f‖r−1rL2‖∂1f‖12rL2‖∂2f‖12rL2‖g‖r−1rL2‖∂1g‖12rL2‖∂2g‖12rL2. |
where
1a+1b=α−1α, | (7) |
and
1γ(r−1)+θγ=1−θβ(γ−1). | (8) |
and
We are now ready to give the proof of Theorem 1.2. Clearly, in order to prove Theorem 1.2, it suffices to show that the assumption (5) ensures the following a priori estimate :
limt→T−(‖u(⋅,t)‖L4+‖b(⋅,t)‖L4)<∞. |
Proof. We first convert the MHD system equations into a symmetric form. Adding and substracting (2)
{∂tw++(w−⋅∇)w+=Δw+−∇π,∂tw−+(w+⋅∇)w−=Δw−−∇π,∇⋅w+=∇⋅w−=0,w+(x,0)=u0+b0,w−(x,0)=u0−b0, | (9) |
with
Next, we establish some fundamental estimates between the pressure
{∇⋅(∂tw++w−⋅∇w+)=∇⋅Δw+−∇⋅(∇π),∇⋅(∂tw−+w+⋅∇w−)=∇⋅Δw−−∇⋅(∇π), |
and hence
Δπ=div(w−⋅∇w+)=div(w+⋅∇w−)=3∑i,j=1∂jw−i⋅∂iw+j, |
where we have used the divergence free condition
‖π‖Lp≤C‖w+‖L2p‖w−‖L2p,. |
Similarly, acting the operator
−Δ∇π=∇div(w−⋅∇w+)=∇div(w+⋅∇w−), |
together with Calderón-Zygmund inequality, implies that for any
‖∇π‖Lp≤C‖w−⋅∇w+‖Lp | (10) |
or
‖∇π‖Lp≤C‖w+⋅∇w−‖Lp. | (11) |
By means of the local existence result, (2) with
limt→T−(‖w+(⋅,t)‖L4+‖w−(⋅,t)‖L4)<∞, |
and thus
We multiply (9)
14ddt(‖w+‖4L4+‖w−‖4L4)+∫R3(|w+|2|∇w+|2+|w−|2|∇w−|2)dx+12(‖∇|w+|2‖2L2+‖∇|w−|2‖2L2)=∫R3πw+⋅∇|w+|2dx+∫R3πw−⋅∇|w−|2dx=I+J |
By Hölder's and Young's inequalities,
I≤C∫R3|π|2|w+|2dx+12∫R3|∇|w+|2|2dx=A1+12∫R3|∇|w+|2|2dx. | (12) |
In the following, we establish the bound of the integral
A1=∫R3|π|2|w+|2dx |
on the right-hand side of (12).
We select that
a=α(γ+αγ−α)α−γ and b=γ+αγ−αα(γ−1) |
in Lemma 1.4, then the selected
‖π‖Lp≤C‖w+‖L2p‖w−‖L2p,‖∇π‖Lp≤C‖w−⋅∇w+‖Lp,‖∇π‖Lp≤C‖w+⋅∇w−‖Lp, |
we can estimate
A1=∫R3|π||π||w+|2dx1dx2dx3≤C‖‖∂3π‖Lγx3‖γγ+β(γ−1)Lαx1x2‖π‖β(γ−1)γ+β(γ−1)Lβ‖π‖α−γ+αβ(γ−1)α(γ+β(γ−1))L2‖∂1π‖γ+αγ−α2α(γ+β(γ−1))L2‖∂2π‖γ+αγ−α2α(γ+β(γ−1))L2×‖|w+|2‖α−γ+αβ(γ−1)α(γ+β(γ−1))L2‖∂1|w+|2‖γ+αγ−α2α(γ+β(γ−1))L2‖∂2|w+|2‖γ+αγ−α2α(γ+β(γ−1))L2≤C‖‖∂3π‖Lγx3‖γγ+β(γ−1)Lαx1x2‖π‖β(γ−1)γ+β(γ−1)Lβ‖w−‖α−γ+αβ(γ−1)α(γ+β(γ−1))L4‖w+‖3(α−γ+αβ(γ−1))α(γ+β(γ−1))L4×‖∇π‖γ+αγ−αα(γ+β(γ−1))L2‖∇|w+|2‖γ+αγ−αα(γ+β(γ−1))L2≤C‖‖∂3π‖Lγx3‖γγ+β(γ−1)Lαx1x2‖π‖β(γ−1)γ+β(γ−1)Lβ‖w−‖α−γ+αβ(γ−1)α(γ+β(γ−1))L4‖w+‖3(α−γ+αβ(γ−1))α(γ+β(γ−1))L4×‖|w+||∇w−|‖γ+αγ−αα(γ+β(γ−1))L2‖∇|w+|2‖γ+αγ−αα(γ+β(γ−1))L2≤C‖‖∂3π‖Lγx3‖αγα−γ+αβ(γ−1)Lαx1x2‖π‖αβ(γ−1)α−γ+αβ(γ−1)Lβ(‖w−‖4L4+‖w+‖4L4)+14(‖|w+||∇w−|‖2L2+‖∇|w+|2‖2L2), |
where
{α=θ(r−1)a,β=(1−θ)(r−1)b,r=αγ+αβ(γ−1)γ+αγ−αθ=α−γαβ(γ−1)+α−γ. | (13) |
According to the fact that
γ<1λ−2⇔λαγ−α−2γ2[(3−λ)αγ−γ+α]<1. |
On the other hand, since
γ≥3λ⇔λαγ−α−2γ≥2α−2γ |
and since
λαγ−α−2γ≥0. |
But you know,
{(3−λ)αγ>0α−γ≥0 |
which implies that
0≤λαγ−α−2γ2[(3−λ)αγ−γ+α]<1, |
and it is clear that
λαγ−α−2γ2[(3−λ)αγ−γ+α]+2(3−λ)αγ−α(λγ−3)2[(3−λ)αγ−γ+α]=1, |
Now using Hölder inequality with exponents
A1≤14(‖|w+||∇w−|‖2L2+‖∇|w+|2‖2L2)+C‖‖∂3π‖Lγx3‖13−λLαx1x2‖π‖L3(‖w−‖4L4+‖w+‖4L4)≤C‖‖∂3π‖Lγx3‖13−λLαx1x2‖w+‖L6‖w−‖L6(‖w−‖4L4+‖w+‖4L4)+14(‖|w+||∇w−|‖2L2+‖∇|w+|2‖2L2)≤C‖‖∂3π‖Lγx3‖13−λLαx1x2‖∇w+‖L2‖∇w−‖L2(‖w−‖4L4+‖w+‖4L4)+14(‖|w+||∇w−|‖2L2+‖∇|w+|2‖2L2)+≤14(‖|w+||∇w−|‖2L2+‖∇|w+|2‖2L2)+C‖‖∂3π‖Lγx3‖13−λLαx1x2(‖∇w+‖2L2+‖∇w−‖2L2)(‖w−‖4L4+‖w+‖4L4), |
when
A1≤14(‖|w+||∇w−|‖2L2+‖∇|w+|2‖2L2)+C(‖‖∂3π‖Lγx3‖2αγλαγ−α−2γLαx1x2+‖π‖2γ(3−λ)2γ(3−λ)−3(γ−1)Lβ)(‖w−‖4L4+‖w+‖4L4)≤14(‖|w+||∇w−|‖2L2+‖∇|w+|2‖2L2)+C(‖‖∂3π‖Lγx3‖2αγλαγ−α−2γLαx1x2+‖w+‖2γ(3−β)2γ(3−λ)−3(γ−1)L2β‖w−‖2γ(3−β)2γ(3−λ)−3(γ−1)L2β)×(‖w−‖4L4+‖w+‖4L4), |
when
A2≤14(‖|w−||∇w+|‖2L2+‖∇|w−|2‖2L2)+C‖‖∂3π‖Lγx3‖13−λLαx1x2‖π‖L3(‖w−‖4L4+‖w+‖4L4)≤C‖‖∂3π‖Lγx3‖13−λLαx1x2‖w+‖L6‖w−‖L6(‖w−‖4L4+‖w+‖4L4)+14(‖|w−||∇w+|‖2L2+‖∇|w−|2‖2L2)≤C‖‖∂3π‖Lγx3‖13−λLαx1x2‖∇w+‖L2‖∇w−‖L2(‖w−‖4L4+‖w+‖4L4)+14(‖|w−||∇w+|‖2L2+‖∇|w−|2‖2L2)≤14(‖|w−||∇w+|‖2L2+‖∇|w−|2‖2L2)+C‖‖∂3π‖Lγx3‖13−λLαx1x2(‖∇w+‖2L2+‖∇w−‖2L2)(‖w−‖4L4+‖w+‖4L4), |
when
A2≤14(‖|w−||∇w+|‖2L2+‖∇|w−|2‖2L2)+C(‖‖∂3π‖Lγx3‖2αγλαγ−α−2γLαx1x2+‖π‖2γ(3−λ)2γ(3−λ)−3(γ−1)Lβ)(‖w−‖4L4+‖w+‖4L4)≤14(‖|w−||∇w+|‖2L2+‖∇|w−|2‖2L2)+C(‖‖∂3π‖Lγx3‖2αγλαγ−α−2γLαx1x2+‖w+‖2γ(3−β)2γ(3−λ)−3(γ−1)L2β‖w−‖2γ(3−β)2γ(3−λ)−3(γ−1)L2β)×(‖w−‖4L4+‖w+‖4L4), |
when
Combining all the estimates from above, we find
ddt(‖w+(⋅,t)‖4L4+‖w−(⋅,t)‖4L4) | (14) |
≤{C‖‖∂3π‖Lγx3‖13−λLαx1x2(‖∇w+‖2L2+‖∇w−‖2L2)(‖w−‖4L4+‖w+‖4L4)+C(‖w−‖4L4+‖w+‖4L4), if γ=α=3λ,(‖‖∂3π‖Lγx3‖2αγλαγ−α−2γLαx1x2+‖w+‖2γ(3−β)2γ(3−λ)−3(γ−1)L2β‖w−‖2γ(3−β)2γ(3−λ)−3(γ−1)L2β)‖u‖4L4+C(‖w−‖4L4+‖w+‖4L4), if 3λ<γ≤α<1λ−2. |
Defining
H(t)=e+‖w+(⋅,t)‖4L4+‖w−(⋅,t)‖4L4, |
and thanks to
1+ln(1+‖π‖2L2)≤1+ln(e+‖w+‖4L4+‖w−‖4L4)≤1+ln(e+‖w+‖4L4+‖w−‖4L4), |
inequality (14) implyes that
ddtH(t)≤{C‖‖∂3π‖Lγx3‖13−λLαx1x21+ln(1+‖π‖2L2)(‖∇w+‖2L2+‖∇w−‖2L2)H(t)(1+lnH(t)), if γ=α=3λ,(‖‖∂3π‖Lγx3‖2αγλαγ−α−2γLαx1x21+ln(1+‖π‖2L2)+‖w+‖2γ(3−β)2γ(3−λ)−3(γ−1)L2β‖w−‖2γ(3−β)2γ(3−λ)−3(γ−1)L2β)H(t)(1+lnH(t)), if 3λ<γ≤α<1λ−2, |
and hence
ddt(1+lnH(t)≤{C(‖∇w+‖2L2+‖∇w−‖2L2)F(t)(1+lnH(t)), if γ=α=3λ,(F(t)+‖w+‖2γ(3−β)2γ(3−λ)−3(γ−1)L2β‖w−‖2γ(3−β)2γ(3−λ)−3(γ−1)L2β)(1+lnH(t)), if 3λ<γ≤α<1λ−2, |
here
F(t)={‖‖∂3π(⋅,t)‖Lγx3‖13−λLαx1x21+ln(1+‖π(⋅,t)‖2L2), if γ=α=3λ,‖‖∂3π(⋅,t)‖Lγx3‖2αγλαγ−α−2γLαx1x21+ln(1+‖π(⋅,t)‖2L2), if 3λ<γ≤α<1λ−2, |
Thanks to
(w+,w−)∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)), | (15) |
together with the interpolation inequality yields that
(w+,w−)∈Ls(0,T;Lr(R3)) with 2s+3r=32 and 2≤r≤6. |
On the other hand, since
γ<1λ−2⇔(3−λ)γγ−1>1 |
and
γ>3λ⇔(3−λ)γγ−1<3, |
it is easy to see that
2<2(3−λ)γγ−1<6 if 3λ<γ≤α<1λ−2 |
and consequently
24γ(3−λ)2(3−λ)γ−3(γ−1)+32γ(3−λ)γ−1=2(3−λ)γ−3(γ−1)2γ(3−λ)+3(γ−1)2γ(3−λ)=32. |
Hence, one has
(w+,w−)∈L4γ(3−λ)2(3−λ)γ−3(γ−1)(0,T;L2γ(3−λ)γ−1(R3)), if 3λ<γ≤α<1λ−2. | (16) |
Applying the Gronwall inequality yields that
ln(H(t))≤C(T,w+0,w−0){exp{Csup0≤t≤TF(t)∫t0(‖∇w+(⋅,τ)‖2L2+‖∇w−(⋅,τ)‖2L2)dτ}, if γ=α=3λ,exp{∫t0((F(τ)+‖w+(⋅,τ)‖2γ(3−β)2γ(3−λ)−3(γ−1)L2β‖w−(⋅,τ)‖2γ(3−β)2γ(3−λ)−3(γ−1)L2β)dτ}, if 3λ<γ≤α<1λ−2, | (17) |
which together with (5) implies that
sup0≤t≤T(‖w+(⋅,t)‖L4+‖w−(⋅,t)‖L4)<∞. | (18) |
Hence, it follows from the triangle inequality and (18) that
sup0≤t≤T‖u(⋅,t)‖L4=12sup0≤t≤T‖(u+b)(⋅,t)+(u−b)(⋅,t)‖L4≤12sup0≤t≤T(‖(u+b)(⋅,t)‖L4+‖(u−b)(⋅,t)‖L4)≤12sup0≤t≤T(‖w+(⋅,t)‖L4+‖w−(⋅,t)‖L4)<∞, |
and
sup0≤t≤T‖b(⋅,t)‖L4=12sup0≤t≤T‖(u+b)(⋅,t)−(u−b)(⋅,t)‖L4≤12sup0≤t≤T(‖(u+b)(⋅,t)‖L4+‖(u−b)(⋅,t)‖L4)≤12sup0≤t≤T(‖w+(⋅,t)‖L4+‖w−(⋅,t)‖L4)<∞. |
Thus,
sup0≤t≤T(‖u(⋅,t)‖L4+‖b(⋅,t)‖L4)<∞. |
This completes the proof of Theorem 1.2.
This work was done while the second author was visiting the Catania University in Italy. He would like to thank the hospitality and support of the University, where this work was completed. This research is partially supported by Piano della Ricerca 2016-2018 - Linea di intervento 2: "Metodi variazionali ed equazioni differenziali". The fourth author wishes to thank the support of "RUDN University Program 5-100". The authors wish to express their thanks to the referee for his/her very careful reading of the paper, giving valuable comments and helpful suggestions.
1. | Youssef Akdim, Rachid Elharch, M. C. Hassib, Soumia Lalaoui Rhali, Theorem of Brezis and Browder type in anisotropic Sobolev spaces, 2023, 72, 0009-725X, 313, 10.1007/s12215-021-00678-8 | |
2. | Saima Rashid, Khadija T. Kubra, Hossein Jafari, Sana Ullah Lehre, A semi‐analytical approach for fractional order Boussinesq equation in a gradient unconfined aquifers, 2022, 45, 0170-4214, 1033, 10.1002/mma.7833 | |
3. | Zhao Guo, Existence and Asymptotic Behaviors of Sign-Changing Solutions for Quasilinear Elliptic Systems, 2022, 45, 0126-6705, 2525, 10.1007/s40840-022-01306-z | |
4. | Mokhtar Naceri, Anisotropic nonlinear weighted elliptic equations with variable exponents, 2023, 0, 1072-947X, 10.1515/gmj-2022-2216 | |
5. | Salah Mahmoud Boulaaras, Abdelbaki Choucha, Mohamed Abdalla, Karthikeyan Rajagopal, Sahar Ahmed Idris, Sundarapandian Vaidyanathan, Blow-Up of Solutions for a Coupled Nonlinear Viscoelastic Equation with Degenerate Damping Terms: Without Kirchhoff Term, 2021, 2021, 1099-0526, 1, 10.1155/2021/6820219 | |
6. | Abdelbaki Choucha, Salah Boulaaras, Asma Alharbi, Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms, 2022, 7, 2473-6988, 4517, 10.3934/math.2022252 | |
7. | J. Bravo-Olivares, E. Fernández-Cara, E. Notte-Cuello, M.A. Rojas-Medar, Regularity criteria for 3D MHD flows in terms of spectral components, 2022, 30, 2688-1594, 3238, 10.3934/era.2022164 | |
8. | Zhao Guo, Existence and uniqueness of time periodic solutions for quantum versions of three-dimensional Schrödinger equations, 2022, 12, 1664-2368, 10.1007/s13324-022-00710-9 | |
9. | Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Youpei Zhang, Anisotropic singular double phase Dirichlet problems, 2021, 14, 1937-1632, 4465, 10.3934/dcdss.2021111 | |
10. | Zdenek Skalak, A new class of regularity criteria for the MHD and Navier–Stokes equations, 2023, 73, 14681218, 103916, 10.1016/j.nonrwa.2023.103916 | |
11. | Zhao Guo, Multiple solutions for fractional elliptic systems, 2024, 0933-7741, 10.1515/forum-2023-0457 |