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Abstract: This paper is concerned with the semilinear time fractional wave equations on the whole
Euclidean space, also known as the super-diffusive equations. Considering the initial data in the frac-
tional Sobolev spaces, we prove the local/global well-posedness results of L2-solutions for linear and
semilinear problems. The methods of this paper rely upon the relevant wave operators estimates,
Sobolev embedding and fixed point arguments.
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1. Introduction

In this paper, we focus on the following time fractional wave equation

∂
β
t u − ∆u = f (u), t > 0, (1.1)

supplemented with the initial conditions

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x), x ∈ RN , (1.2)

where ∂βt stands for the Caputo fractional derivative operator of order β ∈ (1, 2), ∆ is the Laplacian
operator, and f is the semilinear data to be specified later, initial data ϕ, ψ are given in certain fractional
Sobolev spaces, likely (ϕ, ψ) ∈ H s(RN) × H s−1(RN) for s ∈ R.

From the point of view of physics, it’s often better for fractional derivatives to fit practical problems
than the integer order setting counterpart in many cases, for example, Hamiltonian chaos [1], bio-
physics [2, 3], control engineering [4, 5], viscoelasticity [6, 7], anomalous diffusion [8–11], switched
systems [12], and other problems [13–15]. In particular, the study of the Eq (1.1) has always been an
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important topic in the mathematical physics as it represents anomalous diffusion phenomena. The time
fractional partial differential equation ∂βt u = ∆u of order β ∈ (0, 1) models anomalous diffusion phe-
nomena ensuring the behavior of a subdiffusion process driven by a fractional Brownian motion [16].
The case of order β ∈ (1, 2) will govern intermediate processes between diffusion and wave propa-
gation, for example, see [7], and it also ensures the behavior of superdiffusion process, for instance,
see [17]. While the cases β → 1+ and β → 2− respectively correspond to standard diffusion equation
(heat equation) and ballistic diffusion (wave equation). Besides, in anomalous diffusion equations of
order β ∈ (0, 1) or β ∈ (1, 2), the mean squared displacement of a diffusive particle behavior likes
⟨x2(t)⟩ ∼ tβ, in contrast to normal diffusion behavior (Brownian motion) ⟨x2(t)⟩ ∼ t.

There are many recent interesting works about time fractional wave equations. One of the most
favorable reasons is that the integral kernel in fractional time derivative represents memory of a long-
time tail of the power order. The investigation of existence and uniqueness of solutions for a low
regularity initial data is a matter of interest in the mathematical analysis. For instance, Kian and
Yamamoto [18] investigated a weak solution for semilinear case of (1.1) in bounded domain Ω for
dimension n = 2, 3. By using the technique of eigenvalue expansion together with the properties of
Mittag-Leffler functions, they established the existence and uniqueness results, which the solution shall
lie in Lp(0,T ; Lq(Ω)) ∩ C([0,T ]; H2r(Ω)) for r = min(1 − 1/β, γ) with some 1 ≤ p, q ≤ ∞, 0 < γ < 1.
Following this technique, Alvarez et al. [19] considered the well-posedness for an abstract Cauchy
problem in a Hilbert space, where the solutions will lie in Lrq(0,T ; L2r(X)) associated with initial data
(ϕ, ψ) ∈ D(Aγ) × L2(X), D(Aγ) are the fractional power spaces with spectrum form of A (nonnegative
self-adjoint operator) for some β ∈ (1, 2), γ = 1/β, X is a (relatively) compact metric space and
q ∈ (1/(β − 1),∞], r > 1. Moreover, Otarola and Salgado [20] studied the time and space regularities
of weak solutions for the space-time fractional wave equations, Zhou and He [21] discussed a well-
posedness and time regularity of mild solutions for time fractional damped wave equations, etc. For
more details, we refer to see the papers [22–26].

However, few results discuss the unbounded domain case, likely the whole Euclidean space RN .
This is due the difficulty to establish the relevant estimates on solution operators, also the method of
eigenvalue expansion is not appropriate to such problem. As we know, Alemida and Precioso [27]
investigated the global existence with large initial data in the framework of Besov-Morrey spaces,
Alemida and Viana [28] studied existence, stability, self-similarity and symmetries of solutions with
initial data in Sobolev-Morrey space. Zhang and Li [29] studied the local existence on C([0,T ], Lq(RN))
for βN(p − 1)/2 < q for a special semilinear function f ∼ |u|p, also the critical exponents of the global
existence and blow-up solutions are determined when ψ ≡ 0 and ψ . 0. Djida et al. [30] worked on a
well-posedness result for semilinear space-time fractional wave equations, by adopting the method of
Laplace-Fourier transforms, the properties of Mittag-Leffler functions and Fox H-functions.

Our goal in this work is to establish the well-posedness results for time fractional wave equations
with initial conditions in certain function spaces. More precisely, we consider linear and semilinear
problems on RN , and present a general assumption in semilinear function and a special case λ|u|αu to
deal with the current problem. In addition, this paper is devoted to studying the well-posedness of mild
solutions to the current problems. In order to obtain the solution operators for time fractional wave
equation and their properties, we shall establish some useful estimates which depend on that of wave
operators. We remark that our proofs and results are completely different from the previous mentioned
works. We will concern about the local/global well-posedness of solutions. Let us now enlist the main
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results presented in this paper:
I. The solution operators of Eq (1.1). Let ϖ = (−∆)1/2, we know that the wave operators can

be given by cos(ϖt) and ϖ−1 sin(ϖt). Concerned with the principle of subordination, two inherent
relationships between probability density function and wave operators are presented. More precisely,
we get

Cσ(t) =
∫ ∞

0
Mσ(θ) cos(ϖtσθ)dθ, Sσ(t) = σtσ−1

∫ ∞

0
θMσ(θ)ϖ−1 sin(ϖtσθ)dθ.

To the best of our knowledge, these forms of solution operators are completely different from the
existing literatures, relying upon the estimates of wave operators, some useful estimates of solution
operators can be derived, which provide very helpful tools for the proofs. Observe that, the probability
density function builds a bridge between integer wave equations and the fractional ones.

II. The well-posedness results on RN . We first establish some estimates on several spaces for the
linear problem with initial data (ϕ, ψ) ∈ H s(RN) × H s−1(RN), and then an existence of L2-solution
is established on a space of continuous functions. Next, under the case that the semilinear function
f : L2(RN) ∩ Lr(RN)→ Lr′(RN), and satisfies

∥ f (u) − f (v)∥Lr′ (RN ) ≤ Cα(R)
(
∥u∥αLr(RN ) + ∥v∥

α
Lr(RN )

)
∥u − v∥Lr(RN ),

where constants r and α satisfy some restriction requirements, the local well-posedness results of mild
solutions are established in the framework of Lγ(Lγ

′

) spaces, here γ and γ′ are the conjugate indices.
By concerning with a special semilinear data f ∼ λ|u|αu, we show that the local well-posedness on
Besov space Bs

r,2(RN). Furthermore, when ψ ≡ 0, we also show the global existence to the Cauchy
problem (1.1)–(1.2).

The rest of this paper is divided into three sections. In Section 2, some basic notations and useful
preliminaries are introduced. In Section 3, for the linear problem, we derive the solution operators
and establish their some properties. In addition, two existence of L2-solutions are given. In Section 4,
we prove some local/global well-posedness results on Lebesgue and Besov spaces for the semilinear
problems.

2. Preliminaries

In this section, some notations and preliminaries related to our work will be introduced.
Denote by Lq(RN) (q ≥ 1) the Lebesgue space of q-integrable functions with the norm ∥ · ∥Lq(RN ).

Let S(RN) be the Schwartz space and let S′(RN) denote its topological dual, for any v ∈ S(RN), F
represents the Fourier transform

v̂(ξ) = F (v)(ξ) = (2π)−N/2
∫
RN

e−ix·ξv(x)dx,

with its inverse
v̌(x) = F −1(v)(x) = (2π)−N/2

∫
RN

eix·ξv(x)dx.

Define the Sobolev space by

H s,q(RN) = {u ∈ S′(RN) : F −1[(1 + |ξ|2)
s
2F (u)] ∈ Lq(RN)},
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equipped with the norm
∥u∥Hs,q(RN ) := ∥F −1[(1 + |ξ|2)

s
2F (u)]∥Lq(RN ),

for s ∈ R, 1 ≤ q ≤ ∞. We also use the Besov space Bs
p,q := Bs

p,q(RN) and homogeneous Besov space
Ḃs

p,q := Ḃs
p,q(RN), for s ∈ R, 1 ≤ p, q ≤ ∞. For the definitions and properties of Besov spaces, we refer

to see [31, 32]. In particular, it yields H0,p(RN) = Lp(RN) and H s(RN) = H s,2(RN) = Bs
2,2(RN) for p ≥ 1

and s ∈ R. Throughout this paper, we denote the notation a ≲ b that stands for a ≤ Cb, with a positive
generic constant C that does not depend on a, b, the notations ∨, ∧ stand for a ∨ b = max{a, b} and
a ∧ b = min{a, b}, respectively. Let p and p′ be the conjugate indices such that 1/p + 1/p′ = 1.

Let T > 0 (or T = +∞) and let X be a usual Banach space. For any u ∈ L1(0,T ; X) and v ∈
L1(0,T ; X), denote ∗ the convolution by

(u ∗ v)(t) =
∫ t

0
u(t − s)v(s)ds, t ≥ 0,

and for β ≥ 0 let the weak singular kernel gβ(·) be defined by

gβ(t) = tβ−1/Γ(β), t > 0,

where Γ(·) is the usual gamma function. We denote g0(t) = δ(t), the Dirac measure is concentrated
at the origin. Next, let us recall the concepts of fractional calculus and Mittag-Leffler functions. The
Riemann-Liouville fractional integral of order β ≥ 0 for a function v ∈ L1(0,T ; X) is defined as

Jβt v(t) =
1
Γ(β)

∫ t

0
(t − s)β−1v(s)ds = (gβ ∗ v)(t), t > 0.

Definition 2.1. Let β ∈ (1, 2). Consider a function v ∈ L1(0,T ; X) such that convolution g2−β ∗ v ∈
W2,1(0,T ; X). The representation

∂
β
t v(t) = ∂2

tt
(
g2−β ∗ [v(t) − v(0) − t ∂tv(0)]

)
, t > 0,

is called the Caputo fractional derivative of order β.

An important special function for the fractional differential equations involving the Caputo frac-
tional derivative is the Mittag-Leffler function, which is defined by

Eν,µ(z) =
∞∑

k=0

zk

Γ(νk + µ)
, z ∈ C, ν > 0, µ ∈ R.

Note that, if w(t) := Eν,1(atν), ν ∈ (0, 2), a ∈ R, then one can check that w is the solution of the equation
∂νt w(t) = aw(t).

Let the probability density function Mυ(·) (also called Mainardi’s Wright function) be defined by

Mυ(z) =
∞∑

k=0

(−z)k

k!Γ(1 − υ(k + 1))
, υ ∈ (0, 1), z ∈ C.

For θ > 0, this probability density function has the properties

Mυ(θ) ≥ 0,
∫ ∞

0
θδMυ(θ)dθ =

Γ(1 + δ)
Γ(1 + υδ)

, f or − 1 < δ < ∞. (2.1)

Next, we see that the probability density function can be viewed as a bridge between the classical
and fractional wave equations.
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Lemma 2.1. Let β ∈ (1, 2) [21]. Then for z ∈ C, the following formulas expressing the Mittag-Leffler
function in term of probability density function hold:

Eβ,1(−z2) =
∫ ∞

0
Mβ/2(θ) cos(zθ)dθ, Eβ,β(−z2) =

β

2z

∫ ∞

0
θMβ/2(θ) sin(zθ)dθ.

Lemma 2.2. Let f ∈ L1(0,T ;R) [33]. The unique solution of the fractional order problem∂βt u(t) + au(t) = f (t), a ≥ 0, t ≥ 0,
u(0) = u0, u′(0) = u1,

is give by

u(t) = Eβ,1(−atβ)u0 + tEβ,2(−atβ)u1 +

∫ t

0
(t − s)β−1Eβ,β(−a(t − s)β) f (s)ds.

In particular,

u(t) = cos(
√

a t)u0 +
1
√

a
sin(
√

a t)u1 +
1
√

a

∫ t

0
sin(
√

a (t − s)) f (s)ds,

which is the unique solution to the corresponding classical wave equation, i.e., β = 2.

3. Local/global solutions of linear problems

In this section, we are concerned with the following linear Cauchy problem∂βt u(t, x) − ∆u(t, x) = f (t, x), t > 0, x ∈ RN ,

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x).
(3.1)

Without loss of generality, the solutions in this paper are defined as mild solutions associated with the
corresponding initial data.

3.1. Solution representation

We first establish the solution representation of linear problem (3.1). Let u satisfies (3.1), taking the
Fourier transform of both sides in (3.1) with respect to x ∈ RN , we obtain∂βt û(t, ξ) + |ξ|2û(t, ξ) = f̂ (t, ξ), t > 0,

û(0, ξ) = ϕ̂(ξ), ∂tû(0, ξ) = ψ̂(ξ).

It follows from [4, (1.100)] that

tEβ,2(−tβ|ξ|2) =
1

Γ(2 − β)

∫ t

0
(t − s)1−βEβ,β(−sβ|ξ|2)sβ−1ds.

Therefore, by virtue of Lemma 2.2, we get

û(t, ξ) = φ̂(t, ξ)ϕ̂(ξ) + (ϑ̂(·, ξ) ∗ g2−β)(t)ψ̂(ξ) + (ϑ̂(·, ξ) ∗ f̂ )(t),
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where
φ̂(t, ξ) = Eβ,1(−tβ|ξ|2), ϑ̂(t, ξ) = tβ−1Eβ,β(−tβ|ξ|2).

By using the inverse Fourier transform, we get

u(t, x) =
∫
RN
φ(t, x − y)ϕ(y)dy +

∫ t

0

∫
RN

g2−β(t − s)ϑ(s, x − y)ψ(y)dyds

+

∫ t

0

∫
RN
ϑ(t − s, x − y) f (s, y)dyds,

where

φ(t, x) = (2π)−N/2
∫
RN

eix·ξEβ,1(−tβ|ξ|2)dξ,

ϑ(t, x) = (2π)−N/2
∫
RN

eix·ξtβ−1Eβ,β(−tβ|ξ|2)dξ.

On the other hand, set σ = β/2 ∈ (1/2, 1), it follows from Lemma 2.1 that

φ(t, x) = (2π)−N/2
∫ ∞

0

∫
RN

eix·ξMσ(θ) cos(tσθ|ξ|)dξdθ,

and

ϑ(t, x) =tσ−1 (2π)−N/2
∫ ∞

0

∫
RN

eix·ξσθMσ(θ)
sin(tσθ|ξ|)
|ξ|

dξdθ.

Let

K̇(t)v = F −1[cos(t|ξ|)v̂(ξ)], K(t)v = F −1
[
sin(t|ξ|)
|ξ|

v̂(ξ)
]
,

and
Sσ(t)v = σtσ−1

∫ ∞

0
θMσ(θ)K(tσθ)vdθ.

Rewriting u(t) for the function u(t, ·), we get an equivalent integral representation for problem (3.1) by

u(t) = Cσ(t)ϕ + Pσ(t)ψ +
∫ t

0
Sσ(t − s) f (s)ds, (3.2)

where solution operators Cσ(·) and Pσ(·) are defined by

Cσ(t)ϕ =
∫ ∞

0
Mσ(θ)K̇(tσθ)ϕdθ, Pσ(t)ψ = (g2−2σ ∗ Sσ)(t)ψ.

3.2. Some properties of solution operators

Let α(r) = 1
2 −

1
r for r ∈ [2,∞], and

β(r) =
N + 1

2
α(r), γ(r) = (N − 1)α(r), δ(r) = Nα(r).

Let us recall the following two results in [34, 35], which play a key role in proving the general results
on the solution operators.
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Lemma 3.1. Let 2 ≤ p < ∞ and 2β(p) ≤ ν ≤ 2δ(p). Then for t , 0, it follows that∥∥∥∥F −1
[
|ξ|−νeit|ξ|v̂(ξ)

]∥∥∥∥
Lp(RN )

≲ |t|ν−2δ(p)∥v∥Lp′ (RN ).

Lemma 3.2. Let 2 ≤ p < ∞ and 2β(p) ≤ ν ≤ 2δ(p), 0 ≤ µ ≤ s + ν. Then for 1 ≤ q ≤ ∞, t , 0, it
follows that ∥∥∥∥F −1

[
|ξ|−µeit|ξ|v̂(ξ)

]∥∥∥∥
Bs

p,q(RN )
≲ |t|ν−2δ(p)∥v∥Bs+ν−µ

p′ ,q (RN ).

In the sequel, we set ϖ = (−∆)
1
2 and U(t) = exp(iϖt) = F −1[exp(i|ξ|t)F ], so that K(t) =

ϖ−1 sin(ϖt), K̇(t) = cos(ϖt). Hence, it follows that

K(t) = ϖ−1 U(t) − U(−t)
2i

, K̇(t) =
U(t) + U(−t)

2
.

Lemma 3.3. Let N ≥ 2, 2N/(N − 1) ≤ p ≤ 2(N + 1)/(N − 1), then Sσ(t) : Lp′(RN) → Lp(RN) and
moreover

∥Sσ(t)v∥Lp(RN ) ≲ t2σ−2σδ(p)−1∥v∥Lp′ (RN ), v ∈ Lp′(RN), t > 0.

Proof. Obviously, the condition 2N
N−1 ≤ p ≤ 2(N+1)

N−1 for N ≥ 2 implies that 1/2 ≤ δ(p) ≤ N/(N + 1).
Hence, it follows from Lemma 3.1 that

∥K(t)v∥Lp(RN ) ≲ t1−2δ(p)∥v∥Lp′ (RN ).

By the definition of Sσ(t), and (2.1) we obtain

∥Sσ(t)v∥Lp(RN ) ≤σtσ−1
∫ ∞

0
θMσ(θ)∥K(tσθ)v∥Lp(RN )dθ

≲σtσ−1+σ(1−2δ(p))
∫ ∞

0
θ2−2δ(p)Mσ(θ)dθ∥v∥Lp′ (RN )

≲ t2σ−2σδ(p)−1∥v∥Lp′ (RN ).

Consequently, we get the desired inequality. □

Lemma 3.4. Let 2 ≤ p < ∞, 1 ≤ q ≤ ∞, s ∈ R, t > 0.
If (−s) ∨ (2δ(p) − 1) ∨ (2β(p)) ≤ ν ≤ 2δ(p), then

∥Cσ(t)v∥Bs
p,q(RN ) ≲ tσ

(
ν−2δ(p)

)
∥v∥Bs+ν

p′ ,q(RN ).

If (1 − s) ∨ (2δ(p) − 2) ∨ (2β(p)) ≤ ν ≤ 2δ(p), then

∥Sσ(t)v∥Bs
p,q(RN ) ≲ tσ

(
ν−2δ(p)+1

)
−1∥v∥Bs+ν−1

p′ ,q (RN ).

Proof. From Lemma 3.2, for t > 0 we have the following estimates∥∥∥K̇(t)v
∥∥∥

Bs
p,q(RN )

≲ tν−2δ(p)∥v∥Bs+ν
p′ ,q(RN ), 0 ≤ s + ν,∥∥∥K(t)v

∥∥∥
Bs

p,q(RN )
≲ tν−2δ(p)∥v∥Bs+ν−1

p′ ,q (RN ), 1 ≤ s + ν.

Therefore, using the same argument as employed in Lemma 3.3, we obtain the desired results. □
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3.3. The existence results

Let σ = β/2 for β ∈ (1, 2). We now introduce an operator Qσ defined by

(Qσ f )(t) =
∫ t

0
Sσ(t − s) f (s)ds.

In order to obtain the existence of L2-solutions, we need the following lemma.

Lemma 3.5. For each h ∈ Lp(0,T ; X) with 1 ≤ p < +∞ [36], we have

lim
τ→0

∫ T

0
∥h(t + τ) − h(t)∥pXdt = 0,

where we suppose that h(s) = 0 for s not belonging to [0,T ].

Lemma 3.6. For any q and µ with 1 < q ≤ 2 and µ = N(1/q − 1/2 − 1/N), N ≥ 1, let
f ∈ Lr(0,T ; Hµ,q(RN)), then

∥Qσ f ∥L∞(0,T ;L2(RN )) ≲ ∥ f ∥Lr(0,T ;Hµ,q(RN )),

for r > 1/σ. Furthermore, let q = 2N/(N + 2) for N ≥ 3, and f ∈ Lr(0,T ; Lq(RN)), then

∥Qσ f ∥L∞(0,T ;L2(RN )) ≲ ∥ f ∥Lr(0,T ;Lq(RN )).

Moreover the operator Qσ maps Lr(0,T ; H−1(RN)) into C([0,T ]; L2(RN)).

Proof. The inequality | sinα| ≤ 1 ∧ |α| for any α ∈ R implies

|(sin(t|ξ|)⟨ξ⟩)/|ξ|| ≤(1 ∧ (t|ξ|)) · ⟨ξ⟩/|ξ| ≤ (1 + t) · (1 ∧ |ξ|) · ⟨ξ⟩/|ξ|

≤
√

2(1 + t),
(3.3)

where ⟨ξ⟩ =
√

1 + |ξ|2, for t ≥ 0, ξ ∈ RN . Let g(t, s, ξ) = sin((t − s)σθ|ξ|) f̂ (s, ξ)/|ξ| and y(t, x) =
⟨x⟩−1 f̂ (s, x), for s ∈ (0, t), ξ, x ∈ RN . It is clear by (3.3) that

|g(t, s, ξ)| ≤
√

2(1 + (t − s)σθ)|y(s, ξ)|, for s ∈ (0, t), ξ ∈ RN .

Then it follows from the Plancherel theorem (see e.g. [37]) that

∥ǧ(t, s, ·)∥L2(RN ) = ∥g(t, s, ·)∥L2(RN )

≤
√

2(1 + (t − s)σθ)∥y(s, ·)∥L2(RN ) =
√

2(1 + (t − s)σθ)∥y̌(s, ·)∥L2(RN ).

Therefore, we have

∥(Qσ f )(t)∥L2(RN ) ≤

∫ t

0
∥Sσ(t − s) f (s, ·)∥L2(RN )ds

≤

∫ t

0

∫ ∞

0
σ(t − s)σ−1θMσ(θ) ∥ǧ(t, s, ·)∥L2(RN ) dθds
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≤
√

2
∫ t

0

∫ ∞

0
σ(t − s)σ−1θMσ(θ)(1 + (t − s)σθ)∥y̌(s, ·)∥L2(RN )dθds.

Due to ∥y̌(s, ·)∥L2(RN ) = ∥F
−1[⟨ξ⟩−1 f̂ (s, ξ)]∥L2(RN ) = ∥ f (s, ·)∥H−1(RN ), in view of (2.1) and Hölder inequal-

ity, for r > 1/σ we get

∥(Qσ f )(t)∥L2(RN ) ≤
√

2
∫ t

0

∫ ∞

0
σ(t − s)σ−1θMσ(θ)∥ f (s, ·)∥H−1(RN )dθds

+
√

2
∫ t

0

∫ ∞

0
σ(t − s)2σ−1θ2Mσ(θ)∥ f (s, ·)∥H−1(RN )dθds

=
√

2
∫ t

0
gσ(t − s)∥ f (s, ·)∥H−1(RN )ds

+
√

2
∫ t

0
g2σ(t − s)∥ f (s, ·)∥H−1(RN )ds

≤C∥ f ∥Lr(0,T ;H−1(RN )),

(3.4)

where C depends on σ, r,N and T .
Now, let us show the first estimate. Due to the embedding H s,p(RN) ↪→ H s1,p1(RN) for 1 < p ≤ p1 <

∞, s, s1 ∈ R, and s − N/p = s1 − N/p1, (see e.g., [31, 32]) we know that Hµ,q(RN) ↪→ H−1(RN) for
µ = N(1/q − 1/2 − 1/N). This means that

∥(Qσ f )(t)∥L2(RN ) ≲ ∥ f ∥Lr(0,T ;Hµ,q(RN )).

Hence, the first estimate holds. On the other hand, since Bs
2,2(RN) = H s,2(RN) for s ∈ R, recall the

embedding H s,q(RN) ↪→ Bs
q,2(RN) for 1 < q ≤ 2 and the embedding (see e.g., [31, 32])

Bs0
p0,q0

(RN) ↪→ Bs1
p1,q1

(RN), for s0 − N/p0 = s1 − N/p1, (3.5)

for any s0, s1 ∈ R, 1 ≤ p0 ≤ p1 ≤ ∞, 1 ≤ q0 ≤ q1 ≤ ∞, we have

B0
q,2(RN) ↪→ B−1

2,2(RN), for q =
2N

N + 2
,

by virtue of H0,q(RN) ↪→ B0
q,2(RN), and H0,q(RN) = Lq(RN) for q ≥ 1, we obtain the embedding

Lq(RN) ↪→ H−1(RN) when q = 2N/(N + 2). These means that

∥(Qσ f )(t)∥L2(RN ) ≲ ∥ f ∥Lr(0,T ;Lq(RN )).

Hence, the second estimate holds.
Finally, in order to obtain the conclusion that the operator Qσ maps Lr(0,T ; H−1(RN)) into

C([0,T ]; L2(RN)), by (3.4) it suffices to prove the continuity of operator Qσ for any f ∈

Lr(0,T ; H−1(RN)), i.e., we next to check that for 0 ≤ t < t + h ≤ T

∥(Qσ f )(t + h) − (Qσ f )(t)∥L2(RN ) → 0, as h→ 0.

In fact, we first have

∥(Qσ f )(t + h) − (Qσ f )(t)∥L2(RN )
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≤

∥∥∥∥∥ ∫ t+h

t
Sσ(t + h − s) f (s, ·)ds

∥∥∥∥∥
L2(RN )

+

∥∥∥∥∥ ∫ t

0

∫ ∞

0
σ((t + h − s)σ−1 − (t − s)σ−1)θMσ(θ)ǧ(t + h, s, ·)dθds

∥∥∥∥∥
L2(RN )

+

∥∥∥∥∥ ∫ t

0

∫ ∞

0
σ(t − s)σ−1θMσ(θ)

(
ǧ(t + h, s, ·) − ǧ(t, s, ·)

)
dθds

∥∥∥∥∥
L2(RN )

:=I1 + I2 + I3.

Obviously, applying (2.1) and Hölder inequality, it follows that

I1 ≤
√

2
∫ t+h

t

∫ ∞

0
σ(t + h − s)σ−1θMσ(θ)∥ f (s, ·)∥H−1(RN )dθds

+
√

2
∫ t+h

t

∫ ∞

0
σ(t + h − s)2σ−1θ2Mσ(θ)∥ f (s, ·)∥H−1(RN )dθds

=
√

2
∫ t+h

t
gσ(t + h − s)∥ f (s, ·)∥H−1(RN )ds

+
√

2
∫ t+h

t
g2σ(t + h − s)∥ f (s, ·)∥H−1(RN )ds

≲ hσ−1/r∥ f ∥Lr(0,T ;H−1(RN )) + h2σ−1/r∥ f ∥Lr(0,T ;H−1(RN ))

→0, as h→ 0.

For the second term I2, similarly to (3.4) we have

I2 ≤
√

2
∫ t

0

∫ ∞

0
σ|(t + h − s)σ−1 − (t − s)σ−1|θMσ(θ)∥ f (s, ·)∥H−1(RN )dθds

+
√

2
∫ t

0

∫ ∞

0
σ|(t + h − s)σ−1 − (t − s)σ−1|(t + h − s)σθ2Mσ(θ)∥ f (s, ·)∥H−1(RN )dθds

=Ch

∫ t

0
|(t + h − s)σ−1 − (t − s)σ−1|∥ f (s, ·)∥H−1(RN )ds

≤Ch

(∫ t

0
|(t + h − s)σ−1 − (t − s)σ−1|r/(r−1)ds

)1−1/r

∥ f ∥Lr(0,T ;H−1(RN )),

where Ch =
(√

2/Γ(σ) +
√

2(T + h)σ/Γ(2σ)
)
. Using the Lebesgue dominated convergence theorem

and Lemma 3.5 we find that I2 → 0 as h→ 0.
For estimating the third term I3, by virtue of (3.3), we first have∥∥∥ǧ(t + h, s, ·) − ǧ(t, s, ·)

∥∥∥
L2(RN )

≤ 2
√

2(1 + (t + h − s)σθ)∥ f (s, ·)∥H−1(RN ),

which means that

I3 ≤

∫ t

0

∫ ∞

0
σ(t − s)σ−1θMσ(θ)

∥∥∥ǧ(t + h, s, ·) − ǧ(t, s, ·)
∥∥∥

L2(RN )
dθds

≤2
√

2
∫ t

0

∫ ∞

0
σ(t − s)σ−1θMσ(θ)∥ f (s, ·)∥H−1(RN )dθds
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+ 2
√

2
∫ t

0

∫ ∞

0
σ(t − s)σ−1(t + h − s)σθ2Mσ(θ)∥ f (s, ·)∥H−1(RN )dθds

≲ ∥ f ∥Lr(0,T ;H−1(RN )).

Hence, by the Lebesgue dominated convergence theorem, we conclude that I3 → 0 as h→ 0. Similarly,
for any 0 ≤ t − h < t ≤ T , it is not difficult to verify that ∥(Qσ f )(t)− (Qσ f )(t − h)∥L2(RN ) → 0, as h→ 0.
Thus, the proof is completed. □

Lemma 3.7. For any s ∈ R, operators Cσ(·) and Pσ(·) satisfy

∥Cσ(·)ϕ∥C([0,T ];Hs(RN )) ≤ ∥ϕ∥Hs(RN ), ∥Pσ(·)ψ∥C([0,T ];Hs(RN )) ≲ ∥ψ∥Hs−1(RN ),

for any (ϕ, ψ) ∈ H s(RN) × H s−1(RN).

Proof. By virtue of | cos(t|x|)| ≤ 1 for all t ≥ 0, x ∈ RN , it is easy to get ∥K̇(t)ϕ∥Hs(RN ) ≤ ∥ϕ∥Hs(RN ). In
fact, for any ϕ ∈ H s(RN), we have

∥K̇(t)ϕ∥Hs(RN ) =∥F
−1[cos(t| · |)ϕ̂]∥Hs(RN ) = ∥F

−1[(1 + | · |2)s/2 cos(t| · |)ϕ̂]∥L2(RN ).

The Plancherel theorem implies

∥F −1[(1 + | · |2)s/2 cos(t| · |)ϕ̂]∥L2(RN ) =∥(1 + | · |2)s/2 cos(t| · |)ϕ̂∥L2(RN )

≤∥(1 + | · |2)s/2ϕ̂∥L2(RN )

=∥F −1[(1 + | · |2)s/2ϕ̂]∥L2(RN ),

which means that ∥K̇(t)ϕ∥Hs(RN ) ≤ ∥ϕ∥Hs(RN ). In addition, by virtue of the inequality | sin(t|x|)| ≤ t|x|, for
all t ≥ 0, x ∈ RN , as repeating the above processes, by (3.3) it is easy to check that ∥K(t)ψ∥Hs(RN ) ≤√

2(1 + t)∥ψ∥Hs−1(RN ) for any ψ ∈ H s−1(RN).
Let us show that ∥Cσ(t)ϕ∥Hs(RN ) ≤ ∥ϕ∥Hs(RN ). In fact, from the definition of operator Cσ(·), we have

∥Cσ(t)ϕ∥Hs(RN ) ≤

∫ ∞

0
Mσ(θ)∥K̇(tσθ)ϕ∥Hs(RN )dθ ≤ ∥ϕ∥Hs(RN ),

where we have used the identity (2.1). Moreover, from the definition of operator Sσ(·) and the semi-
group (ga ∗ gb)(t) = ga+b(t) for a, b > 0, t > 0, we have

∥Pσ(t)ψ∥Hs(RN ) ≤

∫ t

0
g2−2σ(t − s)∥Sσ(s)ψ∥Hs(RN )ds

≤

∫ t

0

∫ ∞

0
g2−2σ(t − s)σsσ−1θMσ(θ)∥K(sσθ)ψ∥Hs(RN )dθds

≤
√

2
∫ t

0

∫ ∞

0
g2−2σ(t − s)σsσ−1(1 + sσθ)θMσ(θ)∥ψ∥Hs−1(RN )dθds

=
√

2((g2−2σ ∗ gσ)(t) + (g2−2σ ∗ g2σ)(t))∥ψ∥Hs−1(RN )

≲∥ψ∥Hs−1(RN ),

where (g2−2σ ∗ gσ)(t)+ (g2−2σ ∗ g2σ)(t) ≤ g2−σ(T )+ g2(T ). Hence, it yields ∥Pσ(t)ψ∥Hs(RN ) ≲ ∥ψ∥Hs−1(RN ).
To end this proof, it suffices to check the continuity of Cσ(t)ϕ and Pσ(t)ψ.
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By the continuity of cos(t|ξ|), for h > 0 and 0 ≤ t < t + h ≤ T , by the Plancherel theorem we know
that

∥K̇((t + h)σθ)ϕ − K̇(tσθ)ϕ∥Hs(RN ) =∥F
−1[⟨·⟩s(cos((t + h)σθ| · |) − cos(tσθ| · |))ϕ̂]∥L2(RN )

=∥⟨·⟩s(cos((t + h)σθ| · |) − cos(tσθ| · |))ϕ̂∥L2(RN )

≤2∥⟨·⟩sϕ̂∥L2(RN ) = 2∥ϕ∥Hs(RN ).

Hence, passing to the Fourier representation and the Lebesgue dominated convergence theorem, we
have the pointwise convergence

∥K̇((t + h)σθ)ϕ − K̇(tσθ)ϕ∥Hs(RN ) → 0, as h→ 0, a.e. θ ∈ (0,∞).

On the other hand, by (2.1) we have

Mσ(θ)∥K̇((t + h)σθ)ϕ − K̇(tσθ)ϕ∥Hs(RN ) ≤ Mσ(θ)∥ϕ∥Hs(RN )

is integrable for a.e. θ ∈ (0,∞), hence Lebesgue dominated convergence theorem implies

∥Cσ(t + h)ϕ − Cσ(t)ϕ∥Hs(RN ) =

∥∥∥∥∥∫ ∞

0
Mσ(θ)(K̇((t + h)σθ)ϕ − K̇(tσθ)ϕdθ

∥∥∥∥∥
Hs(RN )

→0, as h→ 0.

This means that Cσ(·)ϕ ∈ C([0,T ],H s(RN)). Furthermore, as repeating the above processes, we also
get the continuity of Pσ(t)ψ. Hence, Pσ(·)ψ ∈ C([0,T ],H s(RN)). The proof is completed. □

Remark 3.1. Obviously, in view of the inequality | sin(t|x|)| ≤ t|x|, for all t ≥ 0, x ∈ RN , from the same
way as in Lemma 3.7, we get,

∥Qσ f ∥C([0,T ];L2(RN )) ≲ ∥ f ∥L∞(0,T ;L2(RN )).

By using Lemma 3.6 and Lemma 3.7, it is not difficult to obtain the existence theorem to linear
problem (3.1).

Theorem 3.1. Let T > 0. Given (ϕ, ψ) ∈ H s(RN) × H s−1(RN) for s ∈ R, let r > 2/β and f ∈
Lr(0,T ; Hµ,q(RN)), for any q and µ satisfying 1 < q ≤ 2 and µ = N(1/q− 1/2− 1/N), N ≥ 1, then there
exists a unique solution u ∈ C([0,T ]; L2(RN)) to the linear problem (3.1), and moreover

∥u∥L∞(0,T ;L2(RN )) ≲ ∥ϕ∥Hs(RN ) + ∥ψ∥Hs−1(RN ) + ∥ f ∥Lr(0,T ;Hµ,q(RN )).

Let q = 2N/(N + 2) for N ≥ 3, if f ∈ Lr(0,T ; Lq(RN)), then

∥u∥L∞(0,T ;L2(RN )) ≲ ∥ϕ∥Hs(RN ) + ∥ψ∥Hs−1(RN ) + ∥ f ∥Lr(0,T ;Lq(RN )).

In the sequel, we consider the global existence to the linear Cauchy problem (3.1).

Theorem 3.2. Given ϕ ∈ H s(RN), ψ ≡ 0 for s ∈ R. Let N ≥ 2, σ = β/2 for β ∈ (1, 2) and
f ∈ Cσ([0,∞); H s−1(RN)), where the Banach space

Cσ([0,∞); H s−1(RN)) = {u ∈ C([0,∞); H s−1(RN)) : tσ∥u(t)∥Hs−1(RN ) < ∞, t ≥ 0},

equipped with its natural norm ∥u∥σ = supt∈[0,∞) tσ∥u(t)∥Hs−1(RN ). Then there exists a unique solution
u ∈ C([0,∞); H s(RN)) to the linear problem (3.1), and moreover

∥u∥L∞(0,∞;Hs(RN )) ≲ ∥ϕ∥Hs(RN ) + ∥ f ∥Cσ([0,∞);Hs−1(RN )). (3.6)
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Proof. Observe that, for t ≥ 0, from Lemma 3.7, ∥Cσ(t)ϕ∥Hs(RN ) ≤ ∥ϕ∥Hs(RN ). Moreover, for any v ∈
H s−1(RN), Lemma 3.4 implies

∥Sσ(t)v∥Bs
2,2(RN ) ≲ tσ−1∥v∥Bs−1

2,2 (RN ),

which means that ∥Sσ(t)v∥Hs(RN ) ≲ tσ−1∥v∥Hs−1(RN ). Hence, we have

∥Cσ(t)ϕ∥Hs(RN ) + ∥(Qσ f )(t)∥Hs(RN ) ≲∥ϕ∥Hs(RN ) +

∫ t

0
∥Sσ(t − s) f (s, ·)∥Hs(RN )ds

≲∥ϕ∥Hs(RN ) +

∫ t

0
(t − s)σ−1∥ f (s)∥Hs−1(RN )ds

≲∥ϕ∥Hs(RN ) + ∥ f ∥Cσ([0,∞);Hs−1(RN )),

where we have used the semigroup (ga ∗ gb)(t) = ga+b(t) for a, b > 0. Similarly to Lemma 3.6 and
Lemma 3.7, the continuity is easy to check, where we can use the Plancherel theorem and Lebesgue
dominated convergence theorem. Consequently, there exists a solution satisfying (3.2) and its values
lie in C([0,∞); H s(RN)), and then (3.6) holds. Moreover, the uniqueness follows (3.6). The proof is
completed. □

4. Results of semilinear problems

In this section, we focus on the well-posedness results of the semilinear problem, we first estab-
lish a local well-posed result of L2-solutions that also belong to the setting of Lγ(0,T ; Lr(RN)), fur-
thermore, by a similar way in Theorem 3.2, another conclusion will be given in the framework of
L∞(0,T ; H s(RN)). In the sequel, for a given semilinear function, we obtain the well-posedness results
in the setting of Besov space Bs

r,2.

Theorem 4.1. Let N ≥ 2 and (ϕ, ψ) ∈ H s(RN) × H s−1(RN) for any s ∈ (1/2,N/2). Assume that

f : L2(RN) ∩ Lr(RN)→ Lr′(RN),

where index r satisfying

2N
N − 1

≤ r ≤
2(N + 1)

N − 1

∣∣∣∣
N≥2
∧

2N
N − 2s

∣∣∣∣
N>2s
∧

2N
N − 2

∣∣∣∣
N≥3

.

For every R > 0, there exist α ≥ 0 and constant Cα(R) ∈ (0,∞) such that

∥ f (u) − f (v)∥Lr′ (RN ) ≤ Cα(R)
(
∥u∥αLr(RN ) + ∥v∥

α
Lr(RN )

)
∥u − v∥Lr(RN ),

for all u, v ∈ L2(RN) ∩ Lr(RN) with ∥u∥L2(RN ), ∥v∥L2(RN ) ≤ R. Let γ > 0 be an element to the admissible
set

{γ ∈ R+ : γ > 2 + α, γ(β − 2) + 2 > 0, γ(σN − 1) + 1 > 0},

for σN = β(1 − δ(r)). Then there exists a unique mild solution u ∈ C([0,T ]; L2(RN)) ∩ Lγ(0,T ; Lr(RN))
of the problem (1.1)–(1.2) for some T > 0. Moreover, u depends continuously on ϕ, ψ in the fol-
lowing sense. If ϕm → ϕ in H s(RN) and ψm → ψ in H s−1(RN) and if um denotes the solution of
problem (1.1)-(1.2) with the initial value ϕm, ψm, then for all sufficiently large m, um converges to u in
C([0,T ]; L2(RN)) ∩ Lγ(0,T ; Lr(RN)).
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Proof. Let σ = β/2 for β ∈ (1, 2). We want to construct a local (in t) solution to the integral equation

(Φu)(t) = Cσ(t)ϕ + Pσ(t)ψ + (Qσ f )(u)(t).

By applying Lemma 3.6, Lemma 3.7, and Remark 3.1, it is clear that Φ is well defined. We next shall
use a fixed point argument to verify this proof. Fixed T,R > 0 and set a space by

UT ={u ∈ L∞(0,T ; L2(RN)) ∩ Lγ(0,T ; Lr(RN)); d(u, 0) ≤ R},

where d(·, ·) is the distance to the space UT given by

d(u, v) = ∥u − v∥L∞(0,T ;L2(RN )) + ∥u − v∥Lγ(0,T ;Lr(RN )), for u, v ∈ UT .

Obviously, (UT , d) is a complete metric space.
For u ∈ UT and every R > 0, from the assumption of nonlinearity f , by the trigonometric inequality

we first have

∥ f (u)∥Lr′ (RN ) ≤∥ f (u) − f (0)∥Lr′ (RN ) + ∥ f (0)∥Lr′ (RN ) ≤ Cα(R)∥u∥α+1
Lr(RN ) + ∥ f (0)∥Lr′ (RN ).

Therefore, for γ > α + 2, Hölder inequality yields

∥ f (u)∥Lγ′ (0,T ;Lr′ (RN )) ≤Cα(R)∥u∥α+1
L(α+1)γ′ (0,T ;Lr(RN )) + T

1
γ′ ∥ f (0)∥Lr′ (RN )

≤Cα(R)T
γ−(α+2)

γ ∥u∥α+1
Lγ(0,T ;Lr(RN )) + T

γ−1
γ ∥ f (0)∥Lr′ (RN ).

Similarly, for u, v ∈ UT , we have

∥ f (u) − f (v)∥Lγ′ (0,T ;Lr′ (RN ))

≤Cα(R)
(∫ T

0

(
∥u(t)∥αLr(RN ) + ∥v(t)∥αLr(RN )

)γ′
∥u(t) − v(t)∥γ

′

Lr(RN )dt
)1/γ′

,

which, by Hölder inequality and Minkowski inequality, leads to

∥ f (u) − f (v)∥Lγ′ (0,T ;Lr′ (RN )) ≤Cα(R)
(∥∥∥∥u∥αLr(RN ) + ∥v∥

α
Lr(RN )

∥∥∥
L

γ
γ−2 (0,T )

)
∥u − v∥Lγ(0,T ;Lr(RN ))

≤2Cα(R)T
γ−(α+2)

γ Rα∥u − v∥Lγ(0,T ;Lr(RN )).
(4.1)

Next, we obtain the existence and uniqueness results for T small. By Lemma 3.3, for 2N/(N − 1) ≤
r ≤ 2(N + 1)/(N − 1) and (σN − 1)γ + 1 > 0, we have

∥(Qσ f )(u)(t)∥Lr(RN ) ≲

∫ t

0
(t − s)σN−1∥ f (u)(s)∥Lr′ (RN )ds

≲ tσN−1+ 1
γ ∥ f (u)∥Lγ′ (0,T ;Lr′ (RN )).

Observe that the embedding H s(RN) ↪→ Lr(RN) for s ∈ [0,N/2), 2 ≤ r < 2N/(N − 2s), we have

∥Φ(u)(t)∥Lr(RN ) ≲ ∥Cσ(t)ϕ∥Hs(RN ) + ∥Pσ(t)ψ∥Hs(RN ) + ∥(Qσ f )(u)(t)∥Lr(RN ) .
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Therefore, we have

∥Φ(u)∥Lγ(0,T ;Lr(RN )) ≲T
1
γ ∥ϕ∥Hs(RN ) + T

1
γ ∥ψ∥Hs−1(RN ) + ∥(Qσ f )(u)(t)∥Lγ(0,T ;Lr(RN ))

≲T
1
γ ∥ϕ∥Hs(RN ) + T

1
γ ∥ψ∥Hs−1(RN ) + TσN∥ f (0)∥Lr′ (RN )

+Cα(R)TσN−
α+1
γ Rα+1.

On the other hand, by Lemma 3.6, for any u ∈ UT , we have

∥Φ(u)∥L∞(0,T ;L2(RN )) ≲ ∥ϕ∥Hs(RN ) + ∥ψ∥Hs−1(RN ) + ∥(Qσ f )(u)∥L∞(0,T ;L2(RN ))

≲ ∥ϕ∥Hs(RN ) + ∥ψ∥Hs−1 + ∥ f (u)∥Lγ′ (0,T ;Lr′ (RN ))

≲ ∥ϕ∥Hs(RN ) + ∥ψ∥Hs−1(RN ) + T
γ−1
γ ∥ f (0)∥Lr′ (RN ) +Cα(R)T

γ−(α+2)
γ Rα+1.

Therefore, there exists a constant C ≥ 1 such that

∥Φ(u)∥L∞(0,T ;L2(RN )) + ∥Φ(u)∥Lγ(0,T ;Lr(RN ))

≤C(1 + T
1
γ )(∥ϕ∥Hs(RN ) + ∥ψ∥Hs−1(RN )) +C(T

γ−1
γ + TσN )∥ f (0)∥Lr′ (RN )

+CCα(R)(T
γ−(α+2)

γ + TσN−
α+1
γ )Rα+1.

Fixed R > 0 satisfying C(∥ϕ∥Hs(RN ) + ∥ψ∥Hs−1(RN )) ≤ R/4, let T be small enough such that

CT := CCα(R)Rα
(
T

γ−(α+2)
γ + TσN−

α+1
γ

)
<

1
2
, (4.2)

and

C
(
∥ϕ∥Hs(RN ) + ∥ψ∥Hs−1(RN )

)
T

1
γ +

(
TσN + T

γ−1
γ

)
∥ f (0)∥Lr′ (RN ) <

R
2
.

Hence, it follows that Φ(u) ∈ UT for any u ∈ UT . Moreover, from Lemma 3.6 we deduce

∥Φ(u) − Φ(v)∥L∞(0,T ;L2(RN )) =∥(Qσ f )(u) − (Qσ f )(v)∥L∞(0,T ;L2(RN ))

≲∥ f (u) − f (v)∥Lγ′ (0,T ;Lr′ (RN )),

where γ′ > 1/σ, 1 < r′ ≤ 2 for N = 1, 2 and 2N/(N + 2) ≤ r′ ≤ 2 for N ≥ 3. Hence, by selecting T
small enough so that (4.2) holds, by virtue of (4.1), we have

∥Φ(u) − Φ(v)∥L∞(0,T ;L2(RN )) ≤
1
3

d(u, v),

for all u, v ∈ UT . Since

∥(Qσ f )(u)(t) − (Qσ f )(v)(t)∥Lr(RN ) ≲ tσN−1+ 1
γ ∥ f (u) − f (v)∥Lγ′ (0,T ;Lr′ (RN )),

for T small enough so that (4.2) holds, by virtue of (4.1), it follows that

∥Φ(u) − Φ(v)∥Lγ(0,T ;Lr(RN )) = ∥(Qσ f )(u) − (Qσ f )(v)∥Lγ(0,T ;Lr(RN )) ≤
1
3

d(u, v).

Electronic Research Archive Volume 30, Issue 8, 2981–3003.



2996

Consequently, Φ is a strict contraction on UT . From the similar proof of continuity in Theorem 3.1
taking on Φ(u), it follows that Φ has a fixed point u ∈ C([0,T ]; L2(RN)) ∩ Lγ(0,T ; Lr(RN)), which is
the unique mild solution of problem (1.1)–(1.2).

For the choice of T (independent to ∥ϕ∥Hs(RN ) and ∥ψ∥Hs−1(RN )), as before, R is determined only by
the size of the norm of initial data. Hence T and R are independent of um ∈ UT for m sufficiently large.
Suppose ϕm→ϕ in H s(RN) and ψm→ψ in H s−1(RN) when m→ ∞. Now, let m be large enough, then

∥u − um∥L∞(0,T ;L2(RN )) ≲ ∥ϕ − ϕm∥Hs(RN ) + ∥ψ − ψm∥Hs−1(RN ) + ∥Qσ( f (u) − f (um))∥L∞(0,T ;L2(RN ))

≲ ∥ϕ − ϕm∥Hs(RN ) + ∥ψ − ψm∥Hs−1(RN ) + ∥ f (u) − f (um)∥Lγ′ (0,T ;Lr′ (RN )) .

By the same argument, one can conclude that

∥u − um∥Lγ(0,T ;Lr(RN )) ≲T
1
γ ∥ϕ − ϕm∥Hs(RN ) + T

1
γ ∥ψ − ψm∥Hs−1(RN ) + TσN−1+ 1

γ ∥ f (u) − f (um)∥Lγ′ (0,T ;Lr′ (RN )) .

Then, (4.1) implies that

d(u, um) ≲
(
1 + T

1
γ

)
∥ϕ − ϕm∥Hs(RN ) +

(
1 + T

1
γ

)
∥ψ − ψm∥Hs−1(RN )

+ 2Cα(R)T
γ−(α+2)

γ Rα
(
1 + Tσn−1+ 1

γ

)
d(u, um).

Let T be chosen so small such that (4.2) holds, then

(1 −CT )d(u, um) ≲
(
1 + T

1
γ

) (
∥ϕ − ϕm∥Hs(RN ) + ∥ψ − ψm∥Hs−1(RN )

)
.

Consequently, we deduce that d(u, um)→ 0 as m→ ∞. The proof is completed. □

Remark 4.1. From the above theorem, we have the following remarks:

i) The admissible set of γ is not empty. Indeed, for α = 2, r = 3, N = 3 and taking initial values
(ϕ, ψ) ∈ H1(R3) × L2(R3), for a suitable semilinear function f (u) satisfying the assumptions in
Theorem 4.1, likely f (u) = λ|u|2u for λ > 0, it follows that 4 < γ < 2/(2 − β) for β ∈ (3/2, 2).

ii) Let α, r,N and f satisfy the assumptions of Theorem 4.1, noting that if δ(r) ≤ 1/2, then the
restrictions in the admissible set of γ reduce to 2+α < γ < 2/(2−β), or if 0 ≤ α < 2(β−1)/(2−β)
and 1/2 < δ(r) < 1 − (1 + α)/(β(2 + α)), then the restrictions in the admissible set of γ reduce to
2 + α < γ < 1/(1 − σN).

iii) By the embedding H s(RN) ↪→ Lr(RN) for s ∈ [0,N/2), the requirement 2N/(N − 1) ≤ r <

2N/(N − 2s) implies that the conclusion fails for 0 ≤ s ≤ 1/2, and thus the assumption s > 1/2 is
needed in the initial value conditions.

Noting that, by virtue of the critical embedding H s(RN) ↪→ Lr(RN), for 2 ≤ r < ∞, s = N/2, we
obtain a weaken requirement of index r in Theorem 4.1.

Corollary 4.1. Let N ≥ 2 and (ϕ, ψ) ∈ HN/2(RN) × HN/2−1(RN). Assume that

f : L2(RN) ∩ Lr(RN)→ Lr′(RN),

where index r satisfying
2N

N − 1
≤ r ≤

2(N + 1)
N − 1

∣∣∣∣
N≥2
∧

2N
N − 2

∣∣∣∣
N≥3

.
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For every R > 0, there exist α ≥ 0 and constant Cα(R) ∈ (0,∞) such that

∥ f (u) − f (v)∥Lr′ (RN ) ≤ Cα(R)
(
∥u∥αLr(RN ) + ∥v∥

α
Lr(RN )

)
∥u − v∥Lr(RN ),

for all u, v ∈ L2(RN) ∩ Lr(RN) with ∥u∥L2(RN ), ∥v∥L2(RN ) ≤ R. Let γ > 0 be an element to the admissible
set

{γ ∈ R+ : γ > 2 + α, γ(β − 2) + 2 > 0, γ(β(1 − δ(r)) − 1) + 1 > 0}.

Then the problem (1.1)–(1.2) is local well-posed on C([0,T ]; L2(RN)) ∩ Lγ(0,T ; Lr(RN)).

By using the embedding

H s(RN) ↪→ L2(RN) ∩ L∞(RN), for s > N/2,

one can prove the following result by employing the arguments used in the proof of Theorem 4.1.

Corollary 4.2. Let s > N/2. Assume that for every R > 0, there exists C(R) < ∞ such that

∥ f (u)∥Hs(RN ) ≤ C(R)∥u∥Hs(RN ),

∥ f (u) − f (v)∥L2(RN ) ≤ C(R)∥u − v∥L2(RN ),

for all u, v ∈ H s(RN) and that of ∥u∥L∞(RN ) ≤ R, ∥v∥L∞(RN ) ≤ R. Then for (ϕ, ψ) ∈ H s(RN) × H s−1(RN),
problem (1.1)–(1.2) is local well-posed on u ∈ (WT,R, d) for some T,R > 0, where (WT,R, d) is the metric
space given by

WT,R =
{
u ∈ L∞(0,T ; H s(RN)) : ∥u∥L∞(0,T ;Hs(RN )) ≤ R

}
,

equipped with the distance

d(u, v) = ∥u − v∥L∞(0,T ;L2(RN )), for u, v ∈ WT,R.

In the sequel, we consider a semilinear function of the form f (u) = λ|u|αu for λ ∈ R and for α ≥ 0,
a well-posed result on Besov setting is also established. In order to complete the proof, we need the
following result [38].

Lemma 4.1. Let f (u) = λ|u|αu for λ ∈ R and for α ≥ 0. If 0 < s < N/2, 2 ≤ ρ ≤ ρ∗ = N(α+2)/(N−2s),
then

∥ f (u)∥Bs
ρ′ ,2
≲ ∥u∥α+1

Bs
ρ,2
,

and
∥ f (u) − f (v)∥Lρ′ (RN ) ≲

(
∥u∥αBs

ρ,2
+ ∥v∥αBs

ρ,2

)
∥u − v∥Lρ(RN ),

for any u, v ∈ Bs
ρ,2.

Proof. Noting that ∣∣∣|u|αu − |v|αv
∣∣∣ ≤ (α + 1)(|u|α + |v|α)|u − v|,

we obtain by Hölder inequality and the embedding Ḃs
ρ,2(RN) ↪→ Lρ

∗

(RN) that

∥ f (u)∥Lρ′ (RN ) ≲ ∥u∥
α
Ḃs
ρ,2
∥u∥Lρ(RN ),
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and
∥ f (u) − f (v)∥Lρ′ (RN ) ≲

(
∥u∥αḂs

ρ,2
+ ∥v∥αḂs

ρ,2

)
∥u − v∥Lρ(RN ).

In view of the inequality
∥ f (u)∥Ḃs

ρ′ ,2
≲ ∥u∥α+1

Ḃs
ρ,2
,

and the interpolation property Bs
ρ′,2(RN) = Lρ

′

(RN) ∩ Ḃs
ρ′,2(RN), the desired inequalities follow.

□

Theorem 4.2. Let N ≥ 2, s ∈ (0,N/2) and f (u) = λ|u|αu for α ≥ 0, λ ∈ R. Let

2N
N − 1

≤ r ≤
2(N + 1)

N − 1
∧

N(α + 2)
N − 2s

,

given (ϕ, ψ) ∈ H s+1,r′(RN) × H s,r′(RN). Moreover, let γ > 0 being an element to the set

{γ ∈ R+ : γ > α + 2, γ(β(2 − 2δ(r)) − 2) + 2 > 0}. (4.3)

Then the problem (1.1)–(1.2) is local well-posed on Lγ(0,T ; Bs
r,2).

Proof. Following the method of proof for Theorem 4.1, we just need to construct a local solution to
the operator equation (Ψu)(t) = u(t) for t ∈ [0,T ] in a suitable ball in Lγ(0,T ; Bs

r,2), where the ball is
defined by

BM =
{
u ∈ Lγ(0,T ; Bs

r,2) : ∥u∥Lγ(0,T ;Bs
r,2) ≤ M

}
,

with the radius M > 0. Note that this space is not trivial. Indeed, for ϕ ∈ H s+1,r′(RN), by virtue of
Lemma 3.4, and the embedding (3.5) and H s1,r′(RN) ↪→ H s0,r′(RN) for s1 ≥ s0, s1, s0 ∈ R we have

∥Cσ(t)ϕ∥Bs
r,2
≲ ∥ϕ∥Bs+δ(r)

r′ ,2
≲ ∥ϕ∥Hs+δ(r),r′ (RN ) ≲ ∥ϕ∥Hs+1,r′ (RN ),

which shows that ∥Cσ(·)ϕ∥Lγ(0,T ;Bs
r,2) ≲ ∥ϕ∥Hs+1,r′ (RN ). Similarly, by (g2−2σ ∗ gσ)(t) = g2−σ(t) ∈ Lγ(0,T ;R)

we also get ∥Pσ(·)ψ∥Lγ(0,T ;Bs
r,2) ≲ ∥ψ∥Hs,r′ (RN ). Thus, u(t) = Cσ(t)ϕ is in BM if ϕ ∈ H s+1,r′(RN) and

∥ϕ∥Hs+1,r′ (RN ) is small enough. Endowed with the metric

d(u, v) = ∥u − v∥Lγ(0,T ;Lr(RN )),

then (BM, d) is a complete metric space. Indeed, since Lγ(0,T ; Bs
r,2) is reflexive, the closed ball of

radius M is weakly compact, for details, see [38].
From Lemma 4.1, we get ∥ f (u)∥Bs

r′ ,2
≲ ∥u∥α+1

Bs
r,2
, for all u ∈ Bs

r,2. Thus, it remains to consider the
case Φu ∈ Lγ(0,T ; Bs

r,2) for some T > 0. Noting that from the requirements of index r, it yields
1/2 ≤ δ(r) ≤ N/(N + 1), consider any u ∈ Bs

r,2, then it follows from (4.3) that

∥(Φu)(t)∥Bs
r,2
≤∥Cσ(t)ϕ∥Bs

r,2
+ ∥Pσ(t)ψ∥Bs

r,2
+ ∥(Qσ f )(u)(t)∥Bs

r,2

≲ ∥Cσ(t)ϕ∥Hs+1,r′ (RN ) + ∥Pσ(t)ψ∥Hs,r′ (RN ) +

∫ t

0
∥Sσ(t − s) f (u)(s)∥Bs

r,2
ds

≲ ∥ϕ∥Hs+1,r′ (RN ) + ∥ψ∥Hs,r′ (RN ) +

∫ t

0
(t − s)σ(2−2δ(r))−1∥u(s)∥α+1

Bs
r,2

ds.
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Noting that

∥|u|αu∥Lγ′ (0,t;Bs
r,2) ≤ t

γ−(α+2)
γ ∥u∥α+1

Lγ(0,t;Bs
r,2),

we obtain

∥Φ(u)∥Lγ(0,T ;Bs
r,2) ≲ T

1
γ ∥ϕ∥Hs+1,r′ (RN ) + T

1
γ ∥ψ∥Hs,r′ (RN ) + Tσ(2−2δ(r))− α+1

γ ∥u∥α+1
Lγ(0,T ;Bs

r,2).

On the other hand, from Lemma 4.1, for any u, v ∈ BM, we get

∥ f (u) − f (v)∥Lγ′ (0,T ;Lr′ (RN )) ≲ T
γ−(α+2)

γ Mα∥u − v∥Lγ(0,T ;Lr(RN )).

Therefore, we have

∥Φ(u) − Φ(v)∥Lγ(0,T ;Lr(RN )) =∥(Qσ f )(u) − (Qσ f )(v)∥Lγ(0,T ;Lr(RN ))

≲TσN−1+ 1
γ ∥ f (u) − f (v)∥Lγ′ (0,T ;Lr′ (RN ))

≲TσN−
α+1
γ Mα∥u − v∥Lγ(0,T ;Lr(RN )).

This means that there exists a constant C > 0 such that

∥Φ(u)∥Lγ(0,T ;Bs
r,2) ≤ CT

1
γ (∥ϕ∥Hs+1,r′ (RN ) + ∥ψ∥Hs,r′ (RN )) +CTσ(2−2δ(r))− α+1

γ Mα+1,

and

∥Φ(u) − Φ(v)∥Lγ(0,T ;Lr(RN )) ≤ CTσN−
α+1
γ Mα∥u − v∥Lγ(0,T ;Lr(RN )).

Hence, fixed M > 0, let T be small enough such that

CT
1
γ (∥ϕ∥Hs+1,r′ (RN ) + ∥ψ∥Hs,r′ (RN )) < M/2, CMα(Tσ(2−2δ(r))− α+1

γ + TσN−
α+1
γ ) < 1/2.

Then Φ maps BM into itself and we obtain

d(Φ(u),Φ(v)) ≤
1
2

d(u, v).

Thus, there exists a unique solution of problem (1.1)–(1.2). The remaining proof is similar to that of
Theorem 4.1. So we omit its details. The proof is completed.

□

Remark 4.2. Observe that, the embedding H s,r′(RN) ↪→ Bs
r′,2(RN), Lemma 3.4 yields

∥Cσ(t)ϕ∥Bs
r,2
≲ t−βδ(r)∥ϕ∥Hs,r′ (RN ),

which belongs to Lγ(0,T ;R). Hence, it shall possess a decay rate βδ(r), which implies that the solution
does not belong to C([0,T ]; Bs

r,2) ∪ L∞(0,T ; Bs
r,2).

Concerning with Remark 4.2, in the sequel, we establish the global well-posed result for a special
initial data.
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Theorem 4.3. Let N ≥ 2, β ∈ (1, 4/3), s ∈ (0,N/2), δ(r) = 1/2 and f (u) = λ|u|2u for λ ∈ R. Given
ϕ ∈ H s+ 1

2 ,r
′

(RN) with ∥ϕ∥
Hs+ 1

2 ,r
′
(RN )
≤ ϵ for some ϵ > 0 and ψ ≡ 0. Then the problem (1.1)–(1.2) is global

well-posed on YR, where (YR, d) (R > 0) is the metric space given by

YR =
{
u ∈ C((0,∞); Bs

r,2(RN)) : sup
t∈[0,∞)

tβ/4∥u(t)∥Bs
r,2
≤ R

}
,

equipped with the distance

d(u, v) = sup
t∈[0,∞)

tβ/4∥u(t) − v(t)∥Lr(RN ), for u, v ∈ YR.

Proof. Let σ = β/2 for β ∈ (1, 2). We next verity the operatorΦmaps YR into itself. Indeed, for u ∈ YR,
by virtue of Lemma 3.4, we have

∥(Φu)(t)∥Bs
r,2
≲t−σ/2∥ϕ∥

Hs+ 1
2 ,r
′
(RN )
+

∫ t

0
∥Sσ(t − s) f (u)(s)∥Bs

r,2
ds

≲t−σ/2ϵ +
∫ t

0
(t − s)σ−1∥ f (u)(s)∥3

B
s− 1

2
r′ ,2

ds

≲t−σ/2ϵ +
∫ t

0
(t − s)σ−1∥u(s)∥3Bs

r,2
ds

≲t−σ/2ϵ +
∫ t

0
(t − s)σ−1s−3σ/2dsR3,

where we have used the embedding Bs0
r′,2 ↪→ Bs1

r′,2 for s0 ≥ s1, s0, s1 ∈ R. Therefore, there exists a
constant C > 0 such that

tσ/2∥(Φu)(t)∥Bs
r,2
≤ Cϵ +CR3.

Taking ϵ ≤ R/(2C) for R ≤ (1/(2C))1/2, due to the Fourier representation of operators and the Lebesgue
dominated convergence theorem, the proof of the continuity of Φ is similar to Lemma 3.6. Hence, we
deduce that Φ(u) ∈ YR for any u ∈ YR.

Next, we show that Φ is a contraction on YR. Indeed, for any u, v ∈ YR, combined the requirement
of δ(r) = 1/2 and Lemma 3.3 imply

∥(Φu)(t) − (Φv)(t)∥Lr(RN ) ≤

∫ t

0
∥Sσ(t − s)( f (u)(s) − f (v)(s))∥Lr(RN )ds

≲

∫ t

0
(t − s)σ−1∥ f (u)(s) − f (v)(s)∥Lr′ (RN )ds.

Lemma 4.1 shows that

∥(Φu)(t) − (Φv)(t)∥Lr(RN ) ≲

∫ t

0
(t − s)σ−1

(
∥u∥2Bs

r,2
+ ∥v∥2Bs

r,2

)
∥u − v∥Lr(RN )ds

≲

∫ t

0
(t − s)σ−1s−3σ/2dsR2d(u, v).

Therefore, there exists a constant C′ > 0 for R ≤ (2/C′)1/2 ∧ (1/(2C))1/2 such that

d(Φ(u),Φ(v)) ≤C′R2d(u, v) ≤
1
2

d(u, v).

Consequently, Φ is a strict contraction on YR. This means that Φ has a unique fixed point u ∈ YR. The
proof is completed. □
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5. Conclusions

In this paper, we proved some well-posedness results for linear and semilinear time fractional wave
equations, which are also called super-diffusive equations. Under the probability density function and
wave operators, we construct the solution operators that are differential to the references therein, which
are also useful to establish the local well-posedness of L2-solutions as well as the local well-posedness
on Besov space. Moreover, based on the standard fixed point arguments, the initial data ϕ and ψ are
taking in the more regularity fractional Sobolev spaces, respectively. Finally, we also establish the
global existence results for a linear and a spacial semilinear fractional Cauchy problems.
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