Research article

Analyticity estimates for the 3D magnetohydrodynamic equations

  • Received: 27 February 2024 Revised: 17 May 2024 Accepted: 22 May 2024 Published: 11 June 2024
  • This paper was concerned with the Cauchy problem of the 3D magnetohydrodynamic (MHD) system. We first proved that this system was local well-posed with initial data in the Besov space $ \dot{B}^{s}_{p, q}(\mathbb{R}^{3}) $, in the critical Besov space $ \dot{B}^{-1+\frac{3}{p}}_{p, q}(\mathbb{R}^{3}) $, and in $ L^{p}(\mathbb{R}^{3}) $ with $ p\in]3, 6[ $, respectively. We also obtained a new growth rate estimates for the analyticity radius.

    Citation: Wenjuan Liu, Jialing Peng. Analyticity estimates for the 3D magnetohydrodynamic equations[J]. Electronic Research Archive, 2024, 32(6): 3819-3842. doi: 10.3934/era.2024173

    Related Papers:

  • This paper was concerned with the Cauchy problem of the 3D magnetohydrodynamic (MHD) system. We first proved that this system was local well-posed with initial data in the Besov space $ \dot{B}^{s}_{p, q}(\mathbb{R}^{3}) $, in the critical Besov space $ \dot{B}^{-1+\frac{3}{p}}_{p, q}(\mathbb{R}^{3}) $, and in $ L^{p}(\mathbb{R}^{3}) $ with $ p\in]3, 6[ $, respectively. We also obtained a new growth rate estimates for the analyticity radius.



    加载中


    [1] Y. Giga, Solutions for semilinear parabolic equations in $L^{p}$ and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equations, 62 (1986), 186–212. https://doi.org/10.1016/0022-0396(86)90096-3 doi: 10.1016/0022-0396(86)90096-3
    [2] T. Kato, K. Masuda, Nonlinear evolution equations and analyticity, Annales de l'Institut Henri Poincaré, Analyse non linéaire, 3 (1986), 455–467.
    [3] C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359–369.
    [4] J. Y. Chemin, Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray, in Actes des Journées Mathématiques à la Mémoire de Jean Leray, Séminaires et Congrès, (2004), 99–123.
    [5] J. Y. Chemin, I. Gallagher, P. Zhang, On the radius of analyticity of solutions to semi-linear parabolic system, Math. Res. Lett., 27 (2020), 1631–1643. https://dx.doi.org/10.4310/MRL.2020.v27.n6.a2 doi: 10.4310/MRL.2020.v27.n6.a2
    [6] I. Herbst, E. Skibsted, Analyticity estimates for the Navier-Stokes equations, Adv. Math., 228 (2011), 1990–2033. https://doi.org/10.1016/j.aim.2011.05.026 doi: 10.1016/j.aim.2011.05.026
    [7] P. G. Lemarié-Rieusset, Nouvelles remarques sur l'analyticité des solutions milds des équations de Navier-Stokes dans $\mathbb{R}^{3}$, C. R. Acad. Sci. Paris, Ser. I, 338 (2004), 443–446. https://doi.org/10.1016/j.crma.2004.01.015 doi: 10.1016/j.crma.2004.01.015
    [8] A. Biswas, C. Foias, On the maximal space analyticity radius for the 3D Navier-Stokes equations and energy cascades, Ann. Mat. Pur. Appl., 193 (2014), 739–777. https://doi.org/10.1007/s10231-012-0300-z doi: 10.1007/s10231-012-0300-z
    [9] H. Bea, A. Biswas, E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., 205 (2012), 963–991. https://doi.org/10.1007/s00205-012-0532-5 doi: 10.1007/s00205-012-0532-5
    [10] P. Zhang, On the instantaneous redius of analyticity of $L^{p}$ solutions to 3D Navier-Stokes system, Math. Z., 304 (2023), 38. https://doi.org/10.1007/s00209-023-03301-x doi: 10.1007/s00209-023-03301-x
    [11] G. Duvaut, J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241–279. https://doi.org/10.1007/BF00250512 doi: 10.1007/BF00250512
    [12] C. Miao, B. Yuan, On the well-posedness of the Cauchy problem for an MHD system in Besov spaces, Math. Methods Appl. Sci., 32 (2009), 53–76. https://doi.org/10.1002/mma.1026 doi: 10.1002/mma.1026
    [13] Y. Wang, K. Wang, Global well-posedness of the three dimensional magnetohydrodynamics equations, Nonlinear Anal.-Real, 17 (2014), 245–251. https://doi.org/10.1016/j.nonrwa.2013.12.002 doi: 10.1016/j.nonrwa.2013.12.002
    [14] Y. Yu, K. Li, Time analyticity and periodic solutions for magnetohydrodynamics equations, Appl. Math. J. Chinese Univ. Ser. A., 20 (2005), 465–474.
    [15] S. Wang, Y. Ren, F. Xu, Analyticity of mild solution for the 3D incompressible magneto-hydrodynamics equations in critical spaces, Acta. Math Sin.-Engl. Ser., 34 (2018), 1731–1741. https://doi.org/10.1007/s10114-018-8043-4 doi: 10.1007/s10114-018-8043-4
    [16] V. Zheligovsky, Space analyticity and bounds for derivatives of solutions to the evolutionary equations of diffusive magnetohydrodynamics, Mathematics, 9 (2021), 1789. https://doi.org/10.3390/math9151789 doi: 10.3390/math9151789
    [17] Y. Xiao, B. Yuan, Global existence and large time behavior of solutions to 3D MHD system near equilibrium, Results Math., 76 (2021), 73. https://doi.org/10.1007/s00025-021-01382-w doi: 10.1007/s00025-021-01382-w
    [18] C. Lu, W. Li, Y. Wang, Analyticity and time-decay rate of global solutions for the generalized MHD system near an equilibrium, Z. Angew. Math. Phys., 73 (2022), 73. https://doi.org/10.1007/s00033-022-01705-z doi: 10.1007/s00033-022-01705-z
    [19] W. Wang, T. Qin, Q. Bie, Global well-posedness and analyticity results to 3-D generalized magnetohydrodynamic equations, Appl. Math. Lett., 59 (2016), 65–70. https://doi.org/10.1016/j.aml.2016.03.009 doi: 10.1016/j.aml.2016.03.009
    [20] Y. Xiao, B. Yuan, Q. Zhang, Temporal decay estimate of solutions to 3D generalized magnetohydrodynamic system, Appl. Math. Lett., 98 (2019), 108–113. https://doi.org/10.1016/j.aml.2019.06.003 doi: 10.1016/j.aml.2019.06.003
    [21] X. Zhao, Z. Cao, Global well-posedness of solutions for magnetohydrodynamics-$\alpha$ model in $\mathbb{R}^{3}$, Appl. Math. Lett., 74 (2017), 134–139. https://doi.org/10.1016/j.aml.2017.05.021 doi: 10.1016/j.aml.2017.05.021
    [22] L. Grafakos, Classical Fourier Analysis, 3nd edition, Springer, New York, 2014.
    [23] P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, CRC Press, Boca Raton, 2002.
    [24] J. Y. Chemin, I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in $\mathbb{R}^{3}$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599–624. https://doi.org/10.1016/j.anihpc.2007.05.008 doi: 10.1016/j.anihpc.2007.05.008
    [25] H. Bahouri, R. Danchin, J. Y. Chemin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg 2011.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(571) PDF downloads(37) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog