In this paper, we consider the two-dimensional (2D) two-fluid boundary layer system, which is a hyperbolic-degenerate parabolic-elliptic coupling system derived from the compressible isentropic two-fluid flow equations with nonslip boundary condition for the velocity. The local existence and uniqueness is established in weighted Sobolev spaces under the monotonicity assumption on tangential velocity along normal direction based on a nonlinear energy method by employing a nonlinear cancelation technic introduced in [R. Alexandre, Y.-G. Wang, C.-J. Xu and T. Yang, J. Amer. Math. Soc., 28 (2015), 745-784; N. Masmoudi and T.K. Wong, Comm. Pure Appl. Math., 68(2015), 1683-1741] and developed in [C.-J. Liu, F. Xie and T. Yang, Comm. Pure Appl. Math., 72(2019), 63-121].
Citation: Long Fan, Cheng-Jie Liu, Lizhi Ruan. Local well-posedness of solutions to the boundary layer equations for compressible two-fluid flow[J]. Electronic Research Archive, 2021, 29(6): 4009-4050. doi: 10.3934/era.2021070
In this paper, we consider the two-dimensional (2D) two-fluid boundary layer system, which is a hyperbolic-degenerate parabolic-elliptic coupling system derived from the compressible isentropic two-fluid flow equations with nonslip boundary condition for the velocity. The local existence and uniqueness is established in weighted Sobolev spaces under the monotonicity assumption on tangential velocity along normal direction based on a nonlinear energy method by employing a nonlinear cancelation technic introduced in [R. Alexandre, Y.-G. Wang, C.-J. Xu and T. Yang, J. Amer. Math. Soc., 28 (2015), 745-784; N. Masmoudi and T.K. Wong, Comm. Pure Appl. Math., 68(2015), 1683-1741] and developed in [C.-J. Liu, F. Xie and T. Yang, Comm. Pure Appl. Math., 72(2019), 63-121].
[1] | Well-posedness of the Prandtl equation in Sobolev spaces. J. Amer. Math. Soc. (2015) 28: 745-784. |
[2] | D. Bresch, B. Desjardins, J.-M. Ghidaglia, E. Grenier and M. Hilliairet, Multifluid models including compressible fluids. Handbook of mathematical analysis in mechanics of viscous fluids, Eds. Giga Y. et Novotny A., (2018), 2927–2978. doi: 10.1007/978-3-319-13344-7_74 |
[3] | Existence and singularities for the Prandtl boundary layer equations. ZAMM Z. Angew. Math. Mech. (2000) 80: 733-744. |
[4] | Well-posedness of Prandtl equations with non-compatible data. Nonlinearity (2013) 26: 3077-3100. |
[5] | Blow up of solutions of the unsteady Prandtl's equation. Comm. Pure Appl. Math. (1997) 50: 1287-1293. |
[6] | L. Fan, L. Ruan and A. Yang, Local well-posedness of solutions to the boundary layer equations for 2D compressible flow, J. Math. Anal. Appl., 493 (2021), 124565, 25 pp. doi: 10.1016/j.jmaa.2020.124565 |
[7] | On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc. (2010) 23: 591-609. |
[8] | Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. (2012) 77: 71-88. |
[9] | On the nonlinear instability of Euler and Prandtl equations. Comm. Pure Appl. Math. (2000) 53: 1067-1091. |
[10] | Boundary layer problems for the two-dimensional compressible Navier-Stokes equations. Anal. Appl. (Singap.) (2016) 14: 1-37. |
[11] | A note on Prandtl boundary layers. Commun. Pure Appl. Math. (2011) 64: 1416-1438. |
[12] | Local-in-time well-posedness for compressible MHD boundary layer. J. Differential Equations (2019) 266: 2978-3013. |
[13] | M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, Springer-Verlag, New York, 2006. doi: 10.1007/978-0-387-29187-1 |
[14] | N. I. Kolev, Multiphase Flow Dynamics. Vol. 1. Fundamentals, Springer-Verlag, Berlin, 2005. |
[15] | N. I. Kolev, Multiphase Flow Dynamics. Vol. 2. Thermal and Mechanical Interactions, Springer-Verlag, Berlin, 2005. |
[16] | W.-X. Li, N. Masmoudi and T. Yang, Well-posedness in Gevrey function space for 3D Prandtl equations without structural assumption, to appear in Comm. Pure Appl. Math.. |
[17] | Well-posedness in Gevrey space for the Prandtl equations with nondegenerate points. J. Eur. Math. Soc. (JEMS) (2020) 22: 717-775. |
[18] | Almost global existence for 2D magnetohydrodynamics boundary layer system. Math. Methods Appl. Sci. (2018) 41: 7530-7553. |
[19] | Almost global existence for the 3D Prandtl boundary layer equations. Acta Appl. Math. (2020) 169: 383-410. |
[20] | C.-J. Liu, D. Wang, F. Xie and T. Yang, Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces, J. Funct. Anal., 279 (2020), 108637, 45 pp. doi: 10.1016/j.jfa.2020.108637 |
[21] | Global existence of weak solutions to the three-dimensional Prandtl equations with a special structure. Discrete Contin. Dyn. Syst. Ser. S (2016) 9: 2011-2029. |
[22] | On the ill-posedness of the Prandtl equations in three space dimensions. Arch. Ration. Mech. Anal. (2016) 220: 83-108. |
[23] | A well-posedness theory for the Prandtl equations in three space variables. Adv. Math. (2017) 308: 1074-1126. |
[24] | A note on the ill-posedness of shear flow for the MHD boundary layer equations. Sci. China Math. (2018) 61: 2065-2078. |
[25] | MHD boundary layers theory in Sobolev spaces without monotonicity Ⅰ: Well-posedness theory. Comm. Pure Appl. Math. (2019) 72: 63-121. |
[26] | Justification of Prandtl ansatz for MHD boundary layer. SIAM J. Math. Anal. (2019) 51: 2748-2791. |
[27] | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Comm. Pure Appl. Math. (2015) 68: 1683-1741. |
[28] | On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. J. Appl. Math. Mech. (1966) 30: 951-974. |
[29] | O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation, 15., Chapman & Hall/CRC, Boca Raton, Fla., 1999. |
[30] | M. Paicu, P. Zhang and Z. Zhang, On the hydrostatic approximation of the Navier-Stokes equations in a thin strip, Adv. Math., 372 (2020), 107293, 42 pp. doi: 10.1016/j.aim.2020.107293 |
[31] | L. Prandtl, Über Flüssigkeitsbewegungen bei sehr Kleiner Reibung, In "Verh. Int. Math. Kongr., Heidelberg 1904, " Teubner, 1905. |
[32] | A study on the boundary layer for the planar magnetohydrodynamics system. Acta Math. Sci. Ser. B (Engl. Ed.) (2015) 35: 787-806. |
[33] | Vanishing shear viscosity limit and boundary layer study for the planar MHD system. Math. Models Methods Appl. Sci. (2019) 29: 1139-1174. |
[34] | Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. Ⅰ. Existence for Euler and Prandtl equations. Comm. Math. Phys. (1998) 192: 433-461. |
[35] | Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space. Ⅱ. Construction of the Navier-Stokes solution. Comm. Math. Phys. (1998) 192: 463-491. |
[36] | The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions. Ann. Inst. Fourier (Grenoble) (2012) 62: 2257-2314. |
[37] | Local well-posedness of Prandtl equations for compressible flow in two space variables. SIAM J. Math. Anal. (2015) 47: 321-346. |
[38] | Global-in-time stability of 2D MHD boundary layer in the Prandtl-Hartmann regime. SIAM J. Math. Anal. (2018) 50: 5749-5760. |
[39] | Lifespan of solutions to MHD boundary layer equations with analytic perturbation of general shear flow. Acta Math. Appl. Sin. Engl. Ser. (2019) 35: 209-229. |
[40] | On the global existence of solutions to the Prandtl's system. Adv. Math. (2004) 181: 88-133. |
[41] | Long time well-posedness of Prandtl equations in Sobolev space. J. Differential Equations (2017) 263: 8749-8803. |
[42] | Long time well-posednessof Prandtl system with small and analytic initial data. J. Funct. Anal. (2016) 270: 2591-2615. |