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Abstract: The purpose of this paper is to prove the well-posedness of the 2D
magnetohydrodynamic (MHD) boundary layer equations for small initial data in Sobolev space
of polynomial weight and low regularity. Our proofs are based on the paralinearization method
and an abstract bootstrap argument. We first obtain the systems (3.3)–(3.6) by paralinearizing and
symmetrizing the system (1.2). Then, we establish the estimates of the solution in horizontal direction
and vertical direction, respectively. Finally, we prove the well-posedness of the 2D MHD boundary
layer equations by an abstract bootstrap argument.
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1. Introduction and main result

In this paper, we investigate the 2D magnetohydrodynamic (MHD) boundary layer equations on the
upper half plane R2

+ = {(x, y) : x ∈ R, y ∈ R+}, which reads as:

∂tu + u∂xu + v∂yu = h∂xh + g∂yh + ∂2
yu − ∂x p,

∂th + ∂y(vh − ug) = ∂2
yh,

∂xu + ∂yv = 0, ∂xh + ∂yg = 0,
(u, v, ∂yh, g)|y=0 = 0, lim

y→+∞
(u, h) = (U(t, x),H(t, x)),

(u, h)|t=0 = (u0, h0)(x, y),

(1.1)

where (u, v) represents the velocity field of the boundary layer flow, (h, g) stands for the magnetic
field and functions U(t, x),H(t, x), and p(t, x) denote the trace of the tangential fluid and magnetic, the
pressure of the outflow, respectively, which satisfy Bernoulli’s law{

∂tU + U∂xU − H∂xH + ∂x p = 0,
∂tH + U∂xH − H∂xU = 0.
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System (1.1) is a boundary layer model, which is derived from the 2D incompressible MHD system
with a non-slip boundary condition on the velocity and a perfectly conducting condition on the
magnetic field [1, 2].

Before exhibiting the main result in this paper, let us recall some known results to system (1.1).
Especially, when the magnetic field (h, g) are some constants in system (1.1), it reduces to the classical
Prandtl equations, which were first introduced formally by Prandtl [3] in 1904. The Prandtl equations
are the foundation of the boundary layer theory. It describes that the fluid near the boundary of a solid
body can be divided into two regions: a very thin layer in the neighborhood of the body (the boundary
layer) where viscous friction plays an essential part, and the remaining region outside this layer where
friction may be neglected (the outer flow). The well-posedness theory of the Prandtl equations was
well understood in [4–6] and the references therein for the recent progress.

When the velocity field equation is coupled with the magnetic field equation, the phenomenon of the
boundary layer is different since the boundary layers of the magnetic field may exist [1] and they are
more complicated than the classical Prandtl equations. It is worth pointing out that some results have
been obtained about the well-posedness of the MHD boundary layer equations in weighed Sobolev
space. Liu et al. [2] proved the local existence and uniqueness of solutions for the 2D nonlinear MHD
boundary layer equations without monotonicity in weighted Sobolev space by using energy methods.
Liu et al. [7] investigated the local well-posedness of the 2D MHD boundary layer equations without
resistivity in Sobolev spaces. Finally, they also got the linear instability of the 2D MHD boundary layer
when the tangential magnetic field is degenerate at one point. Besides, there are some well-posedness
results for the MHD equations [8, 9].

There are some results in the analytic framework for the 2D MHD boundary layer equations, Xie
and Yang [10] considered the global existence of solutions to the 2D MHD boundary layer equations in
the mixed Prandtl and Hartmann regime when the initial datum is a small perturbation of the Hartmann
profile and obtained the solution in analytic norm as an exponential decay in time. Recently, by using
the cancellation mechanism, Xie and Yang [11] investigated the existence and uniqueness of solutions
to the 2D MHD boundary layer system in an analytic space.

Besides, there are some known results about the well-posedness of boundary layer equations by
using the paralinearization method. Chen et al. [12] obtained the local well-posedness to the classical
Prandtl equations when the weighted function µ is an exponential function in H3,1

µ (R2
+) ∩ H1,2

µ (R2
+).

Wang and Zhang [13] proved the local well-posedness of the classical Prandtl equation for monotonic
data in a polynomial weighted Sobolev space. Chen et al. [14] studied the long-time well-posedness
of the MHD equations for small initial data in an exponentially weighted Sobolev space H3,0

µ (R2
+) ∩

H1,2
µ (R2

+), and obtained the lifespan of solutions to depend on the initial data. Wang and Wang [15]
investigated the global well-posedness of the 2D MHD equations in striped domain with small data, and
proved the solutions of the anisotropic MHD equations convergence to the solutions of the hydrostatic
MHD equations in L∞. Chen and Li [16] obtained the long-time well-posedness of the 2D MHD
boundary layer equations with small initial data in an exponentially weighted Sobolev space H3,0

µ (R2
+)∩

H1,2
µ (R2

+) ∩ H2,1
µ (R2

+), and proved the lifespan of solutions depends on the initial data. Inspired by the
ideas in [13,14], the aim of this paper is to investigate the well-posedness of the problem (1.1) by using
the paralinearization method and an abstract bootstrap argument. Similar to the Prandtl equation, the
difficulty of solving the problem (1.2) in the Sobolev framework is the loss of x-derivative in the
terms like v∂yu, v∂yh, g∂yu and g∂yh. To overcome this essential difficulty, inspired by recent results
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in [14], we will first paralinearize system (1.2) and introduce two new good functions to symmetrize
the system, then establish the estimates of solutions to system (3.3).

Finally, the rest of the paper is arranged as follows. In Section 2, we introduce the Littlewood-Paley
decomposition and paraproduct and some lemmas which that be used frequently. In Section 3, we
paralinearize the system (1.2) and introduce the good unknown functions to symmetrize the system.
In Section 4, we prove the Sobolev estimate in the horizontal direction. In Section 5, we get the high
order energy estimate in the y variable and give the proof of Theorem 1.1.

Hereafter, let letter C be a general positive constant independent of ε, which may vary from line to
line at each step.

For simplicity’s sake, we consider a uniform outflow (U,H) = (0, 1). Let h(t, x, y) = 1 + h̃(t, x, y).
Then (u, h̃) satisfies the following system:

∂tu + u∂xu + v∂yu − h∂xh̃ − g∂yh̃ − ∂2
yu = 0,

∂th̃ + u∂xh̃ + v∂yh̃ − h∂xu − g∂yu − ∂2
y h̃ = 0,

∂xu + ∂yv = 0, ∂xh̃ + ∂yg = 0,
(u, v, ∂yh̃, g)|y=0 = 0, lim

y→+∞
(u, h̃) = (0, 0),

(u, h̃)|t=0 = (u0, h̃0)(x, y).

(1.2)

As in [14], we first introduce the following weighted Sobolev space. For m, n, α, β ∈ N, ℓ ≥ 3
2 , the

space Hm,n
ℓ (R2

+) consists of all functions f ∈ L2
ℓ satisfying

∥ f ∥Hm,n
ℓ

(R2
+) =

m∑
α=0

n∑
β=0

∥∂αx∂
β
y f ∥2L2

ℓ

< +∞,

where ∥ f ∥L2
ℓ
= ∥⟨y⟩ℓ f (x, y)∥L2 with ⟨y⟩ = (1 + y).

We are now in a position to state the main result as follows:

Theorem 1.1. Let ℓ ≥ 3
2 , m, β ∈ N. For small enough ε ∈ (0, 1

2
√

10C
], assume that initial

data (u0, h̃0) satisfy

2∑
m=0

∥∂m
y (u0, h̃0)∥2

H1,0
ℓ−1+m
+ ∥(u0, h̃0)∥2

H3,0
ℓ

≤ ε2, (1.3)

then for any given time T independent of ε such that the problem (1.2) has a unique solution (u, h̃)
satisfies

( 2∑
m=0

∥∂m
y (u, h̃)∥2

H1,0
ℓ−1+m
+ ∥(uβ, h̃β)∥2H3,0

ℓ

)
+

∫ t

0

( 2∑
m=0

∥∂m+1
y (u, h̃)∥2

H1,0
ℓ−1+m
+ ∥(∂yuβ, ∂yh̃β)∥2H3,0

ℓ

)
(s)ds ≤ 5Cε2,

for any t ∈ [0,T ]. Here C is a positive constant independent of ε.

Remark 1.1. Theorem 1.1 obtains the local well-posedness of the solution, while the global well-
posedness of the solution is still an open problem.
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2. Littlewood-Paley decomposition and paraproduct

As in [14], we first introduce the Littlewood-Paley decomposition in the horizontal direction x ∈ R.
Choose two smooth functions φ(τ) and χ(τ) that satisfy

Supp φ ⊂
{
τ ∈ R /

3
4
≦ |τ| ≦

8
3

}
,

Supp χ ⊂
{
τ ∈ R / |τ| ≦

4
3

}
and τ ∈ R, χ(τ) +

∑
k≧0

φ(2−kτ) = 1.

Then we define

∆ j f = F −1(φ(2− jξ) f̂
)
, S j f = F −1(χ(2− jξ) f̂

)
for j ≥ 0,

∆−1 = S 0 f , S j f = S 0 f for j < 0.

Bony’s paraproduct T f g is defined by

T f g =
∑
j≥−1

S j−1∆ jg.

Then we have the following Bony’s paraproduct

f g = T f g + Tg f + R( f , g), (2.1)

where the remainder term R( f , g) is defined by

R( f , g) =
∑

|k−k′ |≤1;k,k′≥−1

∆k f∆k′g.

Next, let us introduce some classical paraproduct estimates and paraproduct calculus in Sobolev
space [17], Chapter 2.

Lemma 2.1. Let s ∈ R, it holds that

∥T f g∥Hs ≤ C∥ f ∥L∞∥g∥Hs .

If s > 0, then we have

∥R( f , g)∥Hs ≤ C min(∥ f ∥L∞∥g∥Hs , ∥ f ∥Hs∥g∥L∞).

Lemma 2.2. Let s ∈ R and σ ∈ (0, 1], it holds that

∥(TaTb − Tab) f ∥Hs ≤ C(∥a∥Wσ,∞∥b∥L∞ + ∥a∥L∞∥b∥Wσ,∞)∥ f ∥Hs−σ .

Especially, we have

∥[Ta,Tb] f ∥Hs ≤ C(∥a∥Wσ,∞∥b∥L∞ + ∥a∥L∞∥b∥Wσ,∞)∥ f ∥Hs−σ ,

∥(Ta − T ∗a) f ∥Hs ≤ C∥a∥Wσ,∞∥ f ∥Hs−σ ,

here T ∗a is the adjoint of Ta.
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Lemma 2.3. Let s ∈ N, it holds that

∥[∂s
x,Ta] f ∥L2 ≤ C∥∂xa∥L∞∥ f ∥Hs−1 .

In this position, we will show the Agmon inequality, whose proof is given in [18].

Lemma 2.4. Let f ∈ H1(R2
+), then

∥ f ∥L∞x L2
y
≤ C∥ f ∥1/2

L2(R2
+)
∥∂x f ∥1/2

L2(R2
+)
.

Before proving the main Theorem 1.1 by using Lemmas 2.1–2.4, we first paralinearize and
symmetrize the system (1.2) according to the method in [14].

3. Paralinearization and symmetrization

Similar to the Prandtl equations, the difficulty of solving problem (1.2) in the Sobolev framework
is the loss of x-derivative in the terms v∂yu − g∂yh̃ and v∂yh̃ − g∂yu in the first and second equations
of (1.2), respectively. In other words, v = −∂−1

y ∂xu and g = −∂−1
y ∂xh̃ by the divergence-free conditions

and boundary conditions. Thus, it creates a loss of the x-derivative and a y-integration to the y-variable.
Then the standard energy estimates do not work. To overcome this essential difficulty, inspired by
recent results in [14], we will first paralinearize the system (1.2) and then introduce the good unknown
functions to symmetrize the system following the idea in [14].

Applying Bony’s decomposition (2.1), we derive{
∂tu + Tu∂xu + T∂yuv − Th∂xh̃ − T∂yh̃g − ∂2

yu = f1,

∂th̃ + Tu∂xh̃ + T∂yh̃v − Th∂xu − T∂yug − ∂2
y h̃ = f2,

(3.1)

where

f1 = −R∂xuu − Rv∂yu + R∂xh̃h + Rg∂yh̃,

f2 = −Rv∂yh̃ − R∂xhu + R∂xuh̃ + Rg∂yu.

We now define

h1(t, x, y) =
∫ y

0
h̃(t, x, ỹ)dỹ.

From system (3.1)2, we deduce that

∂th1 + Thv − Tug − ∂2
yh1 =

∫ y

0
f2(ỹ)dỹ.

Motivated by [14], we introduce the two good unknown functions uβ = u − T ∂yu
h

h1,

h̃β = h̃ − T ∂yu
h

h1.
(3.2)
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Consequently, we can rewrite the system (3.1) as{
∂tuβ + Tu∂xuβ − Th∂xh̃β − ∂2

yuβ = G1,

∂th̃β − Th∂xuβ + Tu∂xh̃β − ∂2
y h̃β = G2,

(3.3)

where

G1 = [T ∂yu
h

Th − T∂yu]v − [T ∂yu
h
,Tu]g − [ThT ∂yh

h
− T∂yh]g − T(∂t−∂

2
y )(
∂yu

h )h1

+2T
∂y(
∂yu

h )h̃ − TuT
∂x(
∂yu

h )h1 + ThT
∂x
∂yu

h
h1 − T ∂yu

h

∫ y

0
f2dỹ + f1

= G11 + · · · +G19 (3.4)

and

G2 = [T ∂yh
h

Th − T∂yh]v − [ThT ∂yu
h
− T∂yu]g − [T ∂yh

h
,Tu]g − T(∂t−∂

2
y )(
∂yh

h )h1

−2T
∂y(
∂yh

h )h̃ − TuT
∂x(
∂yh

h )h1 + ThT
∂x
∂yh

h
h1 − T ∂yh

h

∫ y

0
f2dỹ + f2

= G21 + · · · +G29. (3.5)

Moreover, it is easy to check (uβ, h̃β) satisfies the following boundary conditions:

(uβ, ∂yh̃β)|y=0 = 0, lim
y→+∞

(uβ, h̃β) = (0, 0). (3.6)

The investigation of the local well-posedness of the solution to system (1.2) is equivalent to studying
the local well-posedness of systems (3.3)–(3.6). We will establish a priori estimates of the solution to
systems (3.3)–(3.6) in Sections 4 and 5.

4. Sobolev estimate in horizontal direction

In this section, we will establish the estimates of solutions. Let us first define the following
energy functionals

E(t) =
2∑

m=0

∥∂m
y (u, h̃)∥2

H1,0
ℓ−1+m
+ ∥(uβ, h̃β)∥2H3,0

ℓ

and

D(t) =
2∑

m=0

∥∂m+1
y (u, h̃)∥2

H1,0
ℓ−1+m
+ ∥(∂yuβ, ∂yh̃β)∥2H3,0

ℓ

.

We assume that (u, h̃) is a smooth solution of (1.2) on [0,T ∗] and

sup
t≤T ∗

E(t) ≤ (c1ε)2, (4.1)

where the positive constant c1 =
1
√

10C
.
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4.1. Some technical lemmas

We first give the proof of the lower bound of h(t, x, y).

Lemma 4.1. Let ℓ ≥
3
2

. For small enough ε ∈ (0,
1

2
√

10C
] and any small δ ∈ (0, 1), it holds that

h(t, x, y) >
1
2
∀ (t, x, y) ∈ [0,T ] × R2

+.

Proof. As h = h̃ + 1, we can derive the following inequality from Lemma 2.4 and the condition
lim

y→+∞
h̃ = 0

∥h̃(t, x, y)∥L∞(R2
+) ≤

∣∣∣∣ ∫ ∞

y
∂yh̃(t, x, ỹ)dỹ

∣∣∣∣
L∞(R2

+)

≤ ∥∂yh̃(t, x, y)∥L∞(Rx;L2
1
2 +δ

(R)

≤ ∥∂yh̃(t, x, y)∥L2
1
2 +δ

(R2
+) + ∥∂x∂yh̃(t, x, y)∥L2

1
2 +δ

(R2
+)

≤ E(t)
1
2 ≤ c1ε ≤

1
2
. (4.2)

The proof is thus complete. □
The following lemma can be obtained by the Hölder inequality ( [19], Theorem 1.4.3).

Lemma 4.2. Let ℓ ≥
3
2

, it holds that

∥∥∥∥ ∫ y

0
f dỹ
∥∥∥∥

L∞y
≤ C∥ f ∥L2

y,ℓ
.

Especially, thanks to ∂xu + ∂yv = 0, ∂xh̃ + ∂yg = 0, it holds that for n ∈ N,

∥v∥Hn
x L∞y ≤ C∥u∥Hn+1,0

ℓ
, ∥g∥Hn

x L∞y ≤ C∥h̃∥Hn+1,0
ℓ
.

Lemma 4.3. Let ℓ ≥
3
2

. For ε ∈ (0,
1

2
√

10C
] is small enough and any small δ ∈ (0, 1), it holds that


∥u(t, x, y)∥L∞ ≤ E(t)

1
2 , ∥∂xu(t, x, y)∥L∞ ≤ D(t)

1
2 ,

∥∂yu(t, x, y)∥L∞ ≤ D(t)
1
2 , ∥∂2

yu(t, x, y)∥L∞ ≤ D(t)
1
2 ,

∥∂yh̃(t, x, y)∥L∞ ≤ E(t)
1
2 , ∥∂yh̃(t, x, y)∥L∞ ≤ D(t)

1
2 ,

∥∂2
y h̃(t, x, y)∥L∞(R2

+) ≤ D(t)
1
2 .

(4.3)

Proof. Integrating it over [0, y] and using the boundary condition u(t, x, 0) = 0 and Lemma 2.4,
we have

∥u(t, x, y)∥L∞(R2
+) ≤

∣∣∣∣ ∫ y

0
∂yu(t, x, ỹ)dỹ

∣∣∣∣
L∞(R2

+)
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≤ ∥∂yu(t, x, y)∥L∞(Rx;L2
1
2 +δ

(R))

≤ ∥∂yu(t, x, y)∥L2
1
2 +δ

(R2
+) + ∥∂x∂yu(t, x, y)∥L2

1
2 +δ

(R2
+)

≤ ∥∂yu(t, x, y)∥H1,0
ℓ

(R2
+)

≤ E(t)
1
2

and

∥∂xu(t, x, y)∥L∞(R2
+) ≤

∣∣∣∣ ∫ y

0
∂x∂yu(t, x, ỹ)dỹ

∣∣∣∣
L∞(R2

+)

≤ ∥∂x∂yu(t, x, y)∥L∞(Rx;L2
1
2 +δ

(R)

≤ ∥∂x∂yu(t, x, y)∥L2
1
2 +δ

(R2
+) + ∥∂

2
x∂yu(t, x, y)∥L2

1
2 +δ

(R2
+)

≤ ∥∂yu(t, x, y)∥H2,0
ℓ

(R2
+)

≤ D(t)
1
2 .

Applying the Gagliardo–Nirenberg inequality ( [19], Theorem 1.1.18), the Young inequality ( [19],
Corollary 1.4.1) and Lemma 2.4, we deduce that

∥∂yu(t, x, y)∥L∞(R2
+) ≤ ∥∂yu(t, x, y)∥

1
2

L∞x L2
y
∥∂2

yu(t, x, y)∥
1
2

L∞x L2
y

≤ ∥∂yu(t, x, y)∥
1
4

L2(R2
+)
∥∂x∂yu(t, x, y)∥

1
4

L2(R2
+)

×∥∂2
yu(t, x, y)∥

1
4

L2(R2
+)
∥∂x∂

2
yu(t, x, y)∥

1
4

L2(R2
+)

≤
1
4

(
∥∂yu(t, x, y)∥L2(R2

+) + ∥∂x∂yu(t, x, y)∥L2(R2
+)

+∥∂2
yu(t, x, y)∥L2(R2

+) + ∥∂x∂
2
yu(t, x, y)∥L2(R2

+)

)
≤ D(t)

1
2 .

Using the boundary condition ∂2
yu(t, x, 0) = 0, Young’s inequality ( [19], Corollary 1.4.1) and

Lemma 2.4, we conclude

∥∂2
yu(t, x, y)∥L∞(R2

+) ≤

∣∣∣∣ ∫ y

0
∂3

yu(t, x, y)dỹ
∣∣∣∣

≤ ∥∂3
yu(t, x, y)∥L∞x L2

y, 12 +δ

≤ ∥∂3
yu(t, x, y)∥

1
2

L2
1
2 +δ

(R2
+)
∥∂x∂

2
yu(t, x, y)∥

1
2

L2
1
2 +δ

(R2
+)

≤
1
2
∥∂3

yu(t, x, y)∥L2
1
2 +δ

(R2
+) +

1
2
∥∂x∂

2
yu(t, x, y)∥L2

1
2 +δ

(R2
+)

≤ D(t)
1
2 .
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In the same way, using the condition ∂yh̃|y=0 = 0, we derive

∥∂yh̃(t, x, y)∥L∞(R2
+) ≤

∣∣∣∣ ∫ y

0
∂2

y h̃(t, x, ỹ)dỹ
∣∣∣∣
L∞(R2

+)

≤ ∥∂2
y h̃(t, x, y)∥L∞x L2

y, 12 +δ

≤ ∥∂2
y h̃(t, x, y)∥

1
2

L2
1
2 +δ

(R2
+)
∥∂x∂

2
y h̃(t, x, y)∥

1
2

L2
1
2 +δ

(R2
+)

≤ D(t)
1
2

or

∥∂yh̃(t, x, y)∥L∞(R2
+) ≤ ∥∂

2
y h̃(t, x, y)∥L2

1
2 +δ

(R2
+) + ∥∂x∂

2
y h̃(t, x, y)∥L2

1
2 +δ

(R2
+)

≤ E(t)
1
2 .

By virtue of the Gagliardo-Nirenberg inequality ( [19], Theorem 1.1.18), Lemmas 2.4 and 4.3
again yield

∥∂2
y h̃(t, x, y)∥L∞(R2

+) ≤ ∥∂
2
y h̃(t, x, y)∥

1
4

L2(R2
+)
∥∂x∂

2
y h̃(t, x, y)∥

1
4

L2(R2
+)

×∥∂3
y h̃(t, x, y)∥

1
4

L2(R2
+)
∥∂x∂

3
y h̃(t, x, y)∥

1
4

L2(R2
+)

≤ D(t)
1
2 .

The proof is now complete. □
The following lemma introduces the relationship of norms between good functions (uβ, h̃β)

and (u, h̃).

Lemma 4.4. Let ℓ ≥
3
2

. For sufficient small ε ∈ (0,
1

2
√

10C
], then for any t ∈ [0,T ∗],

∥u∥H3,0
ℓ
+ ∥h̃∥H3,0

ℓ
≤ 2E(t)

1
2 , ∥∂yu∥H3,0

ℓ
+ ∥∂yh̃∥H3,0

ℓ
≤ 4D(t)

1
2 .

Proof. Using Lemmas 2.1, 2.4, 4.1 and 4.2, we can conclude that

∥u∥H3,0
ℓ
≤ ∥uβ∥H3,0

ℓ
+ ∥T ∂yu

h
h1∥H3,0

ℓ

≤ ∥uβ∥H3,0
ℓ
+C∥∂yu∥L∞x L2

y,1
∥h̃∥H3,0

ℓ

≤ ∥uβ∥H3,0
ℓ
+C∥∂yu∥

1
2

L2
1
∥∂x∂yu∥

1
2

L2
1
∥h̃∥H3,0

ℓ

≤ ∥uβ∥H3,0
ℓ
+CE(t)

1
2 ∥h̃∥H3,0

ℓ

≤ ∥uβ∥H3,0
ℓ
+Cc1ε∥h̃∥H3,0

ℓ
.

Analogously, we have
∥h̃∥H3,0

ℓ
≤ ∥h̃β∥H3,0

ℓ
+Cc1ε∥h̃∥H3,0

ℓ
.
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Therefore, by taking a small enough ε ∈ (0, 1
2
√

10C
], we obtain

∥(u, h̃)∥H3,0
ℓ
≤ 2∥(uβ, h̃β)∥H3,0

ℓ
≤ 2E(t)

1
2 .

Besides, we also obtain

∥(uβ, h̃β)∥H3,0
ℓ
≤ 2∥(u, h̃)∥H3,0

ℓ
≤ 2E(t)

1
2 .

Applying Lemmas 2.1, 2.4, and 4.1–4.3, we deduce

∥∂yu∥H3,0
ℓ

≤ ∥∂yuβ∥H3,0
ℓ
+ ∥∂y

(
T ∂yu

h
h1
)
∥H3,0
ℓ

≤ ∥∂yuβ∥H3,0
ℓ
+C
(
∥∂2

yu∥L∞x L2
y,ℓ
+ ∥∂yu∥L∞x L2

y,ℓ
∥∂yh̃∥L∞ + ∥∂yu∥L∞

)
∥h̃∥H3,0

ℓ

≤ ∥∂yuβ∥H3,0
ℓ
+C
(
∥∂2

yu∥H1,0
ℓ
+ ∥∂yu∥H1,0

ℓ
∥∂yh̃∥L∞ + ∥∂yu∥L∞

)
∥h̃∥H3,0

ℓ

≤ ∥∂yuβ∥H3,0
ℓ
+CD(t)

1
2 E(t)

1
2 +CD(t)

1
2 E(t)

≤ 2D(t)
1
2 .

Similarly, we also obtain
∥∂yh̃∥H3,0

ℓ
≤ 2D(t)

1
2 .

The proof is therefore complete. □

Lemma 4.5. Let ℓ ≥
3
2

. For any ε ∈ (0,
1

2
√

10C
], it holds that,

∥∂xh̃∥L∞ ≤ 2E(t)
1
4 D(t)

1
4 .

Proof. By virtue of the Gagliardo–Nirenberg inequality ( [19], Theorem 1.1.18), Lemmas 2.4
and 4.4 yielding

∥∂xh̃(t, x, y)∥L∞(R2
+) ≤ ∥∂xh̃(t, x, y)∥

1
4

L2(R2
+)
∥∂2

xh̃(t, x, y)∥
1
4

L2(R2
+)

×∥∂x∂yh̃(t, x, y)∥
1
4

L2(R2
+)
∥∂2

x∂yh̃(t, x, y)∥
1
4

L2(R2
+)

≤ 2E(t)
1
4 D(t)

1
4 .

The proof is hence complete. □

4.2. The estimates of the nonlinear terms G1 and G2

In this subsection, we establish the estimate of the nonlinear terms G1 and G2.

Lemma 4.6. Let ℓ ≥
3
2

, it holds that

∥G1∥H3,0
ℓ
+ ∥G2∥H3,0

ℓ

≤ CD(t)
1
2 E(t)

1
2 +CD(t)

1
2 E(t) +CD(t)

1
2 E(t)

3
2 +CD(t)

1
4 E(t)

3
4 +CD(t)

1
4 E(t)

5
4 .
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Proof. We only establish the estimate of G1. The estimate of G2 could be derived in a similar way.
By Lemmas 2.2, 2.4, and 4.1–4.3, we obtain

∥G12∥H3,0
ℓ

△
= ∥[T ∂yu

h
,Tu]g∥H3,0

ℓ

≤ C
(
∥∂yu∥L2

y,ℓ(W
1,∞
x )∥u∥L∞ + ∥∂yu∥L∞∥u∥L2

y,ℓ(W
1,∞
x )

)
∥g∥L∞y H2

x

≤ C
(
∥∂yu∥H2,0

ℓ
∥u∥L∞ + ∥∂yu∥L∞∥u∥H2,0

ℓ

)
∥h̃∥H3,0

ℓ

≤ CD(t)
1
2 E(t).

It is easy to check that

[T ∂yu
h

Th − T ∂yu
h h

] = [T ∂yu
h

Th̃ − T ∂yu
h h̃

], [T ∂yh
h

Th − T ∂yh
h h

] = [T ∂yh
h

Th̃ − T ∂yh
h h̃

].

Using Lemmas 2.2, 2.4, and 4.1–4.3 again, we attain

∥G11∥H3,0
ℓ

△
= ∥[T ∂yu

h
Th̃ − T ∂yu

h h̃
]v∥H3,0

ℓ

≤ C
(
∥∂yu∥L2

y,ℓ(W
1,∞
x )∥h̃∥L∞ + ∥∂yu∥L∞∥h̃∥L2

y,ℓ(W
1,∞
x )

)
∥v∥L∞y H2

x

≤ C
(
∥∂yu∥H2,0

ℓ
∥h̃∥L∞ + ∥∂yu∥L∞∥h̃∥H2,0

ℓ

)
∥u∥H3,0

ℓ

≤ CD(t)
1
2 E(t).

We now apply Lemmas 2.2, 2.4, and 4.1–4.3 again, with G11 replaced by G13, to obtain

∥G13∥H3,0
ℓ

△
= ∥[ThT ∂yh̃

h
− T

h
∂yu

h
]v∥H3,0

ℓ

≤ C
(
∥∂yh̃∥H2,0

ℓ
∥h̃∥L∞ + ∥∂yh̃∥L∞∥h̃∥H2,0

ℓ

)
∥u∥H3,0

ℓ

≤ CD(t)
1
2 E(t).

Recall Lemmas 2.1 and 4.1–4.4; we derive

∥G15∥H3,0
ℓ

△
= 2∥T

∂y(
∂yu

h )h̃∥H3,0
ℓ

≤ 2∥T ∂2y u
h

h̃∥H3,0
ℓ
+ 2∥T ∂yu∂yh̃

h
h̃∥H3,0

ℓ

≤ C(∥∂2
yu∥L∞ + ∥∂yu∥L∞∥∂yh̃∥L∞)∥h̃∥H3,0

ℓ

≤ CD(t)
1
2 E(t)

1
2 +CD(t)

1
2 E(t).

By Lemmas 2.1 and 4.1–4.4, we have

∥G17∥H3,0
ℓ

△
= ∥ThT

∂x
∂yh

h
h1∥H3,0

ℓ
≤ ∥h∥L∞∥(∂x∂yh̃ + ∂xh̃∂yh̃)∥L∞x L2

y,ℓ
∥h1∥H3

x L∞y

≤ C(∥∂yh̃∥H2,0
ℓ
+ ∥∂yh̃∥L∞∥h̃∥H2,0

ℓ
)∥h̃∥H3,0

ℓ

≤ CD(t)
1
2 E(t)

1
2 +CD(t)

1
2 E(t).

In the same manner, we can obtain

∥G16∥H3,0
ℓ

△
= ∥ThT

∂x
∂yu

h
h1∥H3,0

ℓ
≤ CD(t)

1
2 E(t)

1
2 +CD(t)

1
2 E(t).
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Next, we will deal with the term G14. From Eq (1.2), we can conclude that

(∂t − ∂
2
y)(
∂yu
h

) =
(∂t − ∂

2
y)∂yu

h
−
∂yu(∂t − ∂

2
y)h

h2 +
2h∂yh∂2

yu − 2∂yu(∂yh)2

h3

=
h∂2

xyh̃ + g∂2
y h̃ − u∂2

xyu − v∂2
yu

h
−
∂yu∂y(ug − vh)

h2 +
2h∂yh̃∂2

yu − 2∂yu(∂yh̃)2

h3

=: A1 + A2 + A3.

Using Lemmas 2.1 and 4.1–4.4, we are led to

∥TA1h1∥H3,0
ℓ

≤ ∥T∂2
xyh̃h1∥H3,0

ℓ
+ ∥T g∂2y h̃

h

h1∥H3,0
ℓ
+ ∥T u∂2xyu

h

h1∥H3,0
ℓ
+ ∥T v∂2y u

h

h1∥H3,0
ℓ

≤ C
(
∥∂yh̃∥H2,0

ℓ
+ ∥h̃∥H2,0

ℓ
∥∂2

y h̃∥H1,0
ℓ
+ ∥u∥L∞∥∂yu∥H2,0

ℓ
+ ∥u∥H2,0

ℓ
∥∂2

yu∥H1,0
ℓ

)
∥h̃∥H3,0

ℓ

≤ CD(t)
1
2 E(t)

1
2 +CD(t)

1
2 E(t).

In the same way, we deduce

∥TA2h1∥H3,0
ℓ

≤ ∥T g(∂yu)2

h2
h1∥H3,0

ℓ
+ ∥T u∂yu∂xu

h2
h1∥H3,0

ℓ
+ ∥T ∂yu∂xu

h
h1∥H3,0

ℓ
+ ∥T v∂yu∂yh̃

h2
h1∥H3,0

ℓ

≤ C
(
∥h̃∥H2,0

ℓ
∥∂yu∥2H1,0

ℓ

+ ∥u∥L∞∥∂yu∥L∞∥u∥H2,0
ℓ

+∥u∥H2,0
ℓ
∥∂yu∥L∞ + ∥u∥H2,0

ℓ
∥∂yu∥L∞∥∂yh̃∥H1,0

ℓ

)
∥h̃∥H3,0

ℓ

≤ CD(t)
1
2 E(t)

3
2 +CD(t)

1
2 E(t)

and

∥TA3h1∥H3,0
ℓ

≤ C∥T ∂yh̃∂2y u

h2

h1∥H3,0
ℓ
+ ∥T ∂yu(∂yh̃)2

h3
h1∥H3,0

ℓ

≤ C
(
∥∂yh̃∥H1,0

ℓ
∥∂2

yu∥L∞ + ∥∂yh̃∥2H1,0
ℓ

∥∂yu∥L∞
)
∥h̃∥H3,0

ℓ

≤ CD(t)
1
2 E(t)

3
2 +CD(t)

1
2 E(t).

Thus, we can derive that

∥G14∥H3,0
ℓ

△
= ∥T(∂t−∂

2
y )(
∂yu

h )h1∥H3,0
ℓ
≤ CD(t)

1
2 E(t)

3
2 +CD(t)

1
2 E(t) +CD(t)

1
2 E(t)

1
2 .

Applying Lemmas 2.1, 2.4, and 4.1–4.5, we are led to

∥ f2∥H3,0
ℓ
≤ ∥Rv∂yh̃∥H3,0

ℓ
+ ∥R∂xh̃u∥H3,0

ℓ
+ ∥R∂xuh̃∥H3,0

ℓ
+ ∥Rg∂yu∥H3,0

ℓ

≤ ∥u∥H2,0
ℓ
∥∂yh̃∥H3,0

ℓ
+ ∥∂xh̃∥L∞∥u∥H3,0

ℓ

+∥∂xu∥L∞∥h̃∥H3,0
ℓ
+ ∥h̃∥H2,0

ℓ
∥∂yu∥H3,0

ℓ
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≤ CD(t)
1
2 E(t)

1
2 +CD(t)

1
4 E(t)

3
4 ,

which implies

∥G18∥H3,0
ℓ
=
∥∥∥∥T ∂yu

h

∫ y

0
f2dỹ
∥∥∥∥

H3,0
ℓ

≤ C∥∂yu∥H1,0
ℓ
∥ f2∥H3,0

ℓ

≤ CD(t)
1
2 E(t) +CD(t)

1
4 E(t)

5
4 .

Analogously, we obtain

∥G19∥H3,0
ℓ
≤ CD(t)

1
2 E(t)

1
2 +CD(t)

1
4 E(t)

3
4 .

Adding all the above estimates together gives the desired result.
The proof is now complete. □

4.3. Tangential energy estimate

In this subsection, we show the high-order derivative estimates of the solutions in the horizontal
variable x.

Lemma 4.7. Let ℓ ≥
3
2

, it holds that

d
dt
∥(uβ, h̃β)∥2H3,0

ℓ

+ ∥(∂yuβ, ∂yh̃β)∥2H3,0
ℓ

≤ CD(t)
1
2 E(t)

1
2 +CD(t)

1
2 E(t) +CD(t)

1
2 E(t)

3
2 +CD(t)

1
2 E(t)2

+CD(t)
1
4 E(t)

5
4 +CD(t)

1
4 E(t)

7
4 .

Proof. Multiplying Eq (3.3) by (uβ, h̃β) in H3,0
ℓ , respectively, we derive

(∂tuβ, uβ)H3,0
ℓ
+ (∂th̃β, h̃β)H3,0

ℓ
− (∂2

yuβ, uβ)H3,0
ℓ
− (∂2

y h̃β, h̃β)H3,0
ℓ

+(Tu∂xuβ, uβ)H3,0
ℓ
− (Th∂xh̃β, uβ)H3,0

ℓ
− (Th∂xuβ, h̃β)H3,0

ℓ
+ (Tu∂xh̃β, h̃β)H3,0

ℓ

= (G1, uβ)H3,0
ℓ
+ (G2, h̃β)H3,0

ℓ
.

First of all, using (3.6) and integrating it by parts, we obtain

(∂tuβ, uβ)H3,0
ℓ
+ (∂th̃β, h̃β)H3,0

ℓ
− (∂2

yuβ, uβ)H3,0
ℓ
− (∂2

y h̃β, h̃β)H3,0
ℓ

=
1
2

d
dt
∥(uβ, h̃β)∥H3,0

ℓ
+ ∥(∂yuβ, ∂yh̃β)∥H3,0

ℓ

+2ℓ(∂yh̃β, h̃β)H3,0
ℓ− 1

2

+ 2ℓ(∂yuβ, uβ)H3,0
ℓ− 1

2

=
1
2

d
dt
∥(uβ, h̃β)∥H3,0

ℓ
+ ∥(∂yuβ, ∂yh̃β)∥H3,0

ℓ

−ℓ(2ℓ − 1)∥(uβ, h̃β)∥2H3,0
ℓ−1
− ℓ(2ℓ − 1)∥h̃β|y=0∥

2
H3,0

≥
1
2

d
dt
∥(uβ, h̃β)∥2H3,0

ℓ

+ ∥(∂yuβ, ∂yh̃β)∥2H3,0
ℓ

.
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An easy computation shows that

(Tu∂xuβ, uβ)H3,0
ℓ
=

3∑
m=0

(∂k
xTu∂xuβ, ∂k

xuβ)L2
ℓ

=

3∑
m=0

(Tu∂
k
x∂xuβ, ∂k

xuβ)L2
ℓ
+

3∑
m=1

([∂k
x,Tu]∂xuβ, ∂k

xuβ)L2
ℓ

=: D +
3∑

m=1

([∂k
x,Tu]∂xuβ, ∂k

xuβ)L2
ℓ
,

where

D = −
1
2

3∑
m=0

(T∂xu∂
k
xuβ, ∂

k
xuβ)L2

ℓ
+

1
2

3∑
m=0

(
(Tu − T ∗u)∂k

x∂xuβ, ∂k
xuβ
)

L2
ℓ

=: D1 + D2.

By Lemmas 2.1, 2.2, 4.3, and 4.5, we conclude

∣∣∣D1

∣∣∣ ≤ 3∑
m=0

∥T∂xu∂
k
xuβ∥H3,0

ℓ
∥∂k

xuβ∥H3,0
ℓ
≤ C∥∂xu∥L∞∥∂k

xuβ∥
2
H3,0
ℓ

≤ CD(t)
1
2 E(t)

and

∣∣∣D2

∣∣∣ ≤ 3∑
k=0

∥(Tu − T ∗u)∂k
x∂xuβ∥L2

ℓ
∥∂k

xuβ∥L2
ℓ

≤

3∑
k=0

∥u∥W1,∞
x L∞y
∥∂k

xuβ∥
2
L2
ℓ

≤ CD(t)
1
2 E(t)

and by Lemmas 2.3 and 4.3 gives,

3∑
k=1

([∂k
x,Tu]∂xuβ, ∂k

xuβ)L2
ℓ
≤ C∥∂xu∥L∞∥uβ∥2H3,0

ℓ

≤ CD(t)
1
2 E(t).

Thus, we have

(Tu∂xuβ, uβ)H3,0
ℓ
≤ CD(t)

1
2 E(t).

Likewise, we can also obtain

(Tu∂xh̃β, h̃β)H3,0
ℓ
≤ CD(t)

1
2 E(t),

(Th∂xuβ, uβ)H3,0
ℓ
≤ CD(t)

1
4 E(t)

5
4 ,
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(Th∂xh̃β, h̃β)H3,0
ℓ
≤ CD(t)

1
4 E(t)

5
4 .

A simple calculation yields

(Th∂xh̃β, uβ)H3,0
ℓ
+ (Th∂xuβ, h̃β)H3,0

ℓ

= (Th∂x(h̃β + uβ), (h̃β + uβ))H3,0
ℓ
− (Th∂xuβ, uβ)H3,0

ℓ
− (Th∂xh̃β, h̃β)H3,0

ℓ
.

Therefore, we also obtain

(Th∂xh̃β, uβ)H3,0
ℓ
+ (Th∂xuβ, h̃β)H3,0

ℓ
≤ CD(t)

1
4 E(t)

5
4 .

It follows from Lemma 4.6 that

(G1, uβ)H3,0
ℓ
+ (G2, h̃β)H3,0

ℓ

≤
(
CD(t)

1
2 E(t)

1
2 +CD(t)

1
2 E(t) +CD(t)

1
2 E(t)

3
2

+CD(t)
1
4 E(t)

3
4 +CD(t)

1
4 E(t)

5
4
)
∥(uβ, h̃β)∥H3,0

ℓ

≤ CD(t)
1
2 E(t) +CD(t)

1
2 E(t)

3
2 +CD(t)

1
2 E(t)2

+CD(t)
1
4 E(t)

5
4 +CD(t)

1
4 E(t)

7
4 .

Summing up all the above estimates, we deduce

d
dt
∥(uβ, h̃β)∥2H3,0

ℓ

+ ∥(∂yuβ, ∂yh̃β)∥2H3,0
ℓ

≤ CD(t)
1
2 E(t) +CD(t)

1
2 E(t)

3
2 +CD(t)

1
2 E(t)2

+CD(t)
1
4 E(t)

5
4 +CD(t)

1
4 E(t)

7
4 .

The proof is then complete. □

5. High order energy estimate in y variable

In Lemma 4.7, we just prove the high-order derivative estimates of the solutions in the horizontal
variable x. To make the energy estimate more complete, we need to derive the high-order derivative
estimates in variable y. We again assume that (u, h̃) is a smooth solution of (1.2) on [0,T ∗]
satisfying (4.1).

Lemma 5.1. Let ℓ ≥
3
2

, it holds that for any t ∈ [0,T ∗],

d
dt

( 2∑
m=0

∥(∂m
y u, ∂m

y h̃)∥2
H1,0
ℓ−1+m

)
+

2∑
m=0

∥(∂m+1
y u, ∂m+1

y h̃)∥2
H1,0
ℓ−1+m

≤ CD(t)
1
4 E(t)

5
4 +CE(t)

3
2 +CD(t)

1
2 E(t) +CD(t)

1
2 E(t)

1
2 .
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Proof. The proof will be divided into the following three steps.
Step 1. (H1,0

ℓ−1 estimate) Taking H1,0
ℓ−1-inner product between (1.2) with (∂yu, ∂yh̃), we obtain

(∂tu, u)H1,0
ℓ−1
+ (∂th̃, h̃)H1,0

ℓ−1
− (∂2

yu, u)H1,0
ℓ−1
− (∂2

y h̃, h̃)H1,0
ℓ−1

= −(u∂xu, u)H1,0
ℓ−1
− (u∂xh̃, h̃)H1,0

ℓ−1
+ (h∂xh̃, u)H1,0

ℓ−1
+ (h∂xu, h̃)H1,0

ℓ−1

−(v∂yu, u)H1,0
ℓ−1
+ (g∂yh̃, u)H1,0

ℓ−1
− (v∂yh̃, h̃)H1,0

ℓ−1
+ (g∂yu, h̃)H1,0

ℓ−1

=: A1 + B1.

First of all, integrating it by parts and using the Hölder inequality ( [19], Theorem 1.4.3), we deduce

(∂tu, u)H1,0
ℓ−1
+ (∂th̃, h̃)H1,0

ℓ−1
− (∂2

yu, u)H1,0
ℓ−1
− (∂2

y h̃, h̃)H1,0
ℓ−1

=
1
2

d
dt
∥(u, h̃)∥H1,0

ℓ−1
+ ∥(∂yu, ∂yh̃)∥H1,0

ℓ−1

−2(ℓ − 1)(∂yu, u)H1,0
ℓ−1
− 2(ℓ − 1)(∂yh̃, h̃)H1,0

ℓ−1

≥
1
2

d
dt
∥(u, h̃)∥H1,0

ℓ−1
+ ∥(∂yu, ∂yh̃)∥H1,0

ℓ−1
−C∥u∥H1,0

ℓ−1
∥∂yu∥H1,0

ℓ−1
−C∥h̃∥H1,0

ℓ−1
∥∂yh̃∥H1,0

ℓ−1
.

By integration by parts and applying Lemma 4.3, we have

(u∂xu, u)H1,0
ℓ−1
= (u∂xu, u)L2

ℓ−1
+

1
2

(∂xu∂xu, ∂xu)L2
ℓ−1

≤ C∥∂xu∥L∞∥u∥2H1,0
ℓ−1
≤ CD

1
2 E(t).

It infers from Lemmas 4.3 and 4.5 that

(h∂xh̃, u)H1,0
ℓ−1
+ (h∂xu, h̃)H1,0

ℓ−1

= (h∂xh̃, u)L2
ℓ−1
+ (h∂xu, h̃)L2

ℓ−1
+ (∂xh̃∂xh̃, ∂xu)L2

ℓ−1

≤ CD
1
4 E(t)

5
4 +CD

1
2 E(t).

In the same way, we can obtain

(u∂xh̃, h̃)H1,0
ℓ−1
≤ CD

1
4 E(t)

5
4 .

This shows that
|A1| ≤ CD(t)

1
4 E(t)

5
4 +CD

1
2 E(t).

In view of v =
∫ y

0
∂xudỹ, from Lemmas 4.2 and 4.4, we can derive that

(v∂yu, u)H1,0
ℓ−1
≤ ∥v∥W1,∞

x L∞y
∥∂yu∥H1,0

ℓ−1
≤ C∥u∥H2,0

ℓ−1
∥∂yu∥H1,0

ℓ−1
∥u∥H1,0

ℓ−1
≤ CD(t)

1
2 E(t).

The estimate of B1 could be deduced in a similar way. Then we have

|B1| ≤ CD(t)
1
2 E(t).
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Therefore, we conclude that

d
dt
∥(u, h̃)∥2

H1,0
ℓ−1
+ ∥(∂yu, ∂yh̃)∥2

H1,0
ℓ−1
≤ CD(t)

1
4 E(t)

5
4 +CD(t)

1
2 E(t)

1
2 +CD(t)

1
2 E(t). (5.1)

Step 2.(H1,1
ℓ estimate) Taking ∂y to (1.2) and then taking H1,0

ℓ -inner product with (∂yu, ∂yh̃), we attain

d
dt
∥(∂yu, ∂yh̃)∥2

H1,0
ℓ

+ ∥(∂2
yu, ∂2

y h̃)∥2
H1,0
ℓ

≤ −(u∂x∂yu, ∂yu)H1,0
ℓ
− (u∂x∂yh̃, ∂yh̃)H1,0

ℓ
+ (h∂x∂yh̃, ∂yu)H1,0

ℓ
+ (h∂x∂yu, ∂yh̃)H1,0

ℓ

−(v∂2
yu, ∂yu)H1,0

ℓ
+ (g∂2

y h̃, ∂yu)H1,0
ℓ
− (v∂2

y h̃, ∂yh̃)H1,0
ℓ
+ (g∂2

yu, ∂yh̃)H1,0
ℓ

−2(∂xh̃∂yu − ∂xu∂yh̃, ∂yh̃)H1,0
ℓ

+C∥∂2
yu∥H1,0

ℓ
∥∂yu∥H1,0

ℓ
+C∥∂2

y h̃∥H1,0
ℓ
∥∂yh̃∥H1,0

ℓ

=: A2 + B2 +C2 + D2.

For the estimate of term A2, by integration by parts and using Lemma 4.3, we have

(u∂x∂yu, ∂yu)H1,0
ℓ
= (u∂x∂yu, ∂yu)L2

ℓ
+

1
2

(∂xu∂x∂yu, ∂x∂yu)L2
ℓ

≤ C∥∂xu∥L∞∥∂yu∥2H1,0
ℓ

≤ CD(t)
1
2 E(t)

and

(h∂x∂yh̃, ∂yu)H1,0
ℓ
+ (h∂x∂yu, ∂yh̃)H1,0

ℓ

= (h∂x∂yh̃, ∂yu)L2
ℓ
+ (h∂x∂yu, ∂yh̃)L2

ℓ
+ (∂xh̃∂x∂yh̃, ∂x∂yu)L2

ℓ

≤ CD(t)
1
4 E(t)

5
4 +CD(t)

1
2 E(t).

On account of the above calculations, we can obtain

|A2| ≤ CD(t)
1
4 E(t)

5
4 +CD(t)

1
2 E(t).

For the estimate of term B2, using Lemma 4.2, we thus obtain

(v∂2
yu, ∂yu)H1,0

ℓ
= (v∂2

yu, ∂yu)L2
ℓ
+
(
∂xv∂2

yu + v∂x∂
2
yu, ∂x∂yu

)
L2
ℓ

≤ C∥v∥H1
x L∞y ∥∂

2
yu∥H1,0

ℓ
∥∂yu∥H1,0

ℓ

≤ C∥u∥H2,0
ℓ
∥∂2

yu∥H1,0
ℓ
∥∂yu∥H1,0

ℓ
.

The remainder terms of B2 can be handled in much the same way, which gives

(g∂2
y h̃, ∂yu)H1,0

ℓ
≤ C∥h̃∥H2,0

ℓ
∥∂2

y h̃∥H1,0
ℓ
∥∂yu∥H1,0

ℓ
,

(v∂2
y h̃, ∂yh̃)H1,0

ℓ
≤ C∥u∥H2,0

ℓ
∥∂2

y h̃∥H1,0
ℓ
∥∂yh̃∥H1,0

ℓ
,

(g∂2
yu, ∂yh̃)H1,0

ℓ
≤ C∥h̃∥H2,0

ℓ
∥∂2

yu∥H1,0
ℓ
∥∂yh̃∥H1,0

ℓ
.
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Therefore, we obtain

|B2| ≤ CD(t)
1
2 E(t).

For the estimate of term C2, we have

|C2| ≤ ∥(∂xh̃∂yu − ∂xu∂yh̃)∥H1,0
ℓ
∥∂yh̃∥H1,0

ℓ

≤ C
(
∥h̃∥H1,0

ℓ
∥∂yu∥L∞ + ∥u∥H1,0

ℓ
∥∂yh̃∥L∞

)
∥∂yh̃∥H1,0

ℓ
.

Thanks to Lemmas 4.3 and 4.4, we conclude

|C2| ≤ CD(t)
1
2 E(t).

It is obvious that

|D2| ≤ CD(t)
1
2 E(t)

1
2 .

Consequently, we deduce

d
dt
∥(∂yu, ∂yh̃)∥2

H1,0
ℓ

+ ∥(∂2
yu, ∂2

y h̃)∥2
H1,0
ℓ

≤ CD(t)
1
4 E(t)

5
4 +CD(t)

1
2 E(t)

1
2 +CD(t)

1
2 E(t). (5.2)

Step 3. (H1,2
ℓ+1 estimate) Taking ∂2

y to (1.2) and then taking H1,0
ℓ+1-inner product with (∂2

yu, ∂2
y h̃),

we attain

d
dt
∥(∂2

yu, ∂2
y h̃)∥2

H1,0
ℓ+1
+ ∥(∂3

yu, ∂3
y h̃)∥2

H1,0
ℓ+1

≤ −(u∂x∂
2
yu, ∂2

yu)H1,0
ℓ+1
− (u∂x∂

2
y h̃, ∂2

y h̃)H1,0
ℓ+1
+ (h∂x∂

2
y h̃, ∂2

yu)H1,0
ℓ+1
+ (h∂x∂

2
yu, ∂2

y h̃)H1,0
ℓ+1

−(v∂3
yu, ∂2

yu)H1,0
ℓ+1
+ (g∂3

y h̃, ∂2
yu)H1,0

ℓ+1
− (v∂3

y h̃, ∂2
y h̃)H1,0

ℓ+1
+ (g∂3

yu, ∂2
y h̃)H1,0

ℓ+1

−(∂yu∂x∂yu, ∂2
yu)H1,0

ℓ+1
− 3(∂yu∂x∂yh̃, ∂2

y h̃)H1,0
ℓ+1
+ (∂yh̃∂x∂yh̃, ∂2

yu)H1,0
ℓ+1
+ 3(∂yh̃∂x∂yu, ∂2

y h̃)H1,0
ℓ+1

−(∂yv∂2
yu, ∂2

yu)H1,0
ℓ+1
+ (∂yg∂2

y h̃, ∂2
yu)H1,0

ℓ+1
− 3(∂yv∂2

y h̃, ∂2
y h̃)H1,0

ℓ+1
+ 3(∂yg∂2

yu, ∂2
y h̃)H1,0

ℓ+1

+C∥∂3
yu∥H1,0

ℓ+1
∥∂2

yu∥H1,0
ℓ+1
+C∥∂3

y h̃∥H1,0
ℓ+1
∥∂2

y h̃∥H1,0
ℓ+1

=: A3 + B3 +C3 + D3 + E3.

We establish the estimates of the nonlinear terms as follows:
For the estimates of the term A3, a direct calculation yields

(u∂x∂
2
yu, ∂2

yu)H1,0
ℓ+1
= (u∂x∂

2
yu, ∂2

yu)L2
ℓ+1
+

1
2

(∂xu∂x∂
2
yu, ∂x∂

2
yu)L2

ℓ+1
,

(u∂x∂
2
y h̃, ∂2

y h̃)H1,0
ℓ+1
= (u∂x∂

2
y h̃, ∂2

y h̃)L2
ℓ+1
+

1
2

(∂xu∂x∂
2
y h̃, ∂x∂

2
y h̃)L2

ℓ+1

and

(h∂x∂
2
y h̃, ∂2

yu)H1,0
ℓ+1
+ (h∂x∂

2
yu, ∂2

y h̃)H1,0
ℓ+1

Electronic Research Archive Volume 32, Issue 12, 6618–6640.



6636

=
(
h∂x∂

2
y(h̃ + u), ∂2

y(h̃ + u)
)

H1,0
ℓ+1
− (h∂x∂

2
y h̃, ∂2

y h̃)H1,0
ℓ+1
− (h∂x∂

2
yu, ∂2

yu)H1,0
ℓ+1

=
(
h∂x∂

2
y(h̃ + u), ∂2

y(h̃ + u)
)

L2
ℓ+1
+

1
2
(
∂xh∂x∂

2
y(h̃ + u), ∂x∂

2
y(h̃ + u)

)
L2
ℓ+1

−(h̃∂x∂
2
y h̃, ∂2

y h̃)L2
ℓ+1
−

1
2

(∂xh̃∂x∂
2
y h̃, ∂x∂

2
y h̃)L2

ℓ+1

−(h̃∂x∂
2
yu, ∂2

yu)L2
ℓ+1
−

1
2

(∂xh̃∂x∂
2
yu, ∂x∂

2
yu)L2

ℓ+1
.

Therefore, applying the Hölder inequality ( [19], Theorem 1.4.3), Lemmas 4.1, 4.3 and 4.5 for the
above equality, we have∣∣∣A3

∣∣∣ ≤ C
(
∥(u, h̃)∥L∞ + ∥(∂xu, ∂xh̃)∥L∞

)(
∥∂2

yu∥2
H1,0
ℓ+1
+ ∥∂2

y h̃∥2
H1,0
ℓ+1

)
≤ CD(t)

1
4 E(t)

5
4 +CD(t)

1
2 E(t) +CE(t)

3
2 .

For the estimates of the term B3, applying the Hölder inequality ( [19], Theorem 1.4.3),
Lemmas 2.4, 4.2 and 4.4, we can conclude that∣∣∣B3

∣∣∣ ≤ C
(
∥v∥W1,∞

x L∞y
+ ∥g∥W1,∞

x L∞y

)(
∥∂3

yu∥H1,0
ℓ+1
+ ∥∂3

y h̃∥H1,0
ℓ+1

)(
∥∂2

yu∥H1,0
ℓ+1
+ ∥∂2

y h̃∥H1,0
ℓ+1

)
≤ CD(t)

1
2 E(t).

Analogously, using the Hölder inequality ( [19], Theorem 1.4.3), Lemmas 2.4, 4.3 and 4.4, for

ℓ ≥
3
2

, we can deduce that

C3 = −(∂yu∂x∂yu, ∂2
yu)H1,0

ℓ+1
− 3(∂yu∂x∂yh̃, ∂2

y h̃)H1,0
ℓ+1
+ (∂yh̃∂x∂yh̃, ∂2

yu)H1,0
ℓ+1
+ 3(∂yh̃∂x∂yu, ∂2

y h̃)H1,0
ℓ+1

= (u∂x∂
2
yu, ∂2

yu)H1,0
ℓ+1
+ (u∂x∂yu, ∂3

yu)H1,0
ℓ+1
+ 2(ℓ + 1)(u∂x∂yu, ∂2

yu)H1,0
ℓ+ 1

2

+3(u∂x∂
2
y h̃, ∂2

y h̃)H1,0
ℓ+1
+ 3(u∂x∂yh̃, ∂3

y h̃)H1,0
ℓ+1
+ 6(ℓ + 1)(u∂x∂yh̃, ∂2

y h̃)H1,0
ℓ+ 1

2

+(∂yh̃∂x∂yh̃, ∂2
yu)H1,0

ℓ+1
+ 3(∂yh̃∂x∂yu, ∂2

y h̃)H1,0
ℓ+1

= (u∂x∂
2
yu, ∂2

yu)L2
ℓ+1
+

1
2

(∂xu∂x∂
2
yu, ∂x∂

2
yu)L2

ℓ+1
+ (u∂x∂yu, ∂3

yu)H1,0
ℓ+1
+ 2(ℓ + 1)(u∂x∂yu, ∂2

yu)H1,0
ℓ+ 1

2

+3(u∂x∂
2
y h̃, ∂2

y h̃)L2
ℓ+1
+

3
2

(∂xu∂x∂
2
y h̃, ∂x∂

2
y h̃)L2

ℓ+1
+ 3(u∂x∂yh̃, ∂3

y h̃)H1,0
ℓ+1
+ 6(ℓ + 1)(u∂x∂yh̃, ∂2

y h̃)H1,0
ℓ+ 1

2

+(∂yh̃∂x∂yh̃, ∂2
yu)H1,0

ℓ+1
+ 3(∂yh̃∂x∂yu, ∂2

y h̃)H1,0
ℓ+1

≤ ∥u∥L∞∥∂x∂
2
yu∥L2

ℓ+1
∥∂2

yu∥L2
ℓ+1
+

1
2
∥∂xu∥L∞∥∂x∂

2
yu∥2L2

ℓ+1

+∥⟨y⟩u∥W1,∞
x L∞y
∥∂x∂yu∥L2

ℓ
∥∂3

yu∥H1,0
ℓ+1
+ ∥⟨y⟩u∥L∞∥∂x∂yu∥H1,0

ℓ
∥∂3

yu∥H1,0
ℓ+1

+2(ℓ + 1)∥u∥W1,∞
x L∞y
∥∂x∂yu∥H1,0

ℓ
∥∂2

yu∥H1,0
ℓ+1

+3∥u∥L∞∥∂x∂
2
y h̃∥L2

ℓ+1
∥∂2

y h̃∥L2
ℓ+1
+

3
2
∥∂xu∥L∞∥∂x∂

2
y h̃∥2L2

ℓ+1

+3∥⟨y⟩u∥W1,∞
x L∞y
∥∂x∂yh̃∥L2

ℓ
∥∂3

y h̃∥H1,0
ℓ+1
+ 3∥⟨y⟩u∥L∞(R2

+)∥∂x∂yh̃∥H1,0
ℓ
∥∂3

y h̃∥H1,0
ℓ+1

+6(ℓ + 1)∥u∥W1,∞
x L∞y
∥∂x∂yh̃∥H1,0

ℓ
∥∂2

y h̃∥H1,0
ℓ+1

Electronic Research Archive Volume 32, Issue 12, 6618–6640.



6637

+∥⟨y⟩∂yh̃∥L∞(R2
+)∥∂x∂yh̃∥H1,0

ℓ
∥∂2

yu∥H1,0
ℓ+1
+ ∥⟨y⟩∂yh̃∥H1

x L∞y ∥∂x∂yh̃∥L∞x L2
y,ℓ
∥∂2

yu∥H1,0
ℓ+1

+3∥⟨y⟩∂yh̃∥L∞(R2
+)∥∂x∂yu∥H1,0

ℓ
∥∂2

y h̃∥H1,0
ℓ+1
+ 3∥⟨y⟩∂yh̃∥H1

x L∞y ∥∂x∂yu∥L∞x L2
y,ℓ
∥∂2

y h̃∥H1,0
ℓ+1

≤ CE(t)
3
2 +CD(t)

1
2 E(t),

where we used the following facts:

∥⟨y⟩∂m
x u(t, x, ỹ)∥L∞(R2

+) ≤

∣∣∣∣ ∫ y

0
(∂m

x u(t, x, ỹ) + ⟨y⟩∂m
x ∂yu(t, x, ỹ)dỹ

∣∣∣∣
≤ ∥∂m

x u(t, x, y)∥L∞x L2
y, 12

+ ∥∂m
x ∂yu(t, x, y)∥L∞x L2

y, 32

≤ ∥∂m
x u(t, x, y)∥

1
2

L2
1
2

(R2
+)
∥∂m+1

x u(t, x, y)∥
1
2

L2
1
2

(R2
+)

+∥∂m
x ∂yu(t, x, y)∥

1
2

L2
3
2

(R2
+)
∥∂m+1

x ∂yu(t, x, y)∥
1
2

L2
3
2

(R2
+)

≤ ∥∂yu(t, x, y)∥Hm+1,0
3
2

(R2
+), for some m ∈ N,

∥⟨y⟩∂yh̃(t, x, ỹ)∥L∞(R2
+) ≤

∣∣∣∣ ∫ y

0
(∂yh̃(t, x, ỹ) + ⟨y⟩∂2

y h̃(t, x, ỹ)dỹ
∣∣∣∣

≤ ∥∂yh̃(t, x, y)∥L∞x L2
y, 12

+ ∥∂2
y h̃(t, x, y)∥L∞x L2

y, 32

≤ ∥∂yh̃(t, x, y)∥
1
2

L2
1
2

(R2
+)
∥∂x∂yh̃(t, x, y)∥

1
2

L2
1
2

(R2
+)

+∥∂2
y h̃(t, x, y)∥

1
2

L2
3
2

(R2
+)
∥∂x∂

2
y h̃(t, x, y)∥

1
2

L2
3
2

(R2
+)

≤ ∥∂2
y h̃(t, x, y)∥H1,0

3
2

(R2
+)

and

∥⟨y⟩∂m
x ∂yh̃(t, x, ỹ)∥L∞(R+)

≤

∣∣∣∣ ∫ y

0
(∂m

x ∂yh̃(t, x, ỹ) + ⟨y⟩∂m
x ∂

2
y h̃(t, x, ỹ)dỹ

∣∣∣∣
≤ ∥∂m

x ∂yh̃(t, x, ỹ)∥L2
y, 12

+ ∥∂m
x ∂

2
y h̃(t, x, ỹ)∥L2

y, 32

≤ ∥∂2
y h̃(t, x, ỹ)∥Hm,0

3
2

(R2
+), for some m ∈ N.

For the estimates of the term D3, applying (1.2)3, the Hölder inequality ( [19], Theorem 1.4.3),
Lemmas 2.4 and 4.3–4.5 again, we can also derive that∣∣∣D3

∣∣∣ ≤ C∥(∂xu, ∂xh̃)∥L∞(R2
+)

(
∥∂2

yu∥2
H1,0
ℓ+1
+ ∥∂2

y h̃∥2
H1,0
ℓ+1

)
≤ CD(t)

1
2 E(t) +CD(t)

1
4 E(t)

5
4 .

The estimate of the term E3 is obvious that∣∣∣E3

∣∣∣ ≤ CD(t)
1
2 E(t)

1
2 .
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Thus, we obtain

d
dt
∥(∂2

yu, ∂2
y h̃)∥2

H1,0
ℓ+1
+ ∥(∂3

yu, ∂3
y h̃)∥2

H1,0
ℓ+1

≤ CD(t)
1
4 E(t)

5
4 +CE(t)

3
2 +CD(t)

1
2 E(t) +CD(t)

1
2 E(t)

1
2 . (5.3)

Summarizing all the above estimates (5.1)–(5.3), the proof is thus complete.
The proof of Theorem 1.1
According to the initial data condition (1.3) and Lemma 4.3, we can get

2∑
m=0

∥∂m
y (u0, h̃0)∥2

H1,0
ℓ−1+m
≤ ε2,

∥(uβ(0), h̃β(0))∥2
H3,0
ℓ

≤ 4∥(u(0), h̃(0))∥2
H3,0
ℓ

≤ 4ε2.

Therefore, E(0) ≤ 5ε2.
Based on the classical bootstrap argument [20], we can obtain the uniform estimates of solutions to

problem (1.2). First, we assume that [0,T ∗] is the maximal time interval such that

E(t) ≤ (c1ε)2, t ∈ [0,T ∗], (5.4)

where the positive constant c1 is determined later.
It follows from Lemmas 4.7 and 5.1 that

d
dt

E(t) + D(t) ≤ CD(t)
1
4 E(t)

5
4 +CD(t)

1
4 E(t)

7
4 +CE(t)

3
2

+CD(t)
1
2 E(t)

1
2 +CD(t)

1
2 E(t) +CD(t)

1
2 E(t)

3
2 +CD(t)

1
2 E(t)2. (5.5)

Using the assumption condition E(t) ≤ (c1ε)2 and the smallness property of ε, (5.5) implies

d
dt

E(t) + D(t) ≤ CE(t).

Then using the Gronwall’s inequality, we can conclude that for any t ∈ [0,T ∗],

E(t) +
∫ t

0
D(s)ds ≤ E(0) exp{Ct} ≤ 5Cε2,

if we take c1 =
√

10C, the theorem 1.1 follows by a bootstrap argument. □

6. Conclusions

This paper mainly investigates the well-posedness of the 2D MHD boundary layer equations for
small initial data in Sobolev space of polynomial weight and low regularity. The main steps include the
following two parts: (i) We first obtain the systems (3.3)–(3.6) by paralinearizing and symmetrizing
the system (1.2). (ii) We establish the estimates of the solution in horizontal direction and vertical
direction, respectively. In addition, the method in this article can also be used to investigate the well-
posedness of the other boundary layer equations.
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