The purpose of this paper is to prove the well-posedness of the 2D magnetohydrodynamic (MHD) boundary layer equations for small initial data in Sobolev space of polynomial weight and low regularity. Our proofs are based on the paralinearization method and an abstract bootstrap argument. We first obtain the systems (3.3)–(3.6) by paralinearizing and symmetrizing the system (1.2). Then, we establish the estimates of the solution in horizontal direction and vertical direction, respectively. Finally, we prove the well-posedness of the 2D MHD boundary layer equations by an abstract bootstrap argument.
Citation: Xiaolei Dong. Well-posedness of the MHD boundary layer equations with small initial data in Sobolev space[J]. Electronic Research Archive, 2024, 32(12): 6618-6640. doi: 10.3934/era.2024309
The purpose of this paper is to prove the well-posedness of the 2D magnetohydrodynamic (MHD) boundary layer equations for small initial data in Sobolev space of polynomial weight and low regularity. Our proofs are based on the paralinearization method and an abstract bootstrap argument. We first obtain the systems (3.3)–(3.6) by paralinearizing and symmetrizing the system (1.2). Then, we establish the estimates of the solution in horizontal direction and vertical direction, respectively. Finally, we prove the well-posedness of the 2D MHD boundary layer equations by an abstract bootstrap argument.
[1] |
D. Gérard-Varet, M. Prestipino, Formal derivation and stability analysis of boundary layer models in MHD, Z. Angew. Math. Phys., 68 (2017), 76. https://doi.org/10.1007/s00033-017-0820-x doi: 10.1007/s00033-017-0820-x
![]() |
[2] |
C. Liu, F. Xie, T. Yang, MHD Boundary layers theory in Sobolev spaces without monotonicity Ⅰ: Well-Posedness Theory, Commun. Pure Appl. Math., 72 (2019), 63–121. https://doi.org/10.1002/cpa.21763 doi: 10.1002/cpa.21763
![]() |
[3] | L. Prandtl, Über Flüssigkeitsbewegung bei sehr kleiner Reibung, in Verhandlungen des III. Internationalen Mathematiker-Kongresses Heidelberg, (1904), 484–491. |
[4] |
R. Alexandre, Y. Wang, C. Xu, T. Yang, Well-posedness of the Prandtl equation in sobolev spaces, J. Am. Math. Soc., 28 (2015), 745–784. http://doi.org/10.1090/S0894-0347-2014-00813-4 doi: 10.1090/S0894-0347-2014-00813-4
![]() |
[5] |
N. Masmoudi, T. K. Wong, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Commun. Pure Appl. Math., 68 (2015), 1683–1741. https://doi.org/10.1002/cpa.21595 doi: 10.1002/cpa.21595
![]() |
[6] | O. A. Oleinik, V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Routledge, New York, 1999. https://doi.org/10.1201/9780203749364 |
[7] |
C. Liu, D. Wang, F. Xie, T. Yang, Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces, J. Funct. Anal., 279 (2020), 108637. https://doi.org/10.1016/j.jfa.2020.108637 doi: 10.1016/j.jfa.2020.108637
![]() |
[8] |
N. Aarach, Hydrostatic approximation of the 2D MHD system in a thin strip with a small analytic data, J. Math. Anal. Appl., 509 (2022), 125949. https://doi.org/10.1016/j.jmaa.2021.125949 doi: 10.1016/j.jmaa.2021.125949
![]() |
[9] |
X. Yang, P. Huang, Y. He, A Voigt-regularization of the thermally coupled inviscid, resistive magnetohydrodynamic, Int. J. Numer. Anal. Model., 21 (2024), 476–503 https://doi.org/10.4208/ijnam2024-1019 doi: 10.4208/ijnam2024-1019
![]() |
[10] |
F. Xie, T. Yang, Global-in-time stability of 2D MHD boundary layer in the Prandtl-Hartmann regime, SIAM. J. Math. Anal., 50 (2018), 5749–5760. https://doi.org/10.1137/18M1174969 doi: 10.1137/18M1174969
![]() |
[11] |
F. Xie, T. Yang, Lifespan of solutions to MHD Boundary layer equations with analytic perturbation of general shear flow, Acta Math. Appl. Sin. Engl. Ser., 35 (2019), 209–229. https://doi.org/10.1007/s10255-019-0805-y doi: 10.1007/s10255-019-0805-y
![]() |
[12] |
D. Chen, Y. Wang, Z. Zhang, Well-posedness of the Prandtl equation with monotonicity in Sobolev spaces, J. Differ. Equations, 264 (2018), 5870–5893. https://doi.org/10.1016/j.jde.2018.01.024 doi: 10.1016/j.jde.2018.01.024
![]() |
[13] |
Y. Wang, Z. Zhang, Paralinearization method about the well-posedness of the Prandtl equation, Sci. Sin. Math., 51 (2021), 1037–1056. https://doi.org/10.1360/SSM-2020-0231 doi: 10.1360/SSM-2020-0231
![]() |
[14] |
D. Chen, S. Ren, Y. Wang, Z. Zhang, Long time well-posedness of the MHD boundary layer equation in Sobolev space, Anal. Theory Appl., 36 (2020), 1–18. https://doi.org/10.4208/ata.OA-0015 doi: 10.4208/ata.OA-0015
![]() |
[15] |
C. Wang, Y. Wang, On the hydrostatic approximation of the MHD equations in a thin strip, SIAM J. Math. Anal., 54 (2022), 1241–1269. https://doi.org/10.1137/21M1425360 doi: 10.1137/21M1425360
![]() |
[16] |
D. Chen, X. Li, Long time well-posedness of two dimensional Magnetohydrodynamic boundary layer equation without resistivity, Math. Meth. Appl. Sci., 46 (2023), 10186–10202. https://doi.org/10.1002/mma.9110 doi: 10.1002/mma.9110
![]() |
[17] | H. Bahouri, J. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-16830-7 |
[18] |
M. Ignatova, V. Vicol, Almost global existence for the Prandtl boundary layer equations, Arch. Ration. Mech. Anal., 220 (2016), 809–848. https://doi.org/10.1007/s00205-015-0942-2 doi: 10.1007/s00205-015-0942-2
![]() |
[19] | Y. Qin, Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors, Birkhäuser, Basel, 2008. https://doi.org/10.1007/978-3-7643-8814-0 |
[20] | T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, American Mathematical Society, Provindence, 2006. https://doi.org/10.1090/cbms/106 |