Research article Special Issues

The well-posedness for semilinear time fractional wave equations on $ \mathbb R^N $


  • Received: 29 November 2021 Revised: 23 March 2022 Accepted: 26 May 2022 Published: 01 June 2022
  • This paper is concerned with the semilinear time fractional wave equations on the whole Euclidean space, also known as the super-diffusive equations. Considering the initial data in the fractional Sobolev spaces, we prove the local/global well-posedness results of $ L^2 $-solutions for linear and semilinear problems. The methods of this paper rely upon the relevant wave operators estimates, Sobolev embedding and fixed point arguments.

    Citation: Yong Zhou, Jia Wei He, Ahmed Alsaedi, Bashir Ahmad. The well-posedness for semilinear time fractional wave equations on $ \mathbb R^N $[J]. Electronic Research Archive, 2022, 30(8): 2981-3003. doi: 10.3934/era.2022151

    Related Papers:

  • This paper is concerned with the semilinear time fractional wave equations on the whole Euclidean space, also known as the super-diffusive equations. Considering the initial data in the fractional Sobolev spaces, we prove the local/global well-posedness results of $ L^2 $-solutions for linear and semilinear problems. The methods of this paper rely upon the relevant wave operators estimates, Sobolev embedding and fixed point arguments.



    加载中


    [1] G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos, Phys. D., 76 (1994), 110–122. https://doi.org/10.1016/0167-2789(94)90254-2 doi: 10.1016/0167-2789(94)90254-2
    [2] T. Langlands, B. Henry, S. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions, J. Math. Biol., 59 (2009), 761–808. https://doi.org/10.1007/s00285-009-0251-1 doi: 10.1007/s00285-009-0251-1
    [3] T. Langlands, B. Henry, S. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions, SIAM J. Appl. Math., 71 (2011), 1168–1203. https://doi.org/10.1137/090775920 doi: 10.1137/090775920
    [4] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [5] I. Podlubny, Fractional-order systems and $PI^\lambda D^\mu$-controllers, IEEE Trans. Auto. Control, 44 (1999), 208–214. https://doi.org/10.1109/9.739144 doi: 10.1109/9.739144
    [6] M. D. Paola, A. Pirrotta, A. Valenza, Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results, Mech. Mater., 43 (2011), 799–806. https://doi.org/10.1016/j.mechmat.2011.08.016 doi: 10.1016/j.mechmat.2011.08.016
    [7] F. Mainardi, Fractional calculus and waves in linear viscoelasticity, in An Introduction to Mathematical Models, Imperial College Press, London, (2010), 368. https://doi.org/10.1142/p614
    [8] L. Chen, Nonlinear stochastic time-fractional diffusion equations on $\mathbb{R}$: Moments, Hölder regularity and intermittency, Tran. Am. Math. Soc., 369 (2017), 8497–8535. https://doi.org/10.1090/tran/6951 doi: 10.1090/tran/6951
    [9] J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differ. Equations, 263 (2017), 149–201. https://doi.org/10.1016/j.jde.2017.02.030 doi: 10.1016/j.jde.2017.02.030
    [10] R. Zacher, A De Giorgi-Nash type theorem for time fractional diffusion equations, Math. Ann., 356 (2013), 99–146. https://doi.org/10.1007/s00208-012-0834-9 doi: 10.1007/s00208-012-0834-9
    [11] Y. Zhou, J. W. He, B. Ahmad, N. H. Tuan, Existence and regularity results of a backward problem for fractional diffusion equations, Math. Methods Appl. Sci., 42 (2019), 6775–6790. https://doi.org/10.1002/mma.5781 doi: 10.1002/mma.5781
    [12] J. R. Wang, M. Feckan, Y. Zhou, Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions, Bull. Sci. Math., 141 (2017), 727–746. https://doi.org/10.1016/j.bulsci.2017.07.007 doi: 10.1016/j.bulsci.2017.07.007
    [13] Y. Zhou, Infinite interval problems for fractional evolution equations, Mathematics, 10 (2022), 900. https://doi.org/10.3390/math10060900 doi: 10.3390/math10060900
    [14] Y. Zhou, B. Ahmad, A. Alsaedi, Existence of nonoscillatory solutions for fractional neutral differential equations, Appl. Math. Lett., 72 (2017), 70–74. https://doi.org/10.1016/j.aml.2017.04.016 doi: 10.1016/j.aml.2017.04.016
    [15] Y. Zhou, J. N. Wang, The nonlinear Rayleigh-Stokes problem with Riemann- Liouville fractional derivative, Math. Meth. Appl. Sci., 44 (2021), 2431–2438. https://doi.org/10.1002/mma.5926 doi: 10.1002/mma.5926
    [16] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3
    [17] T. M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus with Applications in Mechanics, Wiley-ISTE, 2014.
    [18] Y. Kian, M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations, Fract. Calc. Appl. Anal., 20 (2017), 117–138. https://doi.org/10.1515/fca-2017-0006 doi: 10.1515/fca-2017-0006
    [19] E. Alvarez, G. C. Gal, V. Keyantuo, M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations, Nonlinear Anal., 181 (2019), 24–61. https://doi.org/10.1016/j.na.2018.10.016 doi: 10.1016/j.na.2018.10.016
    [20] E. Otárola, A. J. Salgado, Regularity of solutions to space-time fractional wave equations: a PDE approach, Fract. Calc. Appl. Anal., 21 (2018), 1262–1293. https://doi.org/10.1515/fca-2018-0067 doi: 10.1515/fca-2018-0067
    [21] Y. Zhou, J.W. He, Well-posedness and regularity for fractional damped wave equations, Monatsh. Math., 194 (2021), 425–458. https://doi.org/10.1007/s00605-020-01476-7 doi: 10.1007/s00605-020-01476-7
    [22] V. V. Au, N. D. Phuong, N. H. Tuan, Y. Zhou, Some regularization methods for a class of nonlinear fractional evolution equations, Comput. Math. Appl., 78 (2019), 1752–1771. https://doi.org/10.1016/j.camwa.2019.02.037 doi: 10.1016/j.camwa.2019.02.037
    [23] Y. Li, Y. Wang, W. Deng, Galerkin finite element approximations for stochastic space-time fractional wave equations, SIAM J. Numer. Anal., 55 (2017), 3173–3202. https://doi.org/10.1137/16M1096451 doi: 10.1137/16M1096451
    [24] M. M. Meerschaert, R. L. Schilling, A. Sikorskii, Stochastic solutions for fractional wave equations, Nonlinear Dyn., 80 (2015), 1685–1695. https://doi.org/10.1007/s11071-014-1299-z doi: 10.1007/s11071-014-1299-z
    [25] N. H. Tuan, V. Au, L. N. Huynh, Y. Zhou, Regularization of a backward problem for the inhomogeneous time-fractional wave equation, Math. Methods Appl. Sci., 43 (2020), 5450–5463. https://doi.org/10.1002/mma.6285 doi: 10.1002/mma.6285
    [26] A. V. Van, K. V. H. Thi, A. T. Nguyen, On a class of semilinear nonclassical fractional wave equations with logarithmic nonlinearity, Math. Methods Appl. Sci., 44 (2021), 11022–11045. https://doi.org/10.1002/mma.7466 doi: 10.1002/mma.7466
    [27] M. F. de Alemida, J. C. P. Precioso, Existence and symmetries of solutions in Besov-Morrey spaces for a semilinear heat-wave type equation, J. Math. Anal. Appl., 432 (2015), 338–355. https://doi.org/10.1016/j.jmaa.2015.06.044 doi: 10.1016/j.jmaa.2015.06.044
    [28] M. F. de Alemida, A. Viana, Self-similar solutions for a superdiffusive heat equation with gradient nonlinearity, Elec. J. Differ. Equations, 2016 (2016), 250.
    [29] Q. Zhang, Y. Li, Global well-posedness and blow-up solutions of the Cauchy problem for a time-fractional superdiffusion equation, J. Evol. Equations, 19 (2019), 271–303. https://doi.org/10.1007/s00028-018-0475-x doi: 10.1007/s00028-018-0475-x
    [30] J. D. Djida, A. Fernandez, I. Area, Well-posedness results for fractional semi-linear wave equations, Discrete Cont. Dyn-B, 25 (2020), 569–597. https://doi.org/10.3934/dcdsb.2019255 doi: 10.3934/dcdsb.2019255
    [31] J. Bergh, J. Löfström, Interpolation Spaces: An Introduction, Springer-Verlag, Berlin, 1976. https://doi.org/10.1007/978-3-642-66451-9
    [32] T. Cazenave, Semilinear Schrödinger equations, Am. Math. Soc., 10 (2003). https://doi.org/10.1090/cln/010 doi: 10.1090/cln/010
    [33] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam, 2006.
    [34] H. Pecher, Local solutions of semilinear wave equations in $H^{s+1}$, Math. Meth. Appl. Sci., 19 (1996), 145–170. https://doi.org/10.1002/(SICI)1099-1476(19960125)19:2<145::AID-MMA767>3.0.CO;2-M doi: 10.1002/(SICI)1099-1476(19960125)19:2<145::AID-MMA767>3.0.CO;2-M
    [35] H. Pecher, $L^p$-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. Ⅰ, Math. Z. 150 (1976), 159–183. https://doi.org/10.1007/BF01215233 doi: 10.1007/BF01215233
    [36] E. Zeidler, Nonlinear Functional Analysis and its Application, Springer-Verlag, New York, 1990. https://doi.org/10.1007/978-1-4612-0981-2
    [37] L. C. Evans, Partial Differential Equations, 2nd Edition, American Mathematical Society, 2010.
    [38] T. Cazenave, B. Weissler, The cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807–836. https://doi.org/10.1016/0362-546X(90)90023-A doi: 10.1016/0362-546X(90)90023-A
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1370) PDF downloads(131) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog