This paper is concerned with the semilinear time fractional wave equations on the whole Euclidean space, also known as the super-diffusive equations. Considering the initial data in the fractional Sobolev spaces, we prove the local/global well-posedness results of $ L^2 $-solutions for linear and semilinear problems. The methods of this paper rely upon the relevant wave operators estimates, Sobolev embedding and fixed point arguments.
Citation: Yong Zhou, Jia Wei He, Ahmed Alsaedi, Bashir Ahmad. The well-posedness for semilinear time fractional wave equations on $ \mathbb R^N $[J]. Electronic Research Archive, 2022, 30(8): 2981-3003. doi: 10.3934/era.2022151
This paper is concerned with the semilinear time fractional wave equations on the whole Euclidean space, also known as the super-diffusive equations. Considering the initial data in the fractional Sobolev spaces, we prove the local/global well-posedness results of $ L^2 $-solutions for linear and semilinear problems. The methods of this paper rely upon the relevant wave operators estimates, Sobolev embedding and fixed point arguments.
[1] | G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos, Phys. D., 76 (1994), 110–122. https://doi.org/10.1016/0167-2789(94)90254-2 doi: 10.1016/0167-2789(94)90254-2 |
[2] | T. Langlands, B. Henry, S. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions, J. Math. Biol., 59 (2009), 761–808. https://doi.org/10.1007/s00285-009-0251-1 doi: 10.1007/s00285-009-0251-1 |
[3] | T. Langlands, B. Henry, S. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions, SIAM J. Appl. Math., 71 (2011), 1168–1203. https://doi.org/10.1137/090775920 doi: 10.1137/090775920 |
[4] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[5] | I. Podlubny, Fractional-order systems and $PI^\lambda D^\mu$-controllers, IEEE Trans. Auto. Control, 44 (1999), 208–214. https://doi.org/10.1109/9.739144 doi: 10.1109/9.739144 |
[6] | M. D. Paola, A. Pirrotta, A. Valenza, Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results, Mech. Mater., 43 (2011), 799–806. https://doi.org/10.1016/j.mechmat.2011.08.016 doi: 10.1016/j.mechmat.2011.08.016 |
[7] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity, in An Introduction to Mathematical Models, Imperial College Press, London, (2010), 368. https://doi.org/10.1142/p614 |
[8] | L. Chen, Nonlinear stochastic time-fractional diffusion equations on $\mathbb{R}$: Moments, Hölder regularity and intermittency, Tran. Am. Math. Soc., 369 (2017), 8497–8535. https://doi.org/10.1090/tran/6951 doi: 10.1090/tran/6951 |
[9] | J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differ. Equations, 263 (2017), 149–201. https://doi.org/10.1016/j.jde.2017.02.030 doi: 10.1016/j.jde.2017.02.030 |
[10] | R. Zacher, A De Giorgi-Nash type theorem for time fractional diffusion equations, Math. Ann., 356 (2013), 99–146. https://doi.org/10.1007/s00208-012-0834-9 doi: 10.1007/s00208-012-0834-9 |
[11] | Y. Zhou, J. W. He, B. Ahmad, N. H. Tuan, Existence and regularity results of a backward problem for fractional diffusion equations, Math. Methods Appl. Sci., 42 (2019), 6775–6790. https://doi.org/10.1002/mma.5781 doi: 10.1002/mma.5781 |
[12] | J. R. Wang, M. Feckan, Y. Zhou, Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions, Bull. Sci. Math., 141 (2017), 727–746. https://doi.org/10.1016/j.bulsci.2017.07.007 doi: 10.1016/j.bulsci.2017.07.007 |
[13] | Y. Zhou, Infinite interval problems for fractional evolution equations, Mathematics, 10 (2022), 900. https://doi.org/10.3390/math10060900 doi: 10.3390/math10060900 |
[14] | Y. Zhou, B. Ahmad, A. Alsaedi, Existence of nonoscillatory solutions for fractional neutral differential equations, Appl. Math. Lett., 72 (2017), 70–74. https://doi.org/10.1016/j.aml.2017.04.016 doi: 10.1016/j.aml.2017.04.016 |
[15] | Y. Zhou, J. N. Wang, The nonlinear Rayleigh-Stokes problem with Riemann- Liouville fractional derivative, Math. Meth. Appl. Sci., 44 (2021), 2431–2438. https://doi.org/10.1002/mma.5926 doi: 10.1002/mma.5926 |
[16] | R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3 |
[17] | T. M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus with Applications in Mechanics, Wiley-ISTE, 2014. |
[18] | Y. Kian, M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations, Fract. Calc. Appl. Anal., 20 (2017), 117–138. https://doi.org/10.1515/fca-2017-0006 doi: 10.1515/fca-2017-0006 |
[19] | E. Alvarez, G. C. Gal, V. Keyantuo, M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations, Nonlinear Anal., 181 (2019), 24–61. https://doi.org/10.1016/j.na.2018.10.016 doi: 10.1016/j.na.2018.10.016 |
[20] | E. Otárola, A. J. Salgado, Regularity of solutions to space-time fractional wave equations: a PDE approach, Fract. Calc. Appl. Anal., 21 (2018), 1262–1293. https://doi.org/10.1515/fca-2018-0067 doi: 10.1515/fca-2018-0067 |
[21] | Y. Zhou, J.W. He, Well-posedness and regularity for fractional damped wave equations, Monatsh. Math., 194 (2021), 425–458. https://doi.org/10.1007/s00605-020-01476-7 doi: 10.1007/s00605-020-01476-7 |
[22] | V. V. Au, N. D. Phuong, N. H. Tuan, Y. Zhou, Some regularization methods for a class of nonlinear fractional evolution equations, Comput. Math. Appl., 78 (2019), 1752–1771. https://doi.org/10.1016/j.camwa.2019.02.037 doi: 10.1016/j.camwa.2019.02.037 |
[23] | Y. Li, Y. Wang, W. Deng, Galerkin finite element approximations for stochastic space-time fractional wave equations, SIAM J. Numer. Anal., 55 (2017), 3173–3202. https://doi.org/10.1137/16M1096451 doi: 10.1137/16M1096451 |
[24] | M. M. Meerschaert, R. L. Schilling, A. Sikorskii, Stochastic solutions for fractional wave equations, Nonlinear Dyn., 80 (2015), 1685–1695. https://doi.org/10.1007/s11071-014-1299-z doi: 10.1007/s11071-014-1299-z |
[25] | N. H. Tuan, V. Au, L. N. Huynh, Y. Zhou, Regularization of a backward problem for the inhomogeneous time-fractional wave equation, Math. Methods Appl. Sci., 43 (2020), 5450–5463. https://doi.org/10.1002/mma.6285 doi: 10.1002/mma.6285 |
[26] | A. V. Van, K. V. H. Thi, A. T. Nguyen, On a class of semilinear nonclassical fractional wave equations with logarithmic nonlinearity, Math. Methods Appl. Sci., 44 (2021), 11022–11045. https://doi.org/10.1002/mma.7466 doi: 10.1002/mma.7466 |
[27] | M. F. de Alemida, J. C. P. Precioso, Existence and symmetries of solutions in Besov-Morrey spaces for a semilinear heat-wave type equation, J. Math. Anal. Appl., 432 (2015), 338–355. https://doi.org/10.1016/j.jmaa.2015.06.044 doi: 10.1016/j.jmaa.2015.06.044 |
[28] | M. F. de Alemida, A. Viana, Self-similar solutions for a superdiffusive heat equation with gradient nonlinearity, Elec. J. Differ. Equations, 2016 (2016), 250. |
[29] | Q. Zhang, Y. Li, Global well-posedness and blow-up solutions of the Cauchy problem for a time-fractional superdiffusion equation, J. Evol. Equations, 19 (2019), 271–303. https://doi.org/10.1007/s00028-018-0475-x doi: 10.1007/s00028-018-0475-x |
[30] | J. D. Djida, A. Fernandez, I. Area, Well-posedness results for fractional semi-linear wave equations, Discrete Cont. Dyn-B, 25 (2020), 569–597. https://doi.org/10.3934/dcdsb.2019255 doi: 10.3934/dcdsb.2019255 |
[31] | J. Bergh, J. Löfström, Interpolation Spaces: An Introduction, Springer-Verlag, Berlin, 1976. https://doi.org/10.1007/978-3-642-66451-9 |
[32] | T. Cazenave, Semilinear Schrödinger equations, Am. Math. Soc., 10 (2003). https://doi.org/10.1090/cln/010 doi: 10.1090/cln/010 |
[33] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam, 2006. |
[34] | H. Pecher, Local solutions of semilinear wave equations in $H^{s+1}$, Math. Meth. Appl. Sci., 19 (1996), 145–170. https://doi.org/10.1002/(SICI)1099-1476(19960125)19:2<145::AID-MMA767>3.0.CO;2-M doi: 10.1002/(SICI)1099-1476(19960125)19:2<145::AID-MMA767>3.0.CO;2-M |
[35] | H. Pecher, $L^p$-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. Ⅰ, Math. Z. 150 (1976), 159–183. https://doi.org/10.1007/BF01215233 doi: 10.1007/BF01215233 |
[36] | E. Zeidler, Nonlinear Functional Analysis and its Application, Springer-Verlag, New York, 1990. https://doi.org/10.1007/978-1-4612-0981-2 |
[37] | L. C. Evans, Partial Differential Equations, 2nd Edition, American Mathematical Society, 2010. |
[38] | T. Cazenave, B. Weissler, The cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807–836. https://doi.org/10.1016/0362-546X(90)90023-A doi: 10.1016/0362-546X(90)90023-A |