Research article

Vanishing diffusion limit and boundary layers for a nonlinear hyperbolic system with damping and diffusion


  • Received: 12 July 2023 Revised: 27 August 2023 Accepted: 19 September 2023 Published: 09 October 2023
  • We consider an initial and boundary value problem for a nonlinear hyperbolic system with damping and diffusion. This system was derived from the Rayleigh–Benard equation. Based on a new observation of the structure of the system, two identities are found; then, the following results are proved by using the energy method. First, the well-posedness of the global large solution is established; then, the limit with a boundary layer as some diffusion coefficient tending to zero is justified. In addition, the $ L^2 $ convergence rate in terms of the diffusion coefficient is obtained together with the estimation of the thickness of the boundary layer.

    Citation: Xu Zhao, Wenshu Zhou. Vanishing diffusion limit and boundary layers for a nonlinear hyperbolic system with damping and diffusion[J]. Electronic Research Archive, 2023, 31(10): 6505-6524. doi: 10.3934/era.2023329

    Related Papers:

  • We consider an initial and boundary value problem for a nonlinear hyperbolic system with damping and diffusion. This system was derived from the Rayleigh–Benard equation. Based on a new observation of the structure of the system, two identities are found; then, the following results are proved by using the energy method. First, the well-posedness of the global large solution is established; then, the limit with a boundary layer as some diffusion coefficient tending to zero is justified. In addition, the $ L^2 $ convergence rate in terms of the diffusion coefficient is obtained together with the estimation of the thickness of the boundary layer.



    加载中


    [1] D. Y. Hsieh, On partial differential equations related to Lorenz system, J. Math. Phys., 28 (1987), 1589–1597. https://doi.org/10.1063/1.527465 doi: 10.1063/1.527465
    [2] Y. Kuramoto, T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Prog. Theoret. Phys., 54 (1975), 687–699. https://doi.org/10.1143/PTP.54.687 doi: 10.1143/PTP.54.687
    [3] S. Q. Tang, Dissipative Nonlinear Evolution Equations and Chaos, Ph.D Thesis, The Hong Kong University of Science and Technology in Hong Kong, 1995.
    [4] E. N. Lorenz, Deterministic nonperiodic flows, J. Atom. Sci., 20 (1963), 130–141. https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2 doi: 10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
    [5] D. Y. Hsieh, S. Q. Tang, Y. P Wang, L. X. Wu, Dissipative nonlinear evolution equations and chaos, Stud. Appl. Math., 101 (1998), 233–266. https://doi.org/10.1063/1.527465 doi: 10.1063/1.527465
    [6] S. Q. Tang, H. J. Zhao, Nonlinear stability for dissipative nonlinear evolution equations with ellipticity, J. Math. Anal. Appl., 233 (1999), 336–358. https://doi.org/10.1006/jmaa.1999.6316 doi: 10.1006/jmaa.1999.6316
    [7] R. J. Duan, C. J. Zhu, Asymptotics of dissipative nonlinear evolution equations with ellipticity: different end states, J. Math. Anal. Appl., 303 (2005), 15–35. https://doi.org/10.1016/j.jmaa.2004.06.007 doi: 10.1016/j.jmaa.2004.06.007
    [8] C. J. Zhu, Z. A. Wang, Decay rates of solutions to dissipative nonlinear equations with ellipticity, Z. Angew. Math. Phys., 55 (2004), 994–1014. https://doi.org/10.1007/s00033-004-3117-9 doi: 10.1007/s00033-004-3117-9
    [9] R. J. Duan, S. Q. Tang, C. J. Zhu, Asymptotics in nonlinear evolution system with dissipation and ellipticity on quadrant, J. Math. Anal. Appl., 323 (2006), 1152–1170. https://doi.org/10.1016/j.jmaa.2005.11.002 doi: 10.1016/j.jmaa.2005.11.002
    [10] L. Z. Ruan, C. J. Zhu, Boundary layer for nonlinear evolution equations with damping and diffusion, Disc. Cont. Dyna. Sys., 32 (2012), 331–352. https://doi.org/10.3934/dcds.2012.32.331 doi: 10.3934/dcds.2012.32.331
    [11] H. Y. Peng, L. Z. Ruan, J. L. Xiang, A note on boundary layer of a nonlinear evolution system with damping and diffusions, J. Math. Anal. Appl., 426 (2015), 1099–1129. https://doi.org/10.1016/j.jmaa.2015.01.053 doi: 10.1016/j.jmaa.2015.01.053
    [12] K. M. Chen, C. J. Zhu, The zero diffusion limit for nonlinear hyperbolic system with damping and diffusion, J. Hyper. Diff. Equation, 5 (2008), 767–783. https://doi.org/10.1142/S0219891608001696 doi: 10.1142/S0219891608001696
    [13] L. Z. Ruan, H. Y. Yin, Convergence rates of vanishing diffusion limit on nonlinear hyperbolic system with damping and diffusion, J. Math. Phys., 53 (2012), 103703. https://doi.org/10.1063/1.4751283 doi: 10.1063/1.4751283
    [14] L. Z. Ruan, Z. Y. Zhang, Global decaying solution to dissipative nonlinear evolution equations with ellipticity, Appl. Math. Comput., 217 (2011), 6054–6066. https://doi.org/10.1016/j.amc.2010.12.066 doi: 10.1016/j.amc.2010.12.066
    [15] K. Nishihara, Asymptotic profile of solutions to nonlinear dissipative evolution system with ellipticity, Z. Angew. Math. Phys., 57 (2006), 604–614. https://doi.org/10.1007/s00033-006-0062-9 doi: 10.1007/s00033-006-0062-9
    [16] Z. A. Wang, Optimal decay rates of solutions to dissipative nonlinear evolution equations with ellipticity, Z. Angew. Math. Phys., 57 (2006), 399-418. https://doi.org/10.1007/s00033-005-0030-9 doi: 10.1007/s00033-005-0030-9
    [17] H. Schlichting, J. Kestin, R. L. Street, Boundary Layer Theory, 7th Edition, McGraw-Hill, London, 1979.
    [18] H. Frid, V. Shelukhin, Boundary layers for the Navier–Stokes equations of compressible fluids, Comm. Math. Phys., 208 (1999), 309–330. https://doi.org/10.1007/s002200050760 doi: 10.1007/s002200050760
    [19] X. L. Qin, T. Yang, Z. A. Yao, W. S. Zhou, Vanishing shear viscosity and boundary layer for the Navier–Stokes equations with cylindrical symmetry, Arch. Rational Mech. Anal., 216 (2015), 1049–1086. https://doi.org/10.1007/s00205-014-0826-x doi: 10.1007/s00205-014-0826-x
    [20] L. Yao, T. Zhang, C. J. Zhu, Boundary layers for compressible Navier–Stokes equations with density–dependent viscosity and cylindrical symmetry, Ann. Inst. H. Poincaré Anal. NonLinéaire., 28 (2011), 677–709. https://doi.org/10.1016/j.anihpc.2011.04.006 doi: 10.1016/j.anihpc.2011.04.006
    [21] S. Jiang, J. W. Zhang, Boundary layers for the Navier–Stokes equations of compressible heat–conducting flows with cylindrical symmetry, SIAM J. Math. Anal. 41 (2009), 237–268. https://doi.org/10.1137/07070005X doi: 10.1137/07070005X
    [22] Q. Q. Hou, Z. A. Wang, K. Zhao, Boundary layer problem on a hyperbolic system arising from chemotaxis, J. Differ. Equations, 261 (2016), 5035–5070. https://doi.org/10.1016/j.jde.2016.07.018 doi: 10.1016/j.jde.2016.07.018
    [23] M. Sammartino, R. Caflisch, Zero viscosity limit for analytic solutions of the Navier–Stokes equations on a half-space, I. Existence for Euler and Prandtl equations, Comm. Math. Phys., 192 (1998), 433–461. https://doi.org/10.1007/s002200050304 doi: 10.1007/s002200050304
    [24] V. V. Shelukhin, A shock layer in parabolic perturbations of a scalar conservation law, in Proceedings of the Edinburgh Mathematical Society, 46 (2003), 315–328. https://doi.org/10.1017/S0013091502000548
    [25] V. V. Shelukhin, The limit of zero shear viscosity for compressible fluids, Arch. Rational Mech. Anal., 143 (1998), 357–374. https://doi.org/10.1007/s002050050109 doi: 10.1007/s002050050109
    [26] H. Y. Wen, T. Yang, C. J. Zhu, Optimal convergence rate of the vanishing shear viscosity limit for compressible Navier–Stokes equations with cylindrical symmetry, J. Math. Pures Appl., 146 (2021), 99–126. https://doi.org/10.1016/j.matpur.2020.09.003 doi: 10.1016/j.matpur.2020.09.003
    [27] E. Grenier, O. Guès, Boundary layers for viscous perturbations of noncharacteristic quasilinear problems, J. Differ. Equations, 143 (1998), 110–146. https://doi.org/10.1006/jdeq.1997.3364 doi: 10.1006/jdeq.1997.3364
    [28] W. S. Zhou, X. L. Qin, C. Y. Qu, Zero shear viscosity limit and boundary layer for the Navier–Stokes equations of compressible fluids between two horizontal parallel plates, Nonlinearity, 28 (2015), 1721–1743. https://10.1088/0951-7715/28/6/1721 doi: 10.1088/0951-7715/28/6/1721
    [29] L. Hsiao, H. Y. Jian, Global smooth solutions to the spatially periodic Cauchy problem for dissipative nonlinear evolution equations, J. Math. Anal. Appl., 213 (1997), 262–274. https://doi.org/10.1006/jmaa.1997.5535 doi: 10.1006/jmaa.1997.5535
    [30] D. L. Powers, Boundary Value Problems: and Partial Differential Equations, Academic Press, 2005.
    [31] H. Y. Jian, D. G. Chen, On the Cauchy problem for certain system of semilinear parabolic equation, Acta Math. Sin., 14 (1998), 27–34. https://doi.org/10.1007/BF02563880 doi: 10.1007/BF02563880
    [32] Z. A. Wang, Large time profile of solutions for a dissipative nonlinear evolution system with conservational form, J. Phys. A: Math. Gen., 38 (2005), 10955–10969. 10.1088/0305-4470/38/50/006 doi: 10.1088/0305-4470/38/50/006
    [33] W. Allegretto, Y. P. Lin, Z. Y. Zhang, Properties of global decaying solutions to the Cauchy problem of nonlinear evolution equations, Z. Angew. Math. Phys., 59 (2008), 848–868. https://doi.org/10.1007/s00033-008-7026-1 doi: 10.1007/s00033-008-7026-1
    [34] C. C. Chou, Y. F. Deng, Numerical solutions of a nonlinear evolution system with small dissipation on parallel processors, J. Sci. Comput., 13 (1998), 405–417. https://doi.org/10.1023/A:1023237317673 doi: 10.1023/A:1023237317673
    [35] L. Fan, N. T. Trouba, Convergence rates of vanishing diffusion limit on conservative form of Hsieh's equation, Stud. Appl. Math., 146 (2021), 753–776. https://doi.org/10.1111/sapm.12366 doi: 10.1111/sapm.12366
    [36] C. M. Dafermos, L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, Nonlinear Anal., 6 (1982), 435–454. https://doi.org/10.1016/0362-546X(82)90058-X doi: 10.1016/0362-546X(82)90058-X
    [37] J. Simon, Nonhomogeneous viscous incompressible fluids: existence of velocity, density and pressure, SIAM J. Math. Anal., 21 (1990), 1093–1117. https://doi.org/10.1137/0521061 doi: 10.1137/0521061
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(947) PDF downloads(44) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog