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José Luiz Boldrini
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Abstract. We prove some results on the stability of slow stationary solutions

of the MHD equations in two- and three-dimensional bounded domains for

external force fields that are asymptotically autonomous. Our results show
that weak solutions are asymptotically stable in time in the L2-norm. Further,

assuming certain regularity hypotheses on the problem data, strong solutions

are asymptotically stable in the H1 and H2-norms.

1. Introduction. In several situations the motion of incompressible electrical con-
ducting fluid can be modeled by the magnetohydrodynamic (MHD) equations,
which correspond to the Navier-Stokes equations coupled with the Maxwell equa-
tions. In the presence of a free motion of heavy ions, not directly due to the electrical
field (see Schlüter [19] and Pikelner [15]), the MHD equations can be reduced to

∂u

∂t
− η

ρ
∆u + u · ∇u− µ

ρ
h · ∇h = f − 1

ρ
∇
(
p∗ +

µ

2
h2
)
,

∂h

∂t
− 1

µσ
∆h + u · ∇h− h · ∇u = −gradω,

divu = divh = 0,

(1)

together with the following boundary and initial conditions:

u(x, t) = 0, h(x, t) = 0, on ∂Ω× (0, T ),
u(x, 0) = u0(x), h(x, 0) = h0(x), in Ω.

(2)
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In the previous expressions, u and h are respectively the unknown velocity and
magnetic field; p∗ is the unknown hydrostatic pressure; w is an unknown function
related to the heavy ions (in such a way that the density of electric current, j0,
generated by this motion satisfies the relation rotj0 = −σ∇ω), ρ is the density of
mass of the fluid (assumed to be a positive constant); µ > 0 is the constant magnetic
permeability of the medium; σ > 0 is the constant electric conductivity; η > 0 is
the constant viscosity of the fluid and f is a given external force field.

Due to its importance, the MHD system has been discussed in a broad variety
of studies encompassing subjects such as the existence of weak solutions and strong
solutions, uniqueness and regularity criteria. See e.g. [6], [13], [12], [14], [7], [17],
[18] and the references therein.

In the present work we discuss the stability of stationary solutions of the MHD
equations in two- and three-dimensional bounded domains with respect to both ini-
tial conditions and external forcing variations. Under certain regularity hypotheses
on the problem data, we establish in Theorem 3.2 the aforementioned stability in
the L2-norm for weak slow flow stationary solutions. Additionally, in Theorem 4.4
and Theorem 5.2 we discuss respectively the H1-stability and the H2-stability for
strong solutions. We note that, for a fixed given external force field, our results in
particular imply the asymptotic stability of such stationary solutions.

The issue of stability of solutions is an important one, since solutions of any
dynamical system are thought to be physically reasonable only if they are stable.
There exists a number of ways in which stability can be examined. In past years,
many efforts have been made to study the asymptotic behavior of classical Navier-
Stokes equations. We refer the reader to Heywood and Rannacher [11], Beirão da
Veiga [2], Qu and Wang [16], Zhang [21] and the references therein.

A few of the references mentioned above, e.g. [8], are closely related to the con-
tents of this paper. In effect, it was shown in [8] that, under condition (52) stated
in Section 5 below, the strong solution of the two dimensional Navier-Stokes equa-
tion is asymptotically stable in a bounded domain of R2. In this paper we establish
the corresponding result for the magnetohydrodynamic equations, assuming instead
condition (34) below, which is weaker than the used in [8], both in two dimensional
and three dimensional domains. Further, under hypotheses (52) we will show that
stability actually holds in the H2-norm. Thus, our results improve the existing ones
even for Navier-Stokes equations.

2. Notation and preliminaries. We will consider the usual Sobolev spaces
Wm,q(Ω) = {f ∈ Lq(Ω); ‖∂αf‖Lq(Ω) < +∞, |α| ≤ m}, for m = 0, 1, 2, . . . , 1 ≤
q ≤ +∞, with the usual norm. When q = 2, we write Hm(Ω) = Wm,2(Ω) and
set Hm

0 (Ω) = closure of C∞0 (Ω) in Hm(Ω). The Lq-norm is denoted by ‖ · ‖Lq(Ω).

When q = 2, the L2-norm is denoted by ‖ · ‖ and the associated inner product in
L2(Ω) by (·, ·).

If X is a Banach space, we denote by Lq(0, T ;X) the Banach space of the X-
valued functions defined in the interval [0, T ] that are Lq-integrable in the sense of
Bochner. In addition, vector spaces will be denoted by boldface letters.

We also consider the following spaces of divergence free functions:

C∞0,σ(Ω) = {v ∈ C∞0 (Ω) : div v = 0},
H = closure of C∞0,σ(Ω) in L2(Ω),

V = closure of C∞0,σ(Ω) in H1(Ω).
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Throughout the paper, the Helmholtz projection P is the orthogonal projection
from L2(Ω) into H and A = −P∆ with D(A) = V ∩H2(Ω) is the usual Stokes
operator. We observe that, by the regularity of the Stokes operator, it is usually
assumed that Ω is of class C3 in order to apply Cattabriga’s results [5]. However,
we use the stronger results of Amrouche and Girault [1], which imply, in particular,
that when Au ∈ L2(Ω), then u ∈ H2(Ω) and ‖u‖H2(Ω) and ‖Au‖ are equivalent

norms when Ω is of Class C1,1.
For ease of reference, we also recall the following inequalities which are conse-

quences of the Sobolev and Hölder inequalities:

Lemma 2.1. Let Ω ⊆ R3 be bounded. Then
(a) There is a constant CL > 0 such that for any u ∈ V

‖u‖L6(Ω) ≤ CL ‖∇u‖ . (3)

(b) If each integral makes sense, for p, q, r > 0 and 1/p+ 1/q + 1/r = 1, we have

| (u · ∇v,w)| ≤ 3
1
p+ 1

r ‖u‖Lp(Ω) ‖∇v‖Lq(Ω)‖w‖Lr(Ω). (4)

We also need the following regularity result for the Stokes problem (see Temam
[20])

−µ∆v +∇η = g, in Ω,
div v = 0, in Ω,
v = 0, on ∂Ω.

(5)

Proposition 1. Let Ω be an open set in Rn of class Cr, where n = 2 or 3 and r =
max(m+ 2, 2) for some integer m ≥ −1, and let g ∈Wm,q(Ω), 1 < q < ∞. Then
there exist unique functions v and η (to be precise, η is unique up to a constant)
that are solutions of (5) and satisfy

v ∈Wm+2,q(Ω), η ∈Wm+1,q(Ω)

with
‖v‖Wm+2,q(Ω) + ‖η‖Wm+1,q(Ω)/R ≤ C‖g‖Wm,q(Ω)

where C is a constant depending on q, µ,m,Ω.

2.1. Mathematical setting of the problem. By applying the Helmholtz opera-
tor P to both sides of the first equation in problem (1), and by taking into account
the previous considerations, one obtains the operational form of the problem:

αut + νAu + αP (u · ∇)u− P (h · ∇h) = αPf ,
ht + γAh + P (u · ∇h)− P (h · ∇u) = 0,
u(0) = u0,
h(0) = h0.

(6)

Here we have set
α = ρ/µ, ν = η/µ and γ = 1/(µσ).

The associated variational formulation is the following: to find (u,h) in suitable
functional spaces such that u(0) = u0, h(0) = h0 and, for every (v, b) ∈ V × V ,
the following holds:{

α(ut,v) + ν(∇u,∇v) + α(u · ∇u,v)− (h · ∇h,v) = (αf ,v)
(ht, b) + γ(∇h,∇b) + (u · ∇h, b)− (h · ∇u, b) = 0.

(7)

The corresponding stationary system in operational form is{
νAu∞ + αP (u∞ · ∇)u∞ = αPf∞ + P (h∞ · ∇h∞),
γAh∞ + P (u∞ · ∇)h∞ − P (h∞ · ∇)u∞ = 0.

(8)
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In this last system we considered a time-independent external force field f∞, pos-
sibly different from the previous f , because we want to check also the stability
associated to changes in the external force field.

This last problem, in its associated variational formulation becomes: find (u∞,
h∞) ∈ V × V such that, for every (v, b) ∈ V × V , the following holds:{

ν(∇u∞,∇v) + α(u∞ · ∇u∞,v)− (h∞ · ∇h∞,v) = α(f∞,v),
γ(∇h∞,∇b) + (u∞ · ∇h∞, b)− (h∞ · ∇u∞, b) = 0.

(9)

We call such pair (u∞,h∞) a weak solution of the stationary problem (9) (or
(8)).

By using the Galerkin method, it is possible to show the following result on
existence of weak solutions of (9) (see Chizhonkov [6]):

Proposition 2. Problem (9) admits at least one weak solution (u∞,h∞) ∈ V ×V .
Further, it satisfies the estimate

ν

2
‖∇u∞‖2 + γ ‖∇h∞‖2 ≤

α2

ν
‖f∞‖2V ∗ . (10)

Under smallness conditions, we also have uniqueness of such solutions:

Proposition 3. (Uniqueness) Any stationary weak solution satisfying the condi-
tions √

3CL
ν

(
α‖u∞‖L3(Ω) + ‖h∞‖L3(Ω)

)
< 1, (11)

√
3CL
γ

(
‖u∞‖L3(Ω) + ‖h∞‖L3(Ω)

)
< 1, (12)

where 0 < CL is the constant appearing in (3), is unique.

Proof. (of Proposition 3) Let (u1
∞,h

1
∞) be a slow-flow solution of (9), that is, a

weak solution satisfying (11) and (12) , and let (u2
∞,h

2
∞) be another tentative

weak solution of (9). By setting u = u1
∞ − u2

∞ and h = h1
∞ − h2

∞, we have

ν (∇u,∇v) + α(u · ∇u1
∞,v) + α(u2

∞ · ∇u,v) = (h · ∇h1
∞,v) + (h2

∞ · ∇h,v) ,

γ (∇h,∇b) + (u · ∇h1
∞, b) + (u2

∞ · ∇h, b)− (h · ∇u1
∞, b)− (h2

∞ · ∇u, b) = 0 .

We take v = u and b = h in the above equalities and obtain

ν ‖∇u‖2 = −α(u · ∇u1
∞,u) + (h · ∇h1

∞,u) + (h2
∞ · ∇h,u) , (13)

γ ‖∇h‖2 = (h · ∇u1
∞,h) + (h2

∞ · ∇u,h)− (u · ∇h1
∞,h) . (14)

By Lemma 2.1, we have

|α(u · ∇u1
∞,u)| = α|(u · ∇u,u1

∞)| ≤ α
√

3 ‖u‖L6(Ω) ‖∇u‖ ‖u1
∞‖L3(Ω)

≤ α
√

3CL ‖∇u‖2 ‖u1
∞‖L3(Ω) ,

|(h · ∇h1
∞,u)| = |(h · ∇u,h1

∞)| ≤
√

3‖h‖L6(Ω)‖∇u‖ ‖h1
∞‖L3(Ω)

≤
√

3CL ‖∇h‖ ‖∇u‖ ‖h1
∞‖L3(Ω) ,

|(h · ∇u1
∞,h)| = |(h · ∇h,u1

∞)| ≤
√

3 ‖h‖L6(Ω) ‖∇h‖ ‖u1
∞‖L3(Ω)

≤
√

3 CL ‖∇h‖2 ‖u1
∞‖L3(Ω) ,

|(u · ∇h1
∞,h)| = |(u · ∇h,h1

∞)| ≤
√

3 ‖u‖L6(Ω) ‖∇h‖ ‖h1
∞‖L3(Ω)

≤
√

3CL ‖∇u‖ ‖∇h‖ ‖h1
∞‖L3(Ω) .
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By adding equalities (13) and (14), using Young’s inequality, and the last esti-
mates, we obtain

ν ‖∇u‖2 + γ ‖∇h‖2 ≤
√

3CL

(
α‖u1

∞‖L3(Ω) + ‖h1
∞‖L3(Ω)

)
‖∇u‖2

+
√

3CL

(
‖u1
∞‖L3(Ω) + ‖h1

∞‖L3(Ω)

)
‖∇h‖2,

which, together with hypothesis (11) and (12), implies that ‖∇u‖ = 0 and ‖∇h‖ =
0. Since (u,h) ∈ V × V , we obtain that u = 0 and h = 0, i.e., (u1

∞,h
1
∞) =

(u2
∞,h

2
∞) which completes the proof.

Remark 1. Since, by (10), ‖u‖L3(Ω) ≤ C‖∇u‖ and ‖h‖L3(Ω) ≤ C‖∇h‖, conditions
(11) and (12) can be interpreted either as saying that ν, γ are suficiently large or that
‖f∞‖V ∗ is sufficiently small. In these cases, we say that the associated (u∞,h∞)
is a stationary slow flow solution.

Next, we show that the regularity of the weak solutions of the boundary value
problem (9) correlates with that of f∞, i.e., the more regular f∞ is, the more
regular the indicated solutions will be. To this end, we note that, by putting the
nonlinearities on the right-hand side of (9), the stationary problem is equivalent to
the following two coupled Stokes problems. The first Stokes problem is: −ν∆u∞ +∇p∞ = αf∞ − αu∞ · ∇u∞ + h∞ · ∇h∞ ≡ F in Ω,

divu∞ = 0 in Ω,
u∞ = 0 on ∂Ω,

(15)

where p∞ =
(
p∗∞ + µ

2h
2
∞
)
. The second Stokes problem is −γ∆h∞ + gradω∞ = −u∞ · ∇h∞ + h∞ · ∇u∞ ≡ G in Ω,

divh∞ = 0 in Ω,
h∞ = 0 on ∂Ω.

(16)

Proposition 4. Under the assumptions of Proposition 2 and the condition f∞ ∈
L2(Ω), we have u∞,h∞ ∈H2(Ω) ∩ V . Moreover, the following inequality holds:

‖u∞‖H2 + ‖p∞‖H1 + ‖h∞‖H2 + ‖ω∞‖H1 ≤ Ψ(‖f∞‖), (17)

where Ψ is a continuous and nondecreasing function of its argument such that
Ψ(0) = 0.

Proof. We begin by discussing the first problem (15) in (u∞, p∞) with given h∞ ∈
V . By using the Lq-regularity properties of the Stokes problem given in Proposition
1, we conclude that

‖u∞‖W 2,q(Ω) + ‖p∞‖W 1,q(Ω) ≤ C‖F‖Lq , q > 1. (18)

Fix q = 3/2 and let us estimate the terms on the right-hand side F of (15); by using
the embedding H1

0 (Ω) ↪→ L6(Ω) and Holder’s inequality, we have∫
Ω

|(u∞ · ∇)u∞|3/2 ≤ C

∫
Ω

|u∞|3/2|∇u∞|3/2

≤ C
(∫

Ω

|u∞|6
)1/4(∫

Ω

|∇u∞|2
)3/4

≤ C
(∫

Ω

|∇u∞|2
)3/4(∫

Ω

|∇u∞|2
)3/4

,
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hence

‖(u∞ · ∇)u∞‖L3/2(Ω) ≤ C‖∇u∞‖2. (19)

Similarly,

‖(h∞ · ∇)h∞‖L3/2(Ω) ≤ C‖∇h∞‖2. (20)

As f∞ ∈ L2(Ω), we have αf∞ − α(u∞ · ∇)u∞ + (h∞ · ∇)h∞ ∈ L3/2(Ω), so that

F ∈ L3/2(Ω). By (18), we conclude that u∞ ∈W 2,3/2(Ω) and p∞ ∈W 1,3/2(Ω).
Next, we consider the problem (16) and use the already known fact that u∞ ∈

W 2,3/2(Ω). Again by the regularity properties of the Stokes problem, we have

‖h∞‖W 2,q(Ω) + ‖ω∞‖W 1,q(Ω) ≤ C‖G‖Lq(Ω), q > 1. (21)

We must now estimate the terms on the right-hand side G of (16). We have:∫
Ω

|(u∞ · ∇)h∞|3/2 ≤ C

∫
Ω

|u∞|3/2|∇h∞|3/2

≤ C
(∫

Ω

|u∞|6
)1/4(∫

Ω

|∇h∞|2
)3/4

≤ C
(∫

Ω

|∇u∞|2
)3/4(∫

Ω

|∇h∞|2
)3/4

,

hence

‖(u∞ · ∇)h∞‖L3/2(Ω) ≤ C‖∇u∞‖3/2‖∇h∞‖3/2.
Similarly,

‖(h∞ · ∇)u∞‖L3/2(Ω) ≤ C‖∇u∞‖3/2‖∇h∞‖3/2.

Consequently, G ∈ L3/2(Ω), and so h∞ ∈W 2,3/2(Ω) and ω∞ ∈W 1,3/2(Ω).
Now, since W 2,3/2(Ω) ↪→W 1,3(Ω) ↪→ L6(Ω), we obtain

‖(u∞ · ∇)u∞‖ ≤ C‖u∞‖L6(Ω)‖∇u∞‖L3(Ω) ≤ C‖u∞‖H1(Ω)‖u∞‖W 2,3/2(Ω)

and

‖(h∞ · ∇)h∞‖ ≤ C‖h∞‖L6(Ω)‖∇h∞‖L3(Ω) ≤ C‖h∞‖H1‖h∞‖W 2,3/2(Ω).

Using the above and noting that αf∞ ∈ L2(Ω), we obtain F ∈ L2(Ω). Thus,
(18) with q = 2 yields u∞ ∈H2(Ω) and p∞ ∈ H1(Ω).

We conclude that

‖(u∞ · ∇)h∞‖ ≤ C‖u∞‖L∞(Ω)‖∇h∞‖ ≤ C‖u∞‖H2(Ω)‖∇h∞‖

and

‖(h∞ · ∇)u∞‖ ≤ C‖h∞‖L6(Ω)‖∇u∞‖L3(Ω) ≤ C‖u∞‖H2(Ω)‖∇h∞‖

Consequently, G ∈ L2(Ω). Thus, from (21) with q = 2, we obtain h∞ ∈ H2(Ω)
and ω∞ ∈H1(Ω).

By following the previous estimates and using Proposition 2, we obtain (17),
which completes the proof.

In the remainder of this work, (u∞,h∞) will denote a stationary slow-flow solu-
tion of the type discussed in this Section, i.e., (u∞,h∞) satisfies the conclusions of
Proposition 2 and 3.
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3. L2-stability.

Definition 3.1. For any given u0,h0 ∈ H and f ∈ L∞(0,∞,V ∗), we say that a
pair (u,h) is a weak solution of (1)-(2) if u,h ∈ L∞(0,∞,H) ∩ L2

loc(0,∞,V ) and
(7) holds.

Proposition 5. Let f ∈ L∞(0,∞;V ∗), f∞ ∈ V ∗ and let (u,h) be a weak solution
of (1)-(2) such that

ut,ht ∈ L2(0, T ;V ∗) for all T > 0, (22)

Further, we assume that (u∞,h∞) is a weak slow- flow solution of (9), i.e., (11)
and (12) hold. Then there exists a positive constant β0 > 0 such that, for every
β ∈ (0, β0], we have

α‖u(t)− u∞‖2 + ‖h(t)− h∞‖2

≤ e−2βt(α‖u0 − u∞‖2 + ‖h0 − h∞‖2) + 2α2e−2βt

∫ t

0

e2βs‖f(s)− f∞‖2V ∗ds

(23)

Proof. Let

w = u− u∞, and z = h− h∞. (24)

Then

α(wt,v) + ν(Aw,v) = −α(w · ∇u,v)− α(u∞ · ∇w,v)

+(z · ∇h,v) + (h∞ · ∇z,v) + (α(f − f∞),v), (25)

(zt, b) + γ(Az, b) = −(w · ∇h, b)− (u∞ · ∇z, b)

+(z · ∇u, b) + (h∞ · ∇w, b). (26)

By taking v = w in (25), we obtain

α

2

d

dt
‖w‖2+ν‖∇w‖2 = −α(w·∇u,w)+(z·∇h,w)+(h∞·∇z,w)+(α(f−f∞),w).

(27)
On the other hand, taking b = z in (26), we obtain

1

2

d

dt
‖z‖2 + γ‖∇z‖2 = −(w · ∇h, z) + (z · ∇u, z) + (h∞ · ∇w, z). (28)

To estimate the terms on the right-hand side of the above expressions, we first
note that

(w · ∇u,w) = −(w · ∇w,u) = −(w · ∇w,w)− (w · ∇w,u∞) = −(w · ∇w,u∞).

Similarly,

(z · ∇h,w) = −(z · ∇w,h) = −(z · ∇w, z)− (z · ∇w,h∞),

−(w · ∇h, z) = (w · ∇z,h) = (w · ∇z, z) + (w · ∇z,h∞) = (w · ∇z,h∞),

(z · ∇u, z) = −(z · ∇z,u) = −(z · ∇z,w)− (z · ∇z,u∞).

The above equalities together with (27) and (28) imply the following differential
identity

1

2

d

dt
(α‖w‖2 + ‖z‖2) + ν‖∇w‖2 + γ‖∇z‖2 = α(w · ∇w,u∞)− (z · ∇w,h∞)

+(w · ∇z,h∞)− (z · ∇z,u∞) + (α(f − f∞),w).
(29)
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The terms on the right-hand side of (29) can be estimated as follows. From
Lemma 2.1 and the Young inequality, we have

| − (w · ∇w,u∞)| ≤
√

3‖w‖L6(Ω)‖∇w‖‖u∞‖L3(Ω) ≤
√

3CL‖∇w‖2‖u∞‖L3(Ω).

Similarly,

| − (z · ∇z,u∞)| ≤
√

3CL‖∇z‖2‖u∞‖L3(Ω),

| − (z · ∇w,h∞)| ≤
√

3CL‖∇w‖‖∇z‖‖h∞‖L3(Ω),

|(w · ∇z,h∞)| ≤
√

3CL‖∇w‖‖∇z‖‖h∞‖L3(Ω).

Using the above in equality (29), we obtain

1

2

d

dt
(α‖w‖2 + ‖z‖2) + ν‖∇w‖2 + γ‖∇z‖2

≤
√

3CLα‖∇w‖2‖u∞‖L3(Ω) +
√

3CL‖∇z‖2‖u∞‖L3(Ω)

+2
√

3CL‖∇w‖‖∇z‖‖h∞‖L3(Ω) + α2‖f − f∞‖2V ∗
≤
√

3CL{α‖u∞‖L3(Ω) + ‖h∞‖L3(Ω)}‖∇w‖2
+
√

3CL{‖u∞‖L3(Ω) + ‖h∞‖L3(Ω)}‖∇z‖2 + α2‖f − f∞‖2V ∗ .

(30)

Now we observe that (11) and (12) imply that

ν̄ = ν −
√

3CL{α‖u∞‖L3(Ω) + ‖h∞‖L3(Ω)} > 0,

γ̄ = γ −
√

3CL{‖u∞‖L3(Ω) + ‖h∞‖L3(Ω)} > 0.

Therefore, by (30), we have

1

2

d

dt
{α‖w‖2 + ‖z‖2}+

ν̄

α
α‖∇w‖2 + γ̄‖∇z‖2 ≤ α2‖f − f∞‖2V ∗ . (31)

Now, using the embedding H1
0(Ω) ↪→ L2(Ω), we have

1

2

d

dt
{α‖w‖2 + ‖z‖2}+ β{α‖w‖2 + ‖z‖2} ≤ α2‖f − f∞‖2V ∗ ,

for every β ∈ (0, β0], where

β0 = min{ν̄/α, γ̄}Ce1, (32)

with Ce1 equal to the embedding constant of H1
0(Ω) ↪→ L2(Ω). By integrating this

inequality, we obtain the desired decay property (23).

In the next section we will also need the following estimate.

Proposition 6. Let (u,h), (u∞,h∞) and β > 0 be as in Proposition 5. Then,

2ν̄e−βt
∫ t

0

eβs‖∇u(s)−∇u∞‖2ds+ 2γ̄e−βt
∫ t

0

eβs‖∇h(s)−∇h∞‖2ds

≤ 2e−βt(α‖w0‖2 + ‖z0‖2) + 4α2e−βt
∫ t

0

eβs‖f(s)− f∞‖2V ∗ds
(33)

Proof. Multiplying inequality (31) by eβt yields

d

dt
eβt{α‖w‖2 + ‖z‖2}+ 2eβtν̄‖∇w‖2 + 2eβtγ̄‖∇z‖2

≤ βeβt{α‖w‖2 + ‖z‖2}+ 2α2eβt‖f − f∞‖2V ∗ .
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Now, integrating this last inequality from 0 to t and then multiplying by e−βt,
we obtain

2ν̄e−βt
∫ t

0

eβs‖∇w(s)‖2ds+ 2γ̄e−βt
∫ t

0

eβs‖∇z(s)‖2ds

≤ e−βt(α‖w0‖2 + ‖z0‖2) + βe−βt
∫ t

0

eβs{α‖w(s)‖2 + ‖z(s)‖2}ds

+2α2e−βt
∫ t

0

eβs‖f(s)− f∞‖2V ∗ds

≤ e−βt(2− e−βt)(α‖w0‖2 + ‖z0‖2)

+2α2βe−βt
∫ t

0

e−2βs

∫ s

0

e2βs1‖f(s1)− f∞‖2V ∗ds1ds

+2α2e−βt
∫ t

0

eβs‖f(s)− f∞‖2V ∗ds

≤ e−βt(2− e−βt)(α‖w0‖2 + ‖z0‖2) + 4α2e−βt
∫ t

0

eβs‖f(s)− f∞‖2V ∗ds

−2α2e−2βt

∫ t

0

e2βs‖f(s)− f∞‖2V ∗ds,

Using (23) and Fubini’s theorem, the above yields

2ν̄e−βt
∫ t

0

eβs‖∇w(s)‖2ds+ 2γ̄e−βt
∫ t

0

eβs‖∇z(s)‖2ds

≤ e−βt(α‖w0‖2 + ‖z0‖2) + βe−βt
∫ t

0

eβs{α‖w(s)‖2 + ‖z(s)‖2}ds

+2α2e−βt
∫ t

0
eβs‖f(s)− f∞‖2V ∗ds

≤ e−βt(2− e−βt)(α‖w0‖2 + ‖z0‖2)

+2α2βe−βt
∫ t

0

e−2βs

∫ s

0

e2βs1‖f(s1)− f∞‖2V ∗ds1ds

+2α2e−βt
∫ t

0

eβs‖f(s)− f∞‖2V ∗ds

≤ e−βt(2− e−βt)(α‖w0‖2 + ‖z0‖2) + 4α2e−βt
∫ t

0

eβs‖f(s)− f∞‖2V ∗ds

−2α2e−2βt

∫ t

0

e2βs‖f(s)− f∞‖2V ∗ds

whence estimate (33) follows.

We can now prove the following stability result.

Theorem 3.2. (L2-stability) Assume the hypotheses of Proposition 5 and also
that limt→∞ ‖f(t)− f∞‖V ∗ = 0. Then ‖u(t)−u∞‖ → 0 and ‖h(t)−h∞‖ → 0 as
t→ +∞.

Proof. We must show that limt→+∞ α‖u(t) − u∞‖2 + ‖h(t) − h∞‖2 = 0, that
is, given any ε > 0 (< 1, without loss of generality), there exists a Tε such that
α‖u(t)− u∞‖2 + ‖h(t)− h∞‖2 < ε for t > Tε.

To find a Tε, let us start by considering δ > 0 (which will be chosen later in
function of ε). Since limt→∞ ‖f(t) − f∞‖V ∗ = 0, we can choose a Tδ such that
‖f(t)− f∞‖V ∗ < δ for t > Tδ. Also note that ‖f(t)− f∞‖V ∗ ≤ ‖f‖L∞(0,∞;V ∗) +
‖f∞‖V ∗ for all t.
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Now, by (23) with a fixed β ∈ (0, β0], we have

α‖u(t)− u∞‖2 + ‖h(t)− h∞‖2

≤ e−2βt(α‖u0 − u∞‖2 + ‖h0 − h∞‖2) + 2α2e−2βt

∫ t

0

e2βs‖f(s)− f∞‖2V ∗ds

≤ e−2βt(α‖u0 − u∞‖2 + ‖h0 − h∞‖2)

+2α2e−2βt

∫ Tδ

0

e2βs(‖f‖L∞(0,∞;V ∗) + ‖f∞‖V ∗)2ds+ 2α2e−2βt

∫ t

Tδ

e2βsδ2(s)ds

≤ e−2βt(α‖u0 − u∞‖2 + ‖h0 − h∞‖2)

+e−2β(t−Tδ)α2 (‖f‖L∞(0,∞;V ∗) + ‖f∞‖V ∗)2

β
+
δ2

β
α2

We now choose δ so that δ2α2/β < ε/3, i.e., δ < (βε/(3α2))1/2, which yields the
corresponding Tδ. Then, from the last estimate we see that it suffices to choose Tε
sufficiently large so that, for t > Tε, we have

e−2βt(α‖u0 − u∞‖2 + ‖h0 − h∞‖2) < ε/3 and

e−2β(t−Tδ)α2 (‖f‖L∞(0,∞;V ∗) + ‖f∞‖V ∗)2

β
< ε/3.

These conditions are satisfied with

Tε > max{Tδ,
1

2β
ln

3(α‖u0 − u∞‖2 + ‖h0 − h∞‖2)

ε
,

Tδ +
1

2β
ln

3α2(‖f‖L∞(0,∞;V ∗) + ‖f∞‖V ∗)2

βε
}

Thus, α‖u(t)− u∞‖2 + ‖h(t)− h∞‖2 < ε, which completes the proof.

Remark 2. When n = 2, there exists a unique global weak solution (u,h) of (7)
satisfying the initial condition (u0,h0) ∈ H ×H. Moreover, it is not difficult to
check that ut,ht ∈ L2(0, T ;V ∗) (see [17]). Thus the estimates stated in Proposition
5 and therefore the conclusions of Theorem 3.2, hold. In particular, the above
implies that any stationary slow-flow solution is weakly asymptotically stable.

When n = 3 and u,h ∈ Ls(0, T ;Lr(Ω)) with 2/s+ 3/r ≤ 1 and r > 3, it can be
shown that the solution satisfies ut,ht ∈ L2(0, T ;V ∗) and is, furthermore, unique
(see [7]). In this setting, the estimates stated in Proposition 5 and therefore the
conclusions of Theorem 3.2 hold. Moreover, as before, any stationary slow-flow
solution is weakly asymptotically stable.

The following is an immediate corollary of the theorem

Corollary 1. If we set f(t) = f∞ in the Theorem 3.2, then the convergence rate
there is exponential in the L2-norm.

4. H1-stability.

Definition 4.1. Let u0,h0 ∈ V and let f ∈ L∞([0,∞);L2(Ω)). By a strong
solution of problem (1) we mean a pair of vector-valued functions u,h such that
u,h ∈ L∞(0,∞;V ) ∩ L2

loc(0,∞;H2(Ω) ∩ V ) which satisfy (1).
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The following conditions on the initial data will remain in force throughout this
section: 

u0,h0 ∈ V

f∞ ∈ L2(Ω), f ∈ L∞([0,∞);L2(Ω))
‖∇u0‖+ ‖∇h0‖+ sup

t≥0
‖f(t)‖ ≤M1.

(34)

Under assumptions (34), the existence and uniqueness of a local solution was
established in [4], as follows:

Theorem 4.2. The conditions (34) imply the existence of a positive constant T >
0 and functions u,h ∈ C([0, T );V ) and p, ω ∈ L2(0, T ;H1(Ω)\R) which are the
unique strong solution of (1)-(2).

The following global existence theorem was proved in [18]:

Theorem 4.3. Assume that n = 2 or that n = 3 and the constant M1 in (34) is
appropriately small. Then the solution in Theorem 4.2 exists for every t ≥ 0 and it
satisfies

sup
t≥0
{‖∇u(t)‖, ‖∇h(t)‖} <∞.

As in the case of the standard Navier-Stokes equations, it is unknown whether or
not the conclusion of Theorem 4.3 holds in general for large data in three dimensions.
In what follows, we will work under the assumption that it does, i.e., we henceforth
assume that there exist constants M2 and T , where 0 < T ≤ ∞ is as in Theorem
4.2, such that

sup
t≥0
{‖∇u(t)‖, ‖∇h(t)‖} = M2 <∞. (35)

We note that it is also possible to carry out the following discussion without
making the above assumption, namely by repeating the preceding smallness con-
dition in three dimensions whenever needed. This approach, however, complicates
the exposition and we avoid it.

Clearly, by Theorem 4.3, condition (35) holds without additional hypotheses in
the two-dimensional case.

Remark 3. Assumption (35) was previously used by Heywood [9] and Heywood
and Rannacher [11] in the study of convergence of Galerkin and finite element
methods in the study of the classical Navier-Stokes equations, respectively.

Proposition 7. Let (u∞,h∞) and (u,h) be as in the last Section. Assume also
that (34), (35) hold (thus (u∞,h∞) and (u,h) are strong solutions). Then, there
exists a positive constant κ0, which depends only on Ω and on given parameters of
the problem, such that, for every κ ∈ (0, κ0] we have:

α‖∇u(t)−∇u∞‖2 + ‖∇h(t)−∇h∞‖2
≤ C1e

−κt(α‖∇u0 −∇u∞‖2 + ‖∇h0 −∇h∞‖2)

+C2e
−κt

∫ t

0

eκs‖f(s)− f∞‖2ds
(36)
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Proof. By taking v = Aw in (25) and b = Az in (26), we obtain

α

2

d

dt
‖∇w‖2 + ν‖Aw‖2

= −α(w · ∇u, Aw)− α(u∞ · ∇w, Aw)

+(z · ∇h, Aw) + (h∞ · ∇z, Aw) + (α(f − f∞), Aw), (37)

1

2

d

dt
‖∇z‖2 + γ‖Az‖2

= −(w · ∇h, Az)− (u∞ · ∇z, Az)

+(z · ∇u, Az) + (h∞ · ∇w, Az). (38)

Next, we estimate the terms on the right-hand sides:

| − α(u∞ · ∇w, Aw)| ≤ α‖u∞‖L6(Ω)‖∇w‖L3(Ω)‖Aw‖ ≤ Cεα‖∇u∞‖
4‖∇w‖2 + εα‖Aw‖2,

|(h∞ · ∇z, Aw)| ≤ ‖h∞‖L6(Ω)‖∇z‖L3(Ω)‖Aw‖ ≤ Cε‖∇z‖
2‖∇h∞‖4 + ε‖Aw‖2 + δ‖Az‖2,

| − (u∞ · ∇z, Az)| ≤ ‖u∞‖L6(Ω)‖∇z‖L3(Ω)‖Az‖ ≤ Cδ‖∇z‖
2‖∇u∞‖4 + δ‖Az‖2,

|(h∞ ·∇w, Az)| ≤ ‖h∞‖L6(Ω)‖∇w‖L3(Ω)‖Az‖ ≤ Cδ,ε‖∇w‖
2‖∇h∞‖4+ε‖Aw‖2+δ‖Az‖2,

| − (w · ∇u, Aw)| = | − (w · ∇w, Aw)|+ | − (w · ∇u∞, Aw)|
≤ ‖w‖L∞(Ω)‖∇w‖‖Aw‖+ ‖∇u∞‖‖w‖L∞‖Aw‖
≤ Cε‖∇w‖6 + Cε‖∇u∞‖4‖∇w‖2 + ε‖Aw‖2,

|(z · ∇h, Aw)| = |(z · ∇z, Aw)|+ |(z · ∇h∞, Aw)|
≤ ‖z‖L∞(Ω)‖∇z‖‖Aw‖+ ‖z‖L∞(Ω)‖∇h∞‖‖Aw‖
≤ Cε,δ‖∇h∞‖4‖∇z‖2 + Cε,δ‖∇z‖6 + ε‖Aw‖2 + δ‖Az‖2,

| − (w · ∇h, Az)| ≤ | − (w · ∇z, Az)|+ | − (w · ∇h∞, Az)|
≤ Cε,δ‖∇h∞‖4‖∇w‖2 + Cε,δ‖∇w‖2‖∇z‖4 + ε‖Aw‖2 + δ‖Az‖2,

|(z · ∇u, Az)| = |(z · ∇w, Az)|+ |(z · ∇u∞, Az)|
≤ Cδ‖∇u∞‖4‖∇z‖2 + Cδ‖∇w‖4‖∇z‖2 + δ‖Az‖2.

Consequently

d

dt
(α‖∇w‖2 + ‖∇z‖2) + ν‖Aw‖2 + γ‖Az‖2

≤ C‖∇w‖6 + C‖∇z‖6 + C‖∇w‖2‖∇z‖4 + C‖∇w‖4‖∇z‖2
+C‖∇w‖2(‖∇u∞‖4 + ‖∇h∞‖4‖) + C‖∇z‖2(‖∇u∞‖4 + ‖∇h∞‖4‖)
+C‖f − f∞‖2.

(39)
Now we observe that

ν‖Aw‖2 + γ‖Az‖2 ≥ min(
ν

α
, γ)Ce2 (α‖∇w‖2 + ‖∇z‖2) ≥ κ (α‖∇w‖2 + ‖∇z‖2)

for every κ ∈ (0, κ0], where

κ0 = min{min(
ν

α
, γ)Ce2, β0},

Above Ce2 denotes the embedding constant of H2(Ω) ∩H1
0(Ω) ↪→ H1

0(Ω) and β0

is given by (32).
Thus (39) implies

d
dte

κt(α‖∇w‖2 + ‖∇z‖2) ≤ Ceκt‖∇w‖6 + Ceκt‖∇z‖6
+ Ceκt‖∇w‖2‖∇z‖4 + Ceκt‖∇w‖4‖∇z‖2
+ Ceκt‖∇w‖2(‖∇u∞‖4 + ‖∇h∞‖4‖)
+ Ceκt‖∇z‖2(‖∇u∞‖4 + ‖∇h∞‖4‖)
+ Ceκt‖f − f∞‖2.

(40)
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Now, integrating (40) from 0 to t, we have

α‖∇w(t)‖2 + ‖∇z(t)‖2

≤ Ce−κt(α‖∇w(0)‖2 + ‖∇z(0)‖2)

+ Ce−κt
∫ t

0

eκs‖∇w(s)‖6ds+ Ce−κt
∫ t

0

eκs‖∇z(s)‖6ds

+ Ce−κt
∫ t

0

eκs‖∇w(s)‖2‖∇z(s)‖4ds+ Ce−κt
∫ t

0

eκs‖∇w(s)‖4‖∇z(s)‖2ds

+ Ce−κt
∫ t

0

eκs‖∇w(s)‖2(‖∇u∞‖4 + ‖∇h∞‖4‖)ds (41)

+ Ce−κt
∫ t

0

eκs‖∇z(s)‖2(‖∇u∞‖4 + ‖∇h∞‖4‖)ds

+ Ce−κt
∫ t

0

eκs‖f(s)− f∞‖2ds.

We also note that

‖∇z(t)‖4 ≤ ‖∇h(t)−∇h∞‖4 ≤ ‖∇h(t)‖4 + ‖∇h∞‖4,

and, using (10) and (35), we obtain

‖∇z(t)‖4 ≤M4
2 +

α4

γ2ν2
‖f∞‖4 = M3.

Similarly,

‖∇w(t)‖4 ≤M4
2 +

4α4

ν4
‖f∞‖4 = M4.

Thus

Ce−κt
∫ t

0

eκs‖∇w(s)‖2‖∇z(s)‖4ds ≤ CM3e
−κt

∫ t

0

eκs‖∇w(s)‖2ds

and

Ce−κt
∫ t

0

eκs‖∇w(s)‖6ds ≤ CM4e
−κt

∫ t

0

eκs‖∇w(s)‖2ds.

Using the above in (41), we conclude that

α‖∇w(t)‖2 + ‖∇z(t)‖2

≤ Ce−κt(α‖∇w0‖2 + ‖∇z0‖2) + C(M3 +M4)e−κt
∫ t

0

eκs‖∇w(s)‖2ds

+C(M3 +M4)e−κt
∫ t

0

eκs‖∇z(s)‖2ds+ Ce−κt
∫ t

0

eκs‖f(s)− f∞‖2ds

Finally, the second and third terms on the right-hand side of the last inequality
can be estimated using (33), which yields the estimate (36).

In the next section we will need the following estimates.

Proposition 8. Let (u,h), (u∞,h∞) and κ > 0 be as in Proposition 7. Then the
following inequalities hold:

e−κt
∫ t

0

eκs{ν‖Au(s)−Au∞‖2 + γ‖Ah(s)−Ah∞‖2}ds
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≤ C3e
−κt(α‖u0 − u∞‖2 + ‖h0 − h∞‖2)

+C4e
−κt(ν‖∇u0 −∇u∞‖2 + γ‖∇h0 −∇h∞‖2)

+C5e
−κt

∫ t

0

eκs‖f(s)− f∞‖2ds.
(42)

αe−κt
∫ t

0

eκs‖wt(s)‖2ds ≤ +C6e
−κt(α‖u0 − u∞‖2 + ‖h0 − h∞‖2)

+C7e
−κt(ν‖∇u0 −∇u∞‖2 + γ‖∇h0 −∇h∞‖2)

+C8e
−κt

∫ t

0

eκs‖f(s)− f∞‖2ds.

(43)
and

e−κt
∫ t

0

eκs‖zt(s)‖2ds ≤ +C9e
−κt(α‖u0 − u∞‖2 + ‖h0 − h∞‖2)

+C10e
−κt(ν‖∇u0 −∇u∞‖2 + γ‖∇h0 −∇h∞‖2)

+C11e
−κt

∫ t

0

eκs‖f(s)− f∞‖2ds.

(44)

Proof. By (39), we have

d

dt
eκt(α‖∇w‖2 + ‖∇z‖2) + νeκt‖Aw‖2 + γeκt‖Az‖2

≤ Ceκt‖∇w‖6 + Ceκt‖∇z‖6

+ Ceκt‖∇w‖2‖∇z‖4 + Ceκt‖∇w‖4‖∇z‖2

+ Ceκt‖∇w‖2(‖∇u∞‖4 + ‖∇h∞‖4‖) (45)

+ Ceκt‖∇z‖2(‖∇u∞‖4 + ‖∇h∞‖4‖)
+ Ceκt‖f − f∞‖2 + κeκt(α‖∇w‖2 + ‖∇z‖2).

Now, integrating the above with respect to time from 0 to t, we obtain

νe−κt
∫ t

0

eκs‖Aw(s)‖2ds+ γe−κt
∫ t

0

eκs‖Az(s)‖2ds

≤ Ce−κt(α‖∇u0 −∇u∞‖2 + ‖∇h0 −∇h∞‖2) + CMe
−κt

∫ t

0

eκs‖∇w(s)‖2ds

+CMe
−κt

∫ t

0

eκs‖∇w(s)‖2ds+ Ce−κt
∫ t

0

eκs‖f(s)− f∞‖2ds

+κe−κt
∫ t

0

eκs(α‖∇w(s)‖2 + ‖∇z(s)‖2)ds,

Using (33) above with β = κ and CM > 0 depending on M3,M4, we obtain the
required estimate (42).

Next, from (25) and (26), we obtain

αwt = P (−αw · ∇u + αu∞ · ∇w + z · ∇h + h∞ · ∇z)− νAw + P (f − f∞) (46)

and

zt = P (−w · ∇h− u∞ · ∇z + z · ∇u + h∞ · ∇w)− γAz. (47)

These expressions imply that

α‖wt‖2 ≤ C{‖w ·∇u‖2 +‖u∞ ·∇w‖2 +‖z ·∇h‖2 +‖h∞ ·∇z‖2 +ν2‖Au‖2 +‖f −f∞‖
2},

(48)

‖zt‖2 ≤ C{‖w · ∇h‖2 + ‖u∞ · ∇z‖2 + ‖z · ∇u‖2 + ‖h∞ · ∇w‖2 + γ‖Az‖2}. (49)
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Next, using (35), the embeddings Lr(Ω) ↪→ H1(Ω), where r = 3 or 6, H2(Ω) ↪→
L∞(Ω) and the equivalence of norms ‖v‖H2(Ω) and ‖Au‖, (48) yields

α‖wt‖2
≤ C{‖∇u‖2 + ν2 + ‖u∞‖2L3(Ω)

}‖Aw‖2 + C(‖∇h‖2 + ‖h∞‖2L3(Ω)
)‖Az‖2

+C‖f − f∞‖2
≤ C‖Aw‖2 + C‖Az‖2 + C‖f − f∞‖2.

(50)
Similarly, from (49) we obtain

‖zt‖2 ≤ C‖Aw‖2 + C‖Az‖2. (51)

Consequently,

αe−κt
∫ t

0

eκs‖wt(s)‖2ds

≤ Ce−κt
∫ t

0

eκs‖Aw(s)‖2ds+ Ce−κt
∫ t

0

eκs‖Az(s)‖2ds+ Ce−κt
∫ t

0

eκs‖f(s)− f∞‖
2ds,

Using (42), the above yields the required estimate (43).
Estimate (44) is obtained similarly, using (49).

Finally, using estimate (36) and arguing exactly as in the proof of Theorem 3.2,
we can prove the following stability result.

Theorem 4.4. (H1-stability) Assume that limt→∞ ‖f(t) − f∞‖ = 0 and that
(34) and (35) hold. Then ‖u(t) − u∞‖H1

0(Ω) → 0 and ‖h(t) − h∞‖H1
0(Ω) → 0 as

t→ +∞.

The following is an immediate corollary of the theorem.

Corollary 2. If in Theorem 4.4, we set f(t) = f∞, then the convergence rate there
is exponential in the H1-norm.

5. H2-stability. If one assumes greater regularity of the initial data, stability in
the H2-norm is attained. To show this, we assume throughout this section that

u0,h0 ∈ D(A)

f , f t ∈ L∞([0,∞);L2(Ω))
‖Au0‖+ ‖Ah0‖+ sup

t≥0
(‖f(t)‖+ ‖f t(t)‖) ≤ C.

(52)

The following result was proved in [18].

Theorem 5.1. Let the hypotheses be as in Theorem 4.3 and assume, in addition,
that (52) holds. Then u,h ∈ C([0,∞);V ∩H2(Ω)) ∩ C1([0,∞);H), where u and
h are as in Theorem 4.3. Further, there exists a finite positive constant C such that

sup
t≥0
{‖Au(t)‖, ‖Ah(t)‖} ≤ C, (53)

sup
t≥0
{‖ut(t)‖, ‖ht(t)‖} ≤ C. (54)

Using the preceding statements, we obtain the following estimates:

Proposition 9. Assume that (35), (52) and the uniqueness condition in the sta-
tionary system hold and let (u,h) be a strong solution as in Theorem 5.1. Then
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there exists a positive constant β̃0 > 0 such that, for every β̃ ∈ (0, β̃0], the following
holds

α‖wt(t)‖2 + ‖zt(t)‖2

≤ e−β̃t(α‖wt(0)‖2 + ‖zt(0)‖2) + Ce−β̃t
∫ t

0
Ceβ̃s‖wt(s)‖2ds

+Ce−β̃t
∫ t

0

Ceβ̃s‖zt(s)‖2ds+ Ce−β̃t
∫ t

0

eβ̃s‖f t(s)‖2ds.
(55)

Here, α‖wt(0)‖2 ≤ C‖Aw(0)‖2 + C‖Az(0)‖2 + C‖f(0) − f∞‖2 and ‖zt(0)‖2 ≤
C‖Aw(0)‖2 + C‖Az(0)‖2.

Proof. We differentiate (25) and (26) with respect to t and set v = wt and b = zt
there. Noting that wt = ut and zt = ht, we conclude that

α

2

d

dt
‖wt‖2 + ν‖∇wt‖2 = −α(wt · ∇u,wt) + (h∞ · ∇zt,wt)

+ (zt · ∇h,wt) + (z · ∇ht,wt) + (αf t,wt) (56)

and

1

2

d

dt
‖zt‖2 + γ‖∇zt‖2 = −(wt · ∇h, zt) + (zt · ∇u, zt)

+ (z · ∇ut, zt) + (h∞ · ∇wt, zt). (57)

Next, we estimate the terms on the right-hand sides:

| − α(wt · ∇u,wt)| ≤ α‖∇u‖L3(Ω)‖wt‖L6(Ω)‖wt‖ ≤ Cεα‖∇u‖2‖Au‖2‖wt‖2 + ε‖∇wt‖2,

|(h∞ · ∇zt,wt)| ≤ ‖h∞‖L∞(Ω)‖∇zt‖‖wt‖ ≤ Cδ‖wt‖2‖Ah∞‖2 + δ‖∇zt‖2,
|(zt · ∇h,wt)| = | − (zt · ∇wt,h)|

≤ C‖zt‖L3(Ω)‖∇wt‖‖h‖L6(Ω)

≤ C‖zt‖1/2‖∇zt‖1/2‖∇wt‖‖∇h‖
≤ Cε,δ‖∇h‖4‖zt‖2 + ε‖∇wt‖2 + δ‖∇zt‖2,

|(z · ∇ht,wt)| = |(z · ∇zt,wt)| ≤ Cδ‖Az‖2‖wt‖2 + δ‖∇zt‖2,
| − (wt · ∇h, zt)| = |(wt · ∇zt,h)| ≤ Cδ‖Ah‖2‖wt‖2 + δ‖∇zt‖2,
|(zt · ∇u, zt)| = |(zt · ∇zt,u)| ≤ Cδ‖Au‖2‖zt‖2 + Cδ‖∇zt‖2,
| − (z · ∇ut, zt)| = |(z · ∇wt, zt)| ≤ Cε‖Az‖2‖zt‖2 + Cε‖∇wt‖2,

|(h∞ · ∇wt, zt)| ≤ Cε‖Ah∞‖2‖zt‖2 + ε‖∇wt‖2.
Now, by adding the equalities (56) and (57) and using the last obtained estimates,

we get

d

dt
(α‖wt‖2+‖zt‖2)+

ν

α
α‖∇wt‖2+γ‖∇zt‖2 ≤ C‖wt‖2φ1(t)+C‖zt‖2φ2(t)+C‖f t‖2,

(58)
where

φ1(t) = ‖Au(t)‖4 + ‖Ah∞‖2 + ‖Ah(t)‖2 + ‖Az(t)‖2,
φ2(t) = ‖Au(t)‖2 + ‖Ah(t)‖4 + ‖Az(t)‖2 + ‖Ah∞‖2

are bounded functions.
By working similarly with (58), whose left-hand is analogous to the corresponding

one of (31), we obtain (55) for β̃ ∈ (0, β̃0] with

β̃0 = min{ ν
α
, γ}Ce1

where as before Ce1 is the embedding constant of H1
0(Ω) ↪→ L2(Ω).
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Finally, the stated estimates for α‖wt(0)‖ and ‖zt(0)‖ are consequences of (50)
and (51), respectively.

Next, we have

Proposition 10. Let the hypotheses be as in Proposition 9. Then, there exists
a positive constant κ̃0, which only depends Ω and on the given parameters of the
problem, such that, for every κ̃ ∈ (0, κ̃0], we have:

‖Aw(t)‖ ≤ Ce−κ̃t(‖Aw(0)‖2 + ‖Az(0)‖2) + Ce−κ̃t
∫ t

0

eκ̃s‖f(s)− f∞‖2ds

+Ce−κ̃t
∫ t

0

eκ̃s‖f t(s)‖2ds+ ‖f(t)− f∞‖

(59)
and

‖Az(t)‖ ≤ Ce−κ̃t(‖Aw(0)‖2 + ‖Az(0)‖2) + Ce−κ̃t
∫ t

0

eκ̃t‖f(s)− f∞‖2ds

+Ce−κ̃t
∫ t

0

eκ̃s‖f t(s)‖2ds.

(60)

Proof. Let κ0 and β̃0 be the positive constants in Propositions 7 and 9, respectively,
and set

κ̃0 = min{β̃0, κ0}.
It follows from (46) that

‖νAw(t)‖ ≤ ‖wt(t)‖+ ‖∇w‖‖Au‖+ α‖Au∞‖‖∇w‖
+‖∇z‖‖Ah‖+ ‖Ah∞‖‖∇z‖+ ‖f(t)− f∞‖.

Now, taking κ̃ ≤ κ̃0 and using (55) together with the hypotheses on (u∞,h∞) and
(u,h) in this last inequality, we obtain

‖νAw(t)‖ ≤ e−κ̃t(α‖wt(0)‖2 + ‖zt(0)‖2) + Ce−κ̃t
∫ t

0

eκ̃s‖wt(s)‖2ds

+Ce−κ̃t
∫ t

0

Ceκ̃s‖zt(s)‖2ds+ Ce−κ̃t
∫ t

0

eκ̃s‖f t(s)‖2ds.

+Ce−κ̃t(α‖∇u0 −∇u∞‖2 + ‖∇h0 −∇h∞‖2)

+Ce−κ̃t
∫ t

0

eκ̃s‖f(s)− f∞‖2ds

+‖f(t)− f∞‖

Using the estimates for α‖wt(0)‖ and α‖zt(0)‖ given in (43), (44) and Proposi-
tion 9, we obtain estimate (59) from the preceding inequality.

Next, (47) implies that

‖γAz(t)‖ ≤ ‖zt(t)‖+ ‖∇w‖‖Ah‖+ ‖Au∞‖‖∇z‖
+‖∇z‖‖Au‖+ ‖Ah∞‖‖∇w‖.

Arguing as before, the above inequality yields estimate (60).

Finally, arguing exactly as in the proof of Theorem 3.2, estimates (59) and (60)
with a fixed κ̃ ∈ (0, κ̃0] yield following stability result.
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Theorem 5.2. Let the hypotheses be as in Proposition 10 and assume, in addition,
that limt→∞ ‖f(t)−f∞‖ = 0 and limt→∞ ‖f t(t)‖ = 0. Then ‖u(t)−u∞‖H2(Ω) → 0
and ‖h(t)− h∞‖H2(Ω) → 0 as t→ +∞.

The following is an immediate corollary of the theorem.

Corollary 3. If we set f(t) = f∞ in Theorem 5.2, then the convergence rate there
is exponential in the H2-norm.

Acknowledgments. J.L. Boldrini was partially supported by CNPq (Brazil) Grant
306182/2014-9. J. Bravo-Olivares and E. Notte-Cuello were partially supported by
project DIDULS-PTE16151, Universidad de La Serena. M.A. Rojas-Medar was
partially supported by CAPES-PRINT 88887.311962/2018-00 (Brazil) and Project
UTA-Mayor, 4753-20, Universidad de Tarapacá (Chile).
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