Citation: Mohamed Samy El-Feky, Passant Youssef, Ahmed Maher El-Tair, Sara Ibrahim, Mohamed Serag. Effect of nano silica addition on enhancing the performance of cement composites reinforced with nano cellulose fibers[J]. AIMS Materials Science, 2019, 6(6): 864-883. doi: 10.3934/matersci.2019.6.864
[1] | Hamzaoui R, Guessasma S, Mecheri B, et al. (2014) Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes. Mater Des 56: 60-68. doi: 10.1016/j.matdes.2013.10.084 |
[2] | Hoyos CG, Cristia E, Vázquez A (2013) Effect of cellulose microcrystalline particles on properties of cement based composites. Mater Des 51: 810-818. doi: 10.1016/j.matdes.2013.04.060 |
[3] | Kordkheili HY, Hiziroglu S, Farsi M (2012) Some of the physical and mechanical properties of cement composites manufactured from carbon nanotubes and bagasse fiber. Mater Des 33: 395-398. doi: 10.1016/j.matdes.2011.04.027 |
[4] | Ahmed SA, El-Feky MS, Hefne EE (2018) Naphthalene-sulfonate-based super-plasticizer and ultra-sonication effects on the dispersion of CNT in cement composites subjected to cyclic loading. IJMTER 5: 269-279. doi: 10.21884/IJMTER.2018.5136.OMKKB |
[5] | El-Feky MS, El-Khodary SA, Morsy M (2019) Optimization of hybrid cement composite with carbon nanotubes and nano silica using response surface design. Egypt J Chem 62: 57-67. |
[6] | Makar J, Margeson J, Luh J (2005) Carbon nanotube/cement composite-early results and potential applications. Proceedings of Institute for Research in Construction, Ottawa, Canada. |
[7] | Li GY, Wang PM, Zhao X (2005) Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43: 1239-1245. doi: 10.1016/j.carbon.2004.12.017 |
[8] | Yakovlev G, Kerienė J, Gailius A, et al. (2006) Cement based foam concrete reinforced by carbon nanotubes. Mater Sci 12: 147-151. |
[9] | Li GY, Wang PM, Zhao X (2007) Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem Concr Compos 29: 377-382. doi: 10.1016/j.cemconcomp.2006.12.011 |
[10] | Konsta-Gdoutos MS, Metaxa ZS, Shah SP (2010) Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem Concr Compos 32: 110-115. doi: 10.1016/j.cemconcomp.2009.10.007 |
[11] | Hanus MJ, Harris AT (2013) Nanotechnology innovations for the construction industry. Prog Mater Sci 58: 1056-1102. doi: 10.1016/j.pmatsci.2013.04.001 |
[12] | Galao O, Baeza FJ, Zornoza E, et al. (2014) Strain and damage sensing properties on multifunctional cement composites with CNF admixture. Cem Concr Compos 46: 90-98. doi: 10.1016/j.cemconcomp.2013.11.009 |
[13] | Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6: 612-626. doi: 10.1021/bm0493685 |
[14] | John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71: 343-364. doi: 10.1016/j.carbpol.2007.05.040 |
[15] | Eichhorn SJ, Baillie CA, Zafeiropoulos N, et al. (2001) Current international research into cellulosic fibres and composites. J Mater Sci 36: 2107-2131. doi: 10.1023/A:1017512029696 |
[16] | Dufresne A (2008) Polysaccharide nanocrystal reinforced nanocomposites. Can J Chem 86: 484-494. doi: 10.1139/v07-152 |
[17] | Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24: 221-274. |
[18] | Eichhorn SJ, Dufresne A, Aranguren M, et al. (2010) Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45: 1-33. doi: 10.1007/s10853-009-3874-0 |
[19] | Li MC, Mei C, Xu X, et al. (2016) Cationic surface modification of cellulose nanocrystals: toward tailoring dispersion and interface in carboxymethyl cellulose films. Polymer 107: 200-210. doi: 10.1016/j.polymer.2016.11.022 |
[20] | Huang S, Zhou L, Li MC, et al. (2016) Preparation and properties of electrospun poly (vinyl pyrrolidone)/cellulose nanocrystal/silver nanoparticle composite fibers. Mater 9: 523. doi: 10.3390/ma9070523 |
[21] | Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110: 3479-3500. doi: 10.1021/cr900339w |
[22] | Moon RJ, Martini A, Nairn J, et al. (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40: 3941-3994. doi: 10.1039/c0cs00108b |
[23] | Senff L, Labrincha JA, Ferreira VM, et al. (2009) Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr Build Mater 23: 2487-2491. doi: 10.1016/j.conbuildmat.2009.02.005 |
[24] | Gao K, Lin KL, Wang DY, et al. (2013) Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers. Constr Build Mater 48: 441-447. doi: 10.1016/j.conbuildmat.2013.07.027 |
[25] | Hou PK, Kawashima S, Wang KJ, et al. (2013) Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar. Cem Concr Compos 35: 12-22. doi: 10.1016/j.cemconcomp.2012.08.027 |
[26] | Singh LP, Goel A, Bhattacharyya SK, et al. (2015) Hydration studies of cementitious material using silica nanoparticles. J Adv Concr Technol 13: 345-354. doi: 10.3151/jact.13.345 |
[27] | Singh LP, Goel A, Bhattachharyya SK, et al. (2015) Effect of morphology and dispersibility of silica nanoparticles on the mechanical behaviour of cement mortar. Int J Concr Struct Mater 9: 207-217. |
[28] | Kawashima S, Hou P, Corr DJ, et al. (2013) Modification of cement-based materials with nanoparticles. Cem Concr Compos 36: 8-15. doi: 10.1016/j.cemconcomp.2012.06.012 |
[29] | Alshehy AM, Ahmed SA, El-Feky MS, et al. (2018) Utilizing nano- to micro-scale particles based additives to enhance cement-dune sand composites. Int J Mod Eng Res 5: 104-114. |
[30] | Hani N, Nawawy O, Ragab KS, et al. (2018) The effect of different water/binder ratio and nano-silica dosage on the fresh and hardened properties of self-compacting concrete. Constr Build Mater 165: 504-513. doi: 10.1016/j.conbuildmat.2018.01.045 |
[31] | Youssef P, El-Feky MS, Serag MI (2017) The Influence of Nano silica surface area on its reactivity in cement composites. Int J Sci Eng Res 8: 2016-2024. |
[32] | Sharobim KG, Hassan M, Hanna NF, et al. (2017) Optimizing sonication time and solid to liquid ratio of nano-silica in high strength concrete. Int J Sci Eng Res 8: 687-693. |
[33] | Sharobim KG, Hassan M, Hanna NF, et al. (2017) Optimizing sonication time and solid to liquid ratio of nano-silica in high strength mortars. Int J Curr Trends Eng Res 3: 6-16. |
[34] | Serag MI, Yasien AM, El-Feky MS, et al. (2017) Effect of nano silica on concrete bond strength modes of failure. Int J GEOMATE 12: 2892-2899. |
[35] | Serag M, Elkady H, Elfeky M (2014) The effect of indirect sonication on the reactivity of nano silica concrete. IJSER: 334-345. |
[36] | El-Feky MS, Serag MI, Yasien AM, et al. (2016) Bond strength of nano silica concrete subjected to corrosive environments. ARPN J Eng Appl Sci 11: 13909-13924. |
[37] | Du H, Dai Pang S (2019) High performance cement composites with colloidal nano-silica. Constr Build Mater 224: 317-325. doi: 10.1016/j.conbuildmat.2019.07.045 |
[38] | Du H (2019) Properties of ultra-lightweight cement composites with nano-silica. Constr Build Mater 199: 696-704. doi: 10.1016/j.conbuildmat.2018.11.225 |
[39] | Li GY, Wang PM, Zhao X (2005) Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43: 1239-1245. doi: 10.1016/j.carbon.2004.12.017 |
[40] | Konsta-Gdoutos MS, Metaxa ZS, Shah SP (2010) Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem Concr Compos 32: 110-115. doi: 10.1016/j.cemconcomp.2009.10.007 |
[41] | Saez de Ibarra Y, Gaitero JJ, Erkizia E, et al. (2006) Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Phys Status Solidi 203: 1076-1081. doi: 10.1002/pssa.200566166 |
[42] | Strawhecker KE, Manias E (2000) Structure and properties of poly (vinyl alcohol)/Na+ montmorillonite nanocomposites. Chem Mater 12: 2943-2949. doi: 10.1021/cm000506g |
[43] | Podsiadlo P, Kaushik AK, Arruda EM, et al. (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318: 80-83. doi: 10.1126/science.1143176 |
[44] | Prasanth R, Shubha N, Hng HH, et al. (2013) Effect of nano-clay on ionic conductivity and electrochemical properties of poly (vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. Eur Polym J 49: 307-318. doi: 10.1016/j.eurpolymj.2012.10.033 |
[45] | Hakamy A, Shaikh FUA, Low IM (2015) Effect of calcined nanoclay on microstructural and mechanical properties of chemically treated hemp fabric-reinforced cement nanocomposites. Constr Build Mater 95: 882-891. doi: 10.1016/j.conbuildmat.2015.07.145 |
[46] | Hamed N, El-Feky MS, Kohail M, et al. (2019) Effect of nano-clay de-agglomeration on mechanical properties of concrete. Constr Build Mater 205: 245-256. doi: 10.1016/j.conbuildmat.2019.02.018 |
[47] | Cao Y, Tian N, Bahr D, et al. (2016) The influence of cellulose nanocrystals on the microstructure of cement paste. Cem Concr Compos 74: 164-173. doi: 10.1016/j.cemconcomp.2016.09.008 |
[48] | Cao Y, Zavaterri P, Youngblood J, et al. (2015) The influence of cellulose nanocrystal additions on the performance of cement paste. Cem Concr Compos 56: 73-83. doi: 10.1016/j.cemconcomp.2014.11.008 |
[49] | Cao Y, Zavattieri P, Youngblood J, et al. (2016) The relationship between cellulose nanocrystal dispersion and strength. Constr Build Mater 119: 71-79. doi: 10.1016/j.conbuildmat.2016.03.077 |
[50] | de Andrade Silva F, Chawla N, de Toledo Filho RD (2008) Tensile behavior of high performance natural (sisal) fibers. Compos Sci Technol 68: 3438-3443. doi: 10.1016/j.compscitech.2008.10.001 |
[51] | Santos SF, Tonoli GHD, Mejia JEB, et al. (2015) Non-conventional cement-based composites reinforced with vegetable fibers: a review of strategies to improve durability. Mater Constr 65: 1-41. |
[52] | Gram HE(1983) Durability of natural fibres in concrete, Fo 1.83 (Res. Report No: 1 of 1983), Swedish Cement and Concrete Research Institute, Stockholm. |
[53] | Balea A, Blanco A, Negro C (2019) Nanocelluloses: natural-based materials for fiber-reinforced cement composites. A critical review. Polymers 11: 518. |
[54] | Ardanuy M, Claramunt J, Toledo Filho RD (2015) Cellulosic fiber reinforced cement-based composites: a review of recent research. Constr Build Mater 79: 115-128. |
[55] | Buch N, Rehman OM, Hiller JE (1999) Impact of processed cellulose fibers on Portland cement concrete properties. Transp Res Re 1668: 72-80. doi: 10.3141/1668-11 |
[56] | Pinto RJB, Marques PAAP, Barros-Timmons AM, et al. (2008) Novel SiO2/cellulose nanocomposites obtained by in situ synthesis and via polyelectrolytes assembly. Compos Sci Technol 68: 1088-1093. doi: 10.1016/j.compscitech.2007.03.001 |
[57] | Raabe J, de Souza Fonseca A, Bufalino L, et al. (2014) Evaluation of reaction factors for deposition of silica (SiO2) nanoparticles on cellulose fibers. Carbohydr Polym 114: 424-431. doi: 10.1016/j.carbpol.2014.08.042 |
[58] | ASTM C150, Standard Specification for Portland Cement. |
[59] | ASTM C33, Standard Specification for Concrete Aggregate. |
[60] | Serag MI, Ibrahim S, El-Feky MS (2019) Investigating the effect of mixing water dispersion on concrete strength and microstructure. J Build Rehabil 4: 23. doi: 10.1007/s41024-019-0062-8 |
[61] | Jayapalan AR, Lee BY, Fredrich SM, et al. (2010) Influence of additions of anatase TiO2 nanoparticles on early-age properties of cement-based materials. Transp Res Rec 2141: 41-46. doi: 10.3141/2141-08 |
[62] | Sanchez F, Sobolev K (2010) Nanotechnology in concrete-a review. Constr Build Mater 24: 2060-2071. doi: 10.1016/j.conbuildmat.2010.03.014 |
[63] | Powder Diffraction Standards; Joint Committee on Powder Diffraction Standards (JCPDS)—International Center for Diffraction Data: Philadelphia, PA, USA, 2000. |
[64] | Gabrovšek R, Vuk T, Kaučič V (2006) Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis. Acta Chim Slov 53: 159-165. |
[65] | Mounanga P, Khelidj A, Loukili A, et al. (2004) Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach. Cem Concr Res 34: 255-265. doi: 10.1016/j.cemconres.2003.07.006 |