We prove some results on the stability of slow stationary solutions of the MHD equations in two- and three-dimensional bounded domains for external force fields that are asymptotically autonomous. Our results show that weak solutions are asymptotically stable in time in the L2-norm. Further, assuming certain regularity hypotheses on the problem data, strong solutions are asymptotically stable in the H1 and H2-norms.
Citation: José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations[J]. Electronic Research Archive, 2021, 29(1): 1783-1801. doi: 10.3934/era.2020091
[1] | José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar . Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29(1): 1783-1801. doi: 10.3934/era.2020091 |
[2] | Dandan Song, Xiaokui Zhao . Large time behavior of strong solution to the magnetohydrodynamics system with temperature-dependent viscosity, heat-conductivity, and resistivity. Electronic Research Archive, 2025, 33(2): 938-972. doi: 10.3934/era.2025043 |
[3] | Xun Wang, Qunyi Bie . Energy equality for the multi-dimensional nonhomogeneous incompressible Hall-MHD equations in a bounded domain. Electronic Research Archive, 2023, 31(1): 17-36. doi: 10.3934/era.2023002 |
[4] | Yi Cheng, Ying Chu . A class of fourth-order hyperbolic equations with strongly damped and nonlinear logarithmic terms. Electronic Research Archive, 2021, 29(6): 3867-3887. doi: 10.3934/era.2021066 |
[5] | Li-ming Xiao, Cao Luo, Jie Liu . Global existence of weak solutions to a class of higher-order nonlinear evolution equations. Electronic Research Archive, 2024, 32(9): 5357-5376. doi: 10.3934/era.2024248 |
[6] | Zaitao Liang, Xiuqiang Zhang, Shengjun Li, Ziqing Zhou . Periodic solutions of a class of indefinite singular differential equations. Electronic Research Archive, 2023, 31(4): 2139-2148. doi: 10.3934/era.2023110 |
[7] | Pan Zhang, Lan Huang . Stability for a 3D Ladyzhenskaya fluid model with unbounded variable delay. Electronic Research Archive, 2023, 31(12): 7602-7627. doi: 10.3934/era.2023384 |
[8] | Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza . Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29(1): 1625-1639. doi: 10.3934/era.2020083 |
[9] | Cheng He, Changzheng Qu . Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28(4): 1545-1562. doi: 10.3934/era.2020081 |
[10] | Lin Shen, Shu Wang, Yongxin Wang . The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28(2): 691-719. doi: 10.3934/era.2020036 |
We prove some results on the stability of slow stationary solutions of the MHD equations in two- and three-dimensional bounded domains for external force fields that are asymptotically autonomous. Our results show that weak solutions are asymptotically stable in time in the L2-norm. Further, assuming certain regularity hypotheses on the problem data, strong solutions are asymptotically stable in the H1 and H2-norms.
In several situations the motion of incompressible electrical conducting fluid can be modeled by the magnetohydrodynamic (MHD) equations, which correspond to the Navier-Stokes equations coupled with the Maxwell equations. In the presence of a free motion of heavy ions, not directly due to the electrical field (see Schlüter [19] and Pikelner [15]), the MHD equations can be reduced to
∂u∂t−ηρΔu+u⋅∇u−μρh⋅∇h=f−1ρ∇(p∗+μ2h2),∂h∂t−1μσΔh+u⋅∇h−h⋅∇u=−gradω,divu=divh=0, | (1) |
together with the following boundary and initial conditions:
u(x,t)=0, h(x,t)=0, on ∂Ω×(0,T),u(x,0)=u0(x), h(x,0)=h0(x), in Ω. | (2) |
In the previous expressions,
Due to its importance, the MHD system has been discussed in a broad variety of studies encompassing subjects such as the existence of weak solutions and strong solutions, uniqueness and regularity criteria. See e.g. [6], [13], [12], [14], [7], [17], [18] and the references therein.
In the present work we discuss the stability of stationary solutions of the MHD equations in two- and three-dimensional bounded domains with respect to both initial conditions and external forcing variations. Under certain regularity hypotheses on the problem data, we establish in Theorem 3.2 the aforementioned stability in the
The issue of stability of solutions is an important one, since solutions of any dynamical system are thought to be physically reasonable only if they are stable. There exists a number of ways in which stability can be examined. In past years, many efforts have been made to study the asymptotic behavior of classical Navier-Stokes equations. We refer the reader to Heywood and Rannacher [11], Beirão da Veiga [2], Qu and Wang [16], Zhang [21] and the references therein.
A few of the references mentioned above, e.g. [8], are closely related to the contents of this paper. In effect, it was shown in [8] that, under condition (52) stated in Section 5 below, the strong solution of the two dimensional Navier-Stokes equation is asymptotically stable in a bounded domain of
We will consider the usual Sobolev spaces
If
We also consider the following spaces of divergence free functions:
C∞0,σ(Ω)={v∈C∞0(Ω):divv=0},H= closure of C∞0,σ(Ω) in L2(Ω),V= closure of C∞0,σ(Ω) in H1(Ω). |
Throughout the paper, the Helmholtz projection
For ease of reference, we also recall the following inequalities which are consequences of the Sobolev and Hölder inequalities:
Lemma 2.1. Let
(a) There is a constant
‖u‖L6(Ω)≤CL‖∇u‖. | (3) |
(b) If each integral makes sense, for
|(u⋅∇v,w)|≤31p+1r‖u‖Lp(Ω) ‖∇v‖Lq(Ω)‖w‖Lr(Ω). | (4) |
We also need the following regularity result for the Stokes problem (see Temam [20])
−μΔv+∇η=g, in Ω,divv=0, in Ω,v=0, on ∂Ω. | (5) |
Proposition 1. Let
v∈Wm+2,q(Ω),η∈Wm+1,q(Ω) |
with
‖v‖Wm+2,q(Ω)+‖η‖Wm+1,q(Ω)/R≤C‖g‖Wm,q(Ω) |
where
By applying the Helmholtz operator
{αut+νAu+αP(u⋅∇)u−P(h⋅∇h)=αPf,ht+γAh+P(u⋅∇h)−P(h⋅∇u)=0,u(0)=u0,h(0)=h0. | (6) |
Here we have set
α=ρ/μ,ν=η/μandγ=1/(μσ). |
The associated variational formulation is the following: to find
{α(ut,v)+ν(∇u,∇v)+α(u⋅∇u,v)−(h⋅∇h,v)=(αf,v)(ht,b)+γ(∇h,∇b)+(u⋅∇h,b)−(h⋅∇u,b)=0. | (7) |
The corresponding stationary system in operational form is
{νAu∞+αP(u∞⋅∇)u∞=αPf∞+P(h∞⋅∇h∞),γAh∞+P(u∞⋅∇)h∞−P(h∞⋅∇)u∞=0. | (8) |
In this last system we considered a time-independent external force field
This last problem, in its associated variational formulation becomes: find
{ν(∇u∞,∇v)+α(u∞⋅∇u∞,v)−(h∞⋅∇h∞,v)=α(f∞,v),γ(∇h∞,∇b)+(u∞⋅∇h∞,b)−(h∞⋅∇u∞,b)=0. | (9) |
We call such pair
By using the Galerkin method, it is possible to show the following result on existence of weak solutions of (9) (see Chizhonkov [6]):
Proposition 2. Problem (9) admits at least one weak solution
ν2‖∇u∞‖2+γ‖∇h∞‖2≤α2ν‖f∞‖2V∗. | (10) |
Under smallness conditions, we also have uniqueness of such solutions:
Proposition 3. (Uniqueness) Any stationary weak solution satisfying the conditions
√3CLν (α‖u∞‖L3(Ω)+‖h∞‖L3(Ω))<1, | (11) |
√3CLγ(‖u∞‖L3(Ω)+‖h∞‖L3(Ω))<1, | (12) |
where
Proof. (of Proposition 3) Let
ν(∇u,∇v)+α(u⋅∇u1∞,v)+α(u2∞⋅∇u,v)=(h⋅∇h1∞,v)+(h2∞⋅∇h,v),γ(∇h,∇b)+(u⋅∇h1∞,b)+(u2∞⋅∇h,b)−(h⋅∇u1∞,b)−(h2∞⋅∇u,b)=0. |
We take
ν‖∇u‖2=−α(u⋅∇u1∞,u)+(h⋅∇h1∞,u)+(h2∞⋅∇h,u), | (13) |
γ‖∇h‖2=(h⋅∇u1∞,h)+(h2∞⋅∇u,h)−(u⋅∇h1∞,h). | (14) |
By Lemma 2.1, we have
|α(u⋅∇u1∞,u)|=α|(u⋅∇u,u1∞)|≤α√3‖u‖L6(Ω)‖∇u‖‖u1∞‖L3(Ω)≤α√3CL‖∇u‖2‖u1∞‖L3(Ω),|(h⋅∇h1∞,u)|=|(h⋅∇u,h1∞)|≤√3‖h‖L6(Ω)‖∇u‖‖h1∞‖L3(Ω)≤√3CL‖∇h‖‖∇u‖‖h1∞‖L3(Ω), |
|(h⋅∇u1∞,h)|=|(h⋅∇h,u1∞)|≤√3‖h‖L6(Ω)‖∇h‖‖u1∞‖L3(Ω)≤√3CL‖∇h‖2‖u1∞‖L3(Ω),|(u⋅∇h1∞,h)|=|(u⋅∇h,h1∞)|≤√3‖u‖L6(Ω)‖∇h‖‖h1∞‖L3(Ω)≤√3CL‖∇u‖‖∇h‖‖h1∞‖L3(Ω). |
By adding equalities (13) and (14), using Young's inequality, and the last estimates, we obtain
ν‖∇u‖2+γ‖∇h‖2≤√3CL(α‖u1∞‖L3(Ω)+‖h1∞‖L3(Ω))‖∇u‖2+√3CL(‖u1∞‖L3(Ω)+‖h1∞‖L3(Ω))‖∇h‖2, |
which, together with hypothesis (11) and (12), implies that
Remark 1. Since, by (10),
Next, we show that the regularity of the weak solutions of the boundary value problem (9) correlates with that of
{−νΔu∞+∇p∞=αf∞−αu∞⋅∇u∞+h∞⋅∇h∞≡FinΩ,divu∞=0inΩ,u∞=0on∂Ω, | (15) |
where
{−γΔh∞+gradω∞=−u∞⋅∇h∞+h∞⋅∇u∞≡GinΩ,divh∞=0inΩ,h∞=0on∂Ω. | (16) |
Proposition 4. Under the assumptions of Proposition 2 and the condition
‖u∞‖H2+‖p∞‖H1+‖h∞‖H2+‖ω∞‖H1≤Ψ(‖f∞‖), | (17) |
where
Proof. We begin by discussing the first problem (15) in
‖u∞‖W2,q(Ω)+‖p∞‖W1,q(Ω)≤C‖F‖Lq,q>1. | (18) |
Fix
∫Ω|(u∞⋅∇)u∞|3/2≤C∫Ω|u∞|3/2|∇u∞|3/2≤C(∫Ω|u∞|6)1/4(∫Ω|∇u∞|2)3/4≤C(∫Ω|∇u∞|2)3/4(∫Ω|∇u∞|2)3/4, |
hence
‖(u∞⋅∇)u∞‖L3/2(Ω)≤C‖∇u∞‖2. | (19) |
Similarly,
‖(h∞⋅∇)h∞‖L3/2(Ω)≤C‖∇h∞‖2. | (20) |
As
Next, we consider the problem (16) and use the already known fact that
‖h∞‖W2,q(Ω)+‖ω∞‖W1,q(Ω)≤C‖G‖Lq(Ω),q>1. | (21) |
We must now estimate the terms on the right-hand side
∫Ω|(u∞⋅∇)h∞|3/2≤C∫Ω|u∞|3/2|∇h∞|3/2≤C(∫Ω|u∞|6)1/4(∫Ω|∇h∞|2)3/4≤C(∫Ω|∇u∞|2)3/4(∫Ω|∇h∞|2)3/4, |
hence
‖(u∞⋅∇)h∞‖L3/2(Ω)≤C‖∇u∞‖3/2‖∇h∞‖3/2. |
Similarly,
‖(h∞⋅∇)u∞‖L3/2(Ω)≤C‖∇u∞‖3/2‖∇h∞‖3/2. |
Consequently,
Now, since
‖(u∞⋅∇)u∞‖≤C‖u∞‖L6(Ω)‖∇u∞‖L3(Ω)≤C‖u∞‖H1(Ω)‖u∞‖W2,3/2(Ω) |
and
‖(h∞⋅∇)h∞‖≤C‖h∞‖L6(Ω)‖∇h∞‖L3(Ω)≤C‖h∞‖H1‖h∞‖W2,3/2(Ω). |
Using the above and noting that
We conclude that
‖(u∞⋅∇)h∞‖≤C‖u∞‖L∞(Ω)‖∇h∞‖≤C‖u∞‖H2(Ω)‖∇h∞‖ |
and
‖(h∞⋅∇)u∞‖≤C‖h∞‖L6(Ω)‖∇u∞‖L3(Ω)≤C‖u∞‖H2(Ω)‖∇h∞‖ |
Consequently,
By following the previous estimates and using Proposition 2, we obtain (17), which completes the proof.
In the remainder of this work,
Definition 3.1. For any given
Proposition 5. Let
ut,ht∈L2(0,T;V∗)forallT>0, | (22) |
Further, we assume that
α‖u(t)−u∞‖2+‖h(t)−h∞‖2≤e−2βt(α‖u0−u∞‖2+‖h0−h∞‖2)+2α2e−2βt∫t0e2βs‖f(s)−f∞‖2V∗ds | (23) |
Proof. Let
w=u−u∞,andz=h−h∞. | (24) |
Then
α(wt,v)+ν(Aw,v)=−α(w⋅∇u,v)−α(u∞⋅∇w,v)+(z⋅∇h,v)+(h∞⋅∇z,v)+(α(f−f∞),v), | (25) |
(zt,b)+γ(Az,b)=−(w⋅∇h,b)−(u∞⋅∇z,b)+(z⋅∇u,b)+(h∞⋅∇w,b). | (26) |
By taking
α2ddt‖w‖2+ν‖∇w‖2=−α(w⋅∇u,w)+(z⋅∇h,w)+(h∞⋅∇z,w)+(α(f−f∞),w). | (27) |
On the other hand, taking
12ddt‖z‖2+γ‖∇z‖2=−(w⋅∇h,z)+(z⋅∇u,z)+(h∞⋅∇w,z). | (28) |
To estimate the terms on the right-hand side of the above expressions, we first note that
(w⋅∇u,w)=−(w⋅∇w,u)=−(w⋅∇w,w)−(w⋅∇w,u∞)=−(w⋅∇w,u∞). |
Similarly,
(z⋅∇h,w)=−(z⋅∇w,h)=−(z⋅∇w,z)−(z⋅∇w,h∞), |
−(w⋅∇h,z)=(w⋅∇z,h)=(w⋅∇z,z)+(w⋅∇z,h∞)=(w⋅∇z,h∞), |
(z⋅∇u,z)=−(z⋅∇z,u)=−(z⋅∇z,w)−(z⋅∇z,u∞). |
The above equalities together with (27) and (28) imply the following differential identity
12ddt(α‖w‖2+‖z‖2)+ν‖∇w‖2+γ‖∇z‖2=α(w⋅∇w,u∞)−(z⋅∇w,h∞)+(w⋅∇z,h∞)−(z⋅∇z,u∞)+(α(f−f∞),w). | (29) |
The terms on the right-hand side of (29) can be estimated as follows. From Lemma 2.1 and the Young inequality, we have
|−(w⋅∇w,u∞)|≤√3‖w‖L6(Ω)‖∇w‖‖u∞‖L3(Ω)≤√3CL‖∇w‖2‖u∞‖L3(Ω). |
Similarly,
|−(z⋅∇z,u∞)|≤√3CL‖∇z‖2‖u∞‖L3(Ω), |
|−(z⋅∇w,h∞)|≤√3CL‖∇w‖‖∇z‖‖h∞‖L3(Ω), |
|(w⋅∇z,h∞)|≤√3CL‖∇w‖‖∇z‖‖h∞‖L3(Ω). |
Using the above in equality (29), we obtain
12ddt(α‖w‖2+‖z‖2)+ν‖∇w‖2+γ‖∇z‖2≤√3CLα‖∇w‖2‖u∞‖L3(Ω)+√3CL‖∇z‖2‖u∞‖L3(Ω)+2√3CL‖∇w‖‖∇z‖‖h∞‖L3(Ω)+α2‖f−f∞‖2V∗≤√3CL{α‖u∞‖L3(Ω)+‖h∞‖L3(Ω)}‖∇w‖2+√3CL{‖u∞‖L3(Ω)+‖h∞‖L3(Ω)}‖∇z‖2+α2‖f−f∞‖2V∗. | (30) |
Now we observe that (11) and (12) imply that
ˉν=ν−√3CL{α‖u∞‖L3(Ω)+‖h∞‖L3(Ω)}>0,ˉγ=γ−√3CL{‖u∞‖L3(Ω)+‖h∞‖L3(Ω)}>0. |
Therefore, by (30), we have
12ddt{α‖w‖2+‖z‖2}+ˉναα‖∇w‖2+ˉγ‖∇z‖2≤α2‖f−f∞‖2V∗. | (31) |
Now, using the embedding
12ddt{α‖w‖2+‖z‖2}+β{α‖w‖2+‖z‖2}≤α2‖f−f∞‖2V∗, |
for every
β0=min{ˉν/α,ˉγ}Ce1, | (32) |
with
In the next section we will also need the following estimate.
Proposition 6. Let
2ˉνe−βt∫t0eβs‖∇u(s)−∇u∞‖2ds+2ˉγe−βt∫t0eβs‖∇h(s)−∇h∞‖2ds≤2e−βt(α‖w0‖2+‖z0‖2)+4α2e−βt∫t0eβs‖f(s)−f∞‖2V∗ds | (33) |
Proof. Multiplying inequality (31) by
ddteβt{α‖w‖2+‖z‖2}+2eβtˉν‖∇w‖2+2eβtˉγ‖∇z‖2 |
≤βeβt{α‖w‖2+‖z‖2}+2α2eβt‖f−f∞‖2V∗. |
Now, integrating this last inequality from
2ˉνe−βt∫t0eβs‖∇w(s)‖2ds+2ˉγe−βt∫t0eβs‖∇z(s)‖2ds≤e−βt(α‖w0‖2+‖z0‖2)+βe−βt∫t0eβs{α‖w(s)‖2+‖z(s)‖2}ds+2α2e−βt∫t0eβs‖f(s)−f∞‖2V∗ds≤e−βt(2−e−βt)(α‖w0‖2+‖z0‖2)+2α2βe−βt∫t0e−2βs∫s0e2βs1‖f(s1)−f∞‖2V∗ds1ds+2α2e−βt∫t0eβs‖f(s)−f∞‖2V∗ds≤e−βt(2−e−βt)(α‖w0‖2+‖z0‖2)+4α2e−βt∫t0eβs‖f(s)−f∞‖2V∗ds−2α2e−2βt∫t0e2βs‖f(s)−f∞‖2V∗ds, |
Using (23) and Fubini's theorem, the above yields
2ˉνe−βt∫t0eβs‖∇w(s)‖2ds+2ˉγe−βt∫t0eβs‖∇z(s)‖2ds≤e−βt(α‖w0‖2+‖z0‖2)+βe−βt∫t0eβs{α‖w(s)‖2+‖z(s)‖2}ds+2α2e−βt∫t0eβs‖f(s)−f∞‖2V∗ds≤e−βt(2−e−βt)(α‖w0‖2+‖z0‖2)+2α2βe−βt∫t0e−2βs∫s0e2βs1‖f(s1)−f∞‖2V∗ds1ds+2α2e−βt∫t0eβs‖f(s)−f∞‖2V∗ds≤e−βt(2−e−βt)(α‖w0‖2+‖z0‖2)+4α2e−βt∫t0eβs‖f(s)−f∞‖2V∗ds−2α2e−2βt∫t0e2βs‖f(s)−f∞‖2V∗ds |
whence estimate (33) follows.
We can now prove the following stability result.
Theorem 3.2. (
Proof. We must show that
To find a
Now, by (23) with a fixed
α‖u(t)−u∞‖2+‖h(t)−h∞‖2≤e−2βt(α‖u0−u∞‖2+‖h0−h∞‖2)+2α2e−2βt∫t0e2βs‖f(s)−f∞‖2V∗ds≤e−2βt(α‖u0−u∞‖2+‖h0−h∞‖2)+2α2e−2βt∫Tδ0e2βs(‖f‖L∞(0,∞;V∗)+‖f∞‖V∗)2ds+2α2e−2βt∫tTδe2βsδ2(s)ds≤e−2βt(α‖u0−u∞‖2+‖h0−h∞‖2)+e−2β(t−Tδ)α2(‖f‖L∞(0,∞;V∗)+‖f∞‖V∗)2β+δ2βα2 |
We now choose
e−2βt(α‖u0−u∞‖2+‖h0−h∞‖2)<ϵ/3and |
e−2β(t−Tδ)α2(‖f‖L∞(0,∞;V∗)+‖f∞‖V∗)2β<ϵ/3. |
These conditions are satisfied with
Tϵ>max{Tδ,12βln3(α‖u0−u∞‖2+‖h0−h∞‖2)ϵ, |
Tδ+12βln3α2(‖f‖L∞(0,∞;V∗)+‖f∞‖V∗)2βϵ} |
Thus,
Remark 2. When
When
The following is an immediate corollary of the theorem
Corollary 1. If we set
Definition 4.1. Let
The following conditions on the initial data will remain in force throughout this section:
{u0,h0∈Vf∞∈L2(Ω),f∈L∞([0,∞);L2(Ω))‖∇u0‖+‖∇h0‖+supt≥0‖f(t)‖≤M1. | (34) |
Under assumptions (34), the existence and uniqueness of a local solution was established in [4], as follows:
Theorem 4.2. The conditions (34) imply the existence of a positive constant
The following global existence theorem was proved in [18]:
Theorem 4.3. Assume that
supt≥0{‖∇u(t)‖,‖∇h(t)‖}<∞. |
As in the case of the standard Navier-Stokes equations, it is unknown whether or not the conclusion of Theorem 4.3 holds in general for large data in three dimensions. In what follows, we will work under the assumption that it does, i.e., we henceforth assume that there exist constants
supt≥0{‖∇u(t)‖,‖∇h(t)‖}=M2<∞. | (35) |
We note that it is also possible to carry out the following discussion without making the above assumption, namely by repeating the preceding smallness condition in three dimensions whenever needed. This approach, however, complicates the exposition and we avoid it.
Clearly, by Theorem 4.3, condition (35) holds without additional hypotheses in the two-dimensional case.
Remark 3. Assumption (35) was previously used by Heywood [9] and Heywood and Rannacher [11] in the study of convergence of Galerkin and finite element methods in the study of the classical Navier-Stokes equations, respectively.
Proposition 7. Let
α‖∇u(t)−∇u∞‖2+‖∇h(t)−∇h∞‖2≤C1e−κt(α‖∇u0−∇u∞‖2+‖∇h0−∇h∞‖2)+C2e−κt∫t0eκs‖f(s)−f∞‖2ds | (36) |
Proof. By taking
α2ddt‖∇w‖2+ν‖Aw‖2=−α(w⋅∇u,Aw)−α(u∞⋅∇w,Aw)+(z⋅∇h,Aw)+(h∞⋅∇z,Aw)+(α(f−f∞),Aw), | (37) |
12ddt‖∇z‖2+γ‖Az‖2=−(w⋅∇h,Az)−(u∞⋅∇z,Az)+(z⋅∇u,Az)+(h∞⋅∇w,Az). | (38) |
Next, we estimate the terms on the right-hand sides:
|−α(u∞⋅∇w,Aw)|≤α‖u∞‖L6(Ω)‖∇w‖L3(Ω)‖Aw‖≤Cϵα‖∇u∞‖4‖∇w‖2+ϵα‖Aw‖2, |
|(h∞⋅∇z,Aw)|≤‖h∞‖L6(Ω)‖∇z‖L3(Ω)‖Aw‖≤Cϵ‖∇z‖2‖∇h∞‖4+ϵ‖Aw‖2+δ‖Az‖2, |
|−(u∞⋅∇z,Az)|≤‖u∞‖L6(Ω)‖∇z‖L3(Ω)‖Az‖≤Cδ‖∇z‖2‖∇u∞‖4+δ‖Az‖2, |
|(h∞⋅∇w,Az)|≤‖h∞‖L6(Ω)‖∇w‖L3(Ω)‖Az‖≤Cδ,ϵ‖∇w‖2‖∇h∞‖4+ϵ‖Aw‖2+δ‖Az‖2, |
|−(w⋅∇u,Aw)|=|−(w⋅∇w,Aw)|+|−(w⋅∇u∞,Aw)|≤‖w‖L∞(Ω)‖∇w‖‖Aw‖+‖∇u∞‖‖w‖L∞‖Aw‖≤Cϵ‖∇w‖6+Cϵ‖∇u∞‖4‖∇w‖2+ϵ‖Aw‖2, |
|(z⋅∇h,Aw)|=|(z⋅∇z,Aw)|+|(z⋅∇h∞,Aw)|≤‖z‖L∞(Ω)‖∇z‖‖Aw‖+‖z‖L∞(Ω)‖∇h∞‖‖Aw‖≤Cϵ,δ‖∇h∞‖4‖∇z‖2+Cϵ,δ‖∇z‖6+ϵ‖Aw‖2+δ‖Az‖2, |
|−(w⋅∇h,Az)|≤|−(w⋅∇z,Az)|+|−(w⋅∇h∞,Az)|≤Cϵ,δ‖∇h∞‖4‖∇w‖2+Cϵ,δ‖∇w‖2‖∇z‖4+ϵ‖Aw‖2+δ‖Az‖2, |
|(z⋅∇u,Az)|=|(z⋅∇w,Az)|+|(z⋅∇u∞,Az)|≤Cδ‖∇u∞‖4‖∇z‖2+Cδ‖∇w‖4‖∇z‖2+δ‖Az‖2. |
Consequently
ddt(α‖∇w‖2+‖∇z‖2)+ν‖Aw‖2+γ‖Az‖2≤C‖∇w‖6+C‖∇z‖6+C‖∇w‖2‖∇z‖4+C‖∇w‖4‖∇z‖2+C‖∇w‖2(‖∇u∞‖4+‖∇h∞‖4‖)+C‖∇z‖2(‖∇u∞‖4+‖∇h∞‖4‖)+C‖f−f∞‖2. | (39) |
Now we observe that
ν‖Aw‖2+γ‖Az‖2≥min(να,γ)Ce2 (α‖∇w‖2+‖∇z‖2)≥κ (α‖∇w‖2+‖∇z‖2) |
for every
κ0=min{min(να,γ)Ce2, β0}, |
Above
Thus (39) implies
ddteκt(α‖∇w‖2+‖∇z‖2)≤Ceκt‖∇w‖6+Ceκt‖∇z‖6+Ceκt‖∇w‖2‖∇z‖4+Ceκt‖∇w‖4‖∇z‖2+Ceκt‖∇w‖2(‖∇u∞‖4+‖∇h∞‖4‖)+Ceκt‖∇z‖2(‖∇u∞‖4+‖∇h∞‖4‖)+Ceκt‖f−f∞‖2. | (40) |
Now, integrating (40) from
α‖∇w(t)‖2+‖∇z(t)‖2≤Ce−κt(α‖∇w(0)‖2+‖∇z(0)‖2)+Ce−κt∫t0eκs‖∇w(s)‖6ds+Ce−κt∫t0eκs‖∇z(s)‖6ds+Ce−κt∫t0eκs‖∇w(s)‖2‖∇z(s)‖4ds+Ce−κt∫t0eκs‖∇w(s)‖4‖∇z(s)‖2ds+Ce−κt∫t0eκs‖∇w(s)‖2(‖∇u∞‖4+‖∇h∞‖4‖)ds+Ce−κt∫t0eκs‖∇z(s)‖2(‖∇u∞‖4+‖∇h∞‖4‖)ds+Ce−κt∫t0eκs‖f(s)−f∞‖2ds. | (41) |
We also note that
‖∇z(t)‖4≤‖∇h(t)−∇h∞‖4≤‖∇h(t)‖4+‖∇h∞‖4, |
and, using (10) and (35), we obtain
‖∇z(t)‖4≤M42+α4γ2ν2‖f∞‖4=M3. |
Similarly,
‖∇w(t)‖4≤M42+4α4ν4‖f∞‖4=M4. |
Thus
Ce−κt∫t0eκs‖∇w(s)‖2‖∇z(s)‖4ds≤CM3e−κt∫t0eκs‖∇w(s)‖2ds |
and
Ce−κt∫t0eκs‖∇w(s)‖6ds≤CM4e−κt∫t0eκs‖∇w(s)‖2ds. |
Using the above in (41), we conclude that
α‖∇w(t)‖2+‖∇z(t)‖2≤Ce−κt(α‖∇w0‖2+‖∇z0‖2)+C(M3+M4)e−κt∫t0eκs‖∇w(s)‖2ds+C(M3+M4)e−κt∫t0eκs‖∇z(s)‖2ds+Ce−κt∫t0eκs‖f(s)−f∞‖2ds |
Finally, the second and third terms on the right-hand side of the last inequality can be estimated using (33), which yields the estimate (36).
In the next section we will need the following estimates.
Proposition 8. Let
e−κt∫t0eκs{ν‖Au(s)−Au∞‖2+γ‖Ah(s)−Ah∞‖2}ds |
≤C3e−κt(α‖u0−u∞‖2+‖h0−h∞‖2)+C4e−κt(ν‖∇u0−∇u∞‖2+γ‖∇h0−∇h∞‖2)+C5e−κt∫t0eκs‖f(s)−f∞‖2ds. | (42) |
αe−κt∫t0eκs‖wt(s)‖2ds≤+C6e−κt(α‖u0−u∞‖2+‖h0−h∞‖2)+C7e−κt(ν‖∇u0−∇u∞‖2+γ‖∇h0−∇h∞‖2)+C8e−κt∫t0eκs‖f(s)−f∞‖2ds. | (43) |
and
e−κt∫t0eκs‖zt(s)‖2ds≤+C9e−κt(α‖u0−u∞‖2+‖h0−h∞‖2)+C10e−κt(ν‖∇u0−∇u∞‖2+γ‖∇h0−∇h∞‖2)+C11e−κt∫t0eκs‖f(s)−f∞‖2ds. | (44) |
Proof. By (39), we have
ddteκt(α‖∇w‖2+‖∇z‖2)+νeκt‖Aw‖2+γeκt‖Az‖2≤Ceκt‖∇w‖6+Ceκt‖∇z‖6+Ceκt‖∇w‖2‖∇z‖4+Ceκt‖∇w‖4‖∇z‖2+Ceκt‖∇w‖2(‖∇u∞‖4+‖∇h∞‖4‖)+Ceκt‖∇z‖2(‖∇u∞‖4+‖∇h∞‖4‖)+Ceκt‖f−f∞‖2+κeκt(α‖∇w‖2+‖∇z‖2). | (45) |
Now, integrating the above with respect to time from
νe−κt∫t0eκs‖Aw(s)‖2ds+γe−κt∫t0eκs‖Az(s)‖2ds≤Ce−κt(α‖∇u0−∇u∞‖2+‖∇h0−∇h∞‖2)+CMe−κt∫t0eκs‖∇w(s)‖2ds+CMe−κt∫t0eκs‖∇w(s)‖2ds+Ce−κt∫t0eκs‖f(s)−f∞‖2ds+κe−κt∫t0eκs(α‖∇w(s)‖2+‖∇z(s)‖2)ds, |
Using (33) above with
Next, from (25) and (26), we obtain
αwt=P(−αw⋅∇u+αu∞⋅∇w+z⋅∇h+h∞⋅∇z)−νAw+P(f−f∞) | (46) |
and
zt=P(−w⋅∇h−u∞⋅∇z+z⋅∇u+h∞⋅∇w)−γAz. | (47) |
These expressions imply that
α‖wt‖2≤C{‖w⋅∇u‖2+‖u∞⋅∇w‖2+‖z⋅∇h‖2+‖h∞⋅∇z‖2+ν2‖Au‖2+‖f−f∞‖2}, | (48) |
‖zt‖2≤C{‖w⋅∇h‖2+‖u∞⋅∇z‖2+‖z⋅∇u‖2+‖h∞⋅∇w‖2+γ‖Az‖2}. | (49) |
Next, using (35), the embeddings
α‖wt‖2≤C{‖∇u‖2+ν2+‖u∞‖2L3(Ω)}‖Aw‖2+C(‖∇h‖2+‖h∞‖2L3(Ω))‖Az‖2+C‖f−f∞‖2≤C‖Aw‖2+C‖Az‖2+C‖f−f∞‖2. | (50) |
Similarly, from (49) we obtain
‖zt‖2≤C‖Aw‖2+C‖Az‖2. | (51) |
Consequently,
αe−κt∫t0eκs‖wt(s)‖2ds≤Ce−κt∫t0eκs‖Aw(s)‖2ds+Ce−κt∫t0eκs‖Az(s)‖2ds+Ce−κt∫t0eκs‖f(s)−f∞‖2ds, |
Using (42), the above yields the required estimate (43).
Estimate (44) is obtained similarly, using (49).
Finally, using estimate (36) and arguing exactly as in the proof of Theorem 3.2, we can prove the following stability result.
Theorem 4.4. (
The following is an immediate corollary of the theorem.
Corollary 2. If in Theorem 4.4, we set
If one assumes greater regularity of the initial data, stability in the
{u0,h0∈D(A)f,ft∈L∞([0,∞);L2(Ω))‖Au0‖+‖Ah0‖+supt≥0(‖f(t)‖+‖ft(t)‖)≤C. | (52) |
The following result was proved in [18].
Theorem 5.1. Let the hypotheses be as in Theorem 4.3 and assume, in addition, that (52) holds. Then
supt≥0{‖Au(t)‖,‖Ah(t)‖}≤C, | (53) |
supt≥0{‖ut(t)‖,‖ht(t)‖}≤C. | (54) |
Using the preceding statements, we obtain the following estimates:
Proposition 9. Assume that (35), (52) and the uniqueness condition in the stationary system hold and let
α‖wt(t)‖2+‖zt(t)‖2≤e−˜βt(α‖wt(0)‖2+‖zt(0)‖2)+Ce−˜βt∫t0Ce˜βs‖wt(s)‖2ds+Ce−˜βt∫t0Ce˜βs‖zt(s)‖2ds+Ce−˜βt∫t0e˜βs‖ft(s)‖2ds. | (55) |
Here,
Proof. We differentiate (25) and (26) with respect to
α2ddt‖wt‖2+ν‖∇wt‖2=−α(wt⋅∇u,wt)+(h∞⋅∇zt,wt)+(zt⋅∇h,wt)+(z⋅∇ht,wt)+(αft,wt) | (56) |
and
12ddt‖zt‖2+γ‖∇zt‖2=−(wt⋅∇h,zt)+(zt⋅∇u,zt)+(z⋅∇ut,zt)+(h∞⋅∇wt,zt). | (57) |
Next, we estimate the terms on the right-hand sides:
|−α(wt⋅∇u,wt)|≤α‖∇u‖L3(Ω)‖wt‖L6(Ω)‖wt‖≤Cϵα‖∇u‖2‖Au‖2‖wt‖2+ϵ‖∇wt‖2, |
|(h∞⋅∇zt,wt)|≤‖h∞‖L∞(Ω)‖∇zt‖‖wt‖≤Cδ‖wt‖2‖Ah∞‖2+δ‖∇zt‖2, |
|(zt⋅∇h,wt)|=|−(zt⋅∇wt,h)|≤C‖zt‖L3(Ω)‖∇wt‖‖h‖L6(Ω)≤C‖zt‖1/2‖∇zt‖1/2‖∇wt‖‖∇h‖≤Cϵ,δ‖∇h‖4‖zt‖2+ϵ‖∇wt‖2+δ‖∇zt‖2, |
|(z⋅∇ht,wt)|=|(z⋅∇zt,wt)|≤Cδ‖Az‖2‖wt‖2+δ‖∇zt‖2, |
|−(wt⋅∇h,zt)|=|(wt⋅∇zt,h)|≤Cδ‖Ah‖2‖wt‖2+δ‖∇zt‖2, |
|(zt⋅∇u,zt)|=|(zt⋅∇zt,u)|≤Cδ‖Au‖2‖zt‖2+Cδ‖∇zt‖2, |
|−(z⋅∇ut,zt)|=|(z⋅∇wt,zt)|≤Cϵ‖Az‖2‖zt‖2+Cϵ‖∇wt‖2, |
|(h∞⋅∇wt,zt)|≤Cϵ‖Ah∞‖2‖zt‖2+ϵ‖∇wt‖2. |
Now, by adding the equalities (56) and (57) and using the last obtained estimates, we get
ddt(α‖wt‖2+‖zt‖2)+ναα‖∇wt‖2+γ‖∇zt‖2≤C‖wt‖2ϕ1(t)+C‖zt‖2ϕ2(t)+C‖ft‖2, | (58) |
where
ϕ1(t)=‖Au(t)‖4+‖Ah∞‖2+‖Ah(t)‖2+‖Az(t)‖2,ϕ2(t)=‖Au(t)‖2+‖Ah(t)‖4+‖Az(t)‖2+‖Ah∞‖2 |
are bounded functions.
By working similarly with (58), whose left-hand is analogous to the corresponding one of (31), we obtain (55) for
˜β0=min{να,γ}Ce1 |
where as before
Finally, the stated estimates for
Next, we have
Proposition 10. Let the hypotheses be as in Proposition 9. Then, there exists a positive constant
‖Aw(t)‖≤Ce−˜κt(‖Aw(0)‖2+‖Az(0)‖2)+Ce−˜κt∫t0e˜κs‖f(s)−f∞‖2ds+Ce−˜κt∫t0e˜κs‖ft(s)‖2ds+‖f(t)−f∞‖ | (59) |
and
‖Az(t)‖≤Ce−˜κt(‖Aw(0)‖2+‖Az(0)‖2)+Ce−˜κt∫t0e˜κt‖f(s)−f∞‖2ds+Ce−˜κt∫t0e˜κs‖ft(s)‖2ds. | (60) |
Proof. Let
˜κ0=min{˜β0,κ0}. |
It follows from (46) that
‖νAw(t)‖≤‖wt(t)‖+‖∇w‖‖Au‖+α‖Au∞‖‖∇w‖+‖∇z‖‖Ah‖+‖Ah∞‖‖∇z‖+‖f(t)−f∞‖. |
Now, taking
‖νAw(t)‖≤e−˜κt(α‖wt(0)‖2+‖zt(0)‖2)+Ce−˜κt∫t0e˜κs‖wt(s)‖2ds+Ce−˜κt∫t0Ce˜κs‖zt(s)‖2ds+Ce−˜κt∫t0e˜κs‖ft(s)‖2ds.+Ce−˜κt(α‖∇u0−∇u∞‖2+‖∇h0−∇h∞‖2)+Ce−˜κt∫t0e˜κs‖f(s)−f∞‖2ds+‖f(t)−f∞‖ |
Using the estimates for
Next, (47) implies that
‖γAz(t)‖≤‖zt(t)‖+‖∇w‖‖Ah‖+‖Au∞‖‖∇z‖+‖∇z‖‖Au‖+‖Ah∞‖‖∇w‖. |
Arguing as before, the above inequality yields estimate (60).
Finally, arguing exactly as in the proof of Theorem 3.2, estimates (59) and (60) with a fixed
Theorem 5.2. Let the hypotheses be as in Proposition 10 and assume, in addition, that
The following is an immediate corollary of the theorem.
Corollary 3. If we set
J.L. Boldrini was partially supported by CNPq (Brazil) Grant 306182/2014-9. J. Bravo-Olivares and E. Notte-Cuello were partially supported by project DIDULS-PTE16151, Universidad de La Serena. M.A. Rojas-Medar was partially supported by CAPES-PRINT 88887.311962/2018-00 (Brazil) and Project UTA-Mayor, 4753-20, Universidad de Tarapacá (Chile).
[1] |
On the existence and regularity of the solutions of Stokes problem in arbitrary dimension. Proc. Japan Acad. Ser. A Math. Sci. (1991) 67: 171-175. ![]() |
[2] |
Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space. Indiana Univ. Math. J. (1987) 36: 149-166. ![]() |
[3] |
Lp-stability for the strong solutions of the Navier-Stokes equations n the whole space. Arch. Rational Mech. Anal. (1987) 98: 65-69. ![]() |
[4] | On a system of evolution equations of magnetohydrodynamic type. Mat. Contemp. (1995) 8: 1-19. |
[5] | Su un problema al controrno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova (1961) 31: 308-340. |
[6] | A system of equations of magnetohydrodynamics type. Dokl. Akad. Nauk SSSR (1984) 278: 1074-1077. |
[7] |
On some questions of the weak solutions of evolution equations for magnetohydrodynamic type. Proyecciones (1997) 16: 83-97. ![]() |
[8] |
Asymptotic behavior and time discretization analysis for the nonstationary Navier-Stokes problem. Num. Math. (2004) 98: 647-673. ![]() |
[9] |
An error estimate uniform in time for spectral Galerkin approximations of the Navier-Stokes problem. Pacific J. Math. (1982) 98: 333-345. ![]() |
[10] |
Finite element approximation of the nonstationary Navier-Stokes problem. Ⅰ. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. (1982) 19: 275-311. ![]() |
[11] |
Finite element approximations of the nonstationary Navier-Stokes equations. Ⅱ. Stability of solutions and error estimates uniform in time. SIAM J. Numer. Anal. (1986) 23: 750-77. ![]() |
[12] | I. Kondrashuk, E. Notte-Cuello, M. Poblete-Cantellano and M. A. Rojas-Medar, Periodic solution for the magnetohydrodynamic equations with inhomogeneous boundary condition, Axioms, 8 (2019), 44, http://dx.doi.org/10.3390/axioms8020044. |
[13] |
Über ein Rand-Anfangswertproblem der Magnetohydrodynamik. Arch. Rational Mech. Anal. (1967) 25: 388-405. ![]() |
[14] |
On a system of evolution equations of magnetohydrodynamic type: An iterational approach. Proyecciones (1998) 17: 133-165. ![]() |
[15] | S. B. Pikelner, Grundlagen der Kosmischen Elektrodynamik [Russ.], Moskau, 1966. |
[16] |
Lp exponential stability for the equilibrium solutions of the Navier-Stokes equations. J. Math. Anal. Appl. (1995) 190: 419-427. ![]() |
[17] |
The weak solutions and reproductive property for a system of evolution equations of magnetohydrodynamic type. Proyecciones (1994) 13: 85-97. ![]() |
[18] |
Global strong solutions of equations of magnetohydrodynamic type. J. Austral. Math. Soc. Ser. B (1997) 38: 291-306. ![]() |
[19] | A. Schlüter, Dynamik des Plasma, Iund II, Z. Naturforsch., 5a (1950), 72–78; 6a (1951), 73–79. |
[20] | R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Third edition, North-Holland Publishing Co., Amsterdam, 1984. |
[21] |
Asymptotic behavior for strong solutions of the Navier-Stokes equations with external forces. Nonlinear Analysis, Ser. A: Theory Methods (2001) 45: 435-446. ![]() |
[22] |
On the existence, uniqueness and Lr-exponential stability for stationary solutions to the MHD equations in three-dimensional domains. ANZIAM J. (2004) 46: 95-109. ![]() |