Research article

Energy equality for the multi-dimensional nonhomogeneous incompressible Hall-MHD equations in a bounded domain


  • Received: 16 August 2022 Revised: 30 September 2022 Accepted: 11 October 2022 Published: 19 October 2022
  • This paper focuses on the energy equality for weak solutions of the nonhomogeneous incompressible Hall-magnetohydrodynamics equations in a bounded domain $ \Omega \subset \mathbb{R}^n $ $ (n\geqslant2) $. By exploiting the special structure of the nonlinear terms and using the coarea formula, we obtain some sufficient conditions for the regularity of weak solutions to ensure that the energy equality is valid. For the special case $ n = 3 $, $ p = q = 2 $, our results are consistent with the corresponding results obtained by Kang-Deng-Zhou in [Results Appl. Math. 12:100178, 2021]. Additionally, we establish the sufficient conditions concerning $ \nabla u $ and $ \nabla b $, instead of $ u $ and $ b $.

    Citation: Xun Wang, Qunyi Bie. Energy equality for the multi-dimensional nonhomogeneous incompressible Hall-MHD equations in a bounded domain[J]. Electronic Research Archive, 2023, 31(1): 17-36. doi: 10.3934/era.2023002

    Related Papers:

  • This paper focuses on the energy equality for weak solutions of the nonhomogeneous incompressible Hall-magnetohydrodynamics equations in a bounded domain $ \Omega \subset \mathbb{R}^n $ $ (n\geqslant2) $. By exploiting the special structure of the nonlinear terms and using the coarea formula, we obtain some sufficient conditions for the regularity of weak solutions to ensure that the energy equality is valid. For the special case $ n = 3 $, $ p = q = 2 $, our results are consistent with the corresponding results obtained by Kang-Deng-Zhou in [Results Appl. Math. 12:100178, 2021]. Additionally, we establish the sufficient conditions concerning $ \nabla u $ and $ \nabla b $, instead of $ u $ and $ b $.



    加载中


    [1] M. J. Lighthill, Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Philos. Trans. R. Soc. Lond. Ser. A., 252 (1960), 397–430. https://doi.org/10.1098/rsta.1960.0010 doi: 10.1098/rsta.1960.0010
    [2] M. Arichetogaray, P. Degond, Y. Frouvelle, J. G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kinet. Relat. Models, 4 (2011), 901–918. http://dx.doi.org/10.3934/krm.2011.4.901 doi: 10.3934/krm.2011.4.901
    [3] D. Chae, R. Wan, J. Wu, Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion, J. Math. Fluid Mech., 17 (2015), 627–638. https://doi.org/10.1007/s00021-015-0222-9 doi: 10.1007/s00021-015-0222-9
    [4] R. Wan, Y. Zhou, Global well-posedness, BKM blow-up criteria and zero $h$ limit for the 3D incompressible Hall-MHD equations, J. Differ. Equations, 267 (2019), 3724–3747. https://doi.org/10.1016/j.jde.2019.04.020 doi: 10.1016/j.jde.2019.04.020
    [5] Z. Ye, Well-posedness results for the 3D incompressible Hall-MHD equations, J. Differ. Equations, 321 (2022), 130–216. https://doi.org/10.1016/j.jde.2022.03.012 doi: 10.1016/j.jde.2022.03.012
    [6] J. Fan, B. Ahmad, T. Hadyat, Y. Zhou, On blow-up criteria for a new Hall-MHD system, Appl. Math. Comput., 274 (2016), 20–24. https://doi.org/10.1016/j.amc.2015.10.073 doi: 10.1016/j.amc.2015.10.073
    [7] D. Chae, M. Schonbek, On the temporal decay for the Hall-magneto hydrodynamic equations, J. Differ. Equations, 255 (2013), 3971–3982. https://doi.org/10.1016/j.jde.2013.07.059 doi: 10.1016/j.jde.2013.07.059
    [8] M. Dai, H. Liu, Long time behavior of solutions to the 3D Hall-magnetohydrodynamics system with one diffusion, J. Differ. Equations, 266 (2019), 7658–7677. https://doi.org/10.1016/j.jde.2018.12.008 doi: 10.1016/j.jde.2018.12.008
    [9] S. Weng, Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations, J. Funct. Anal., 270 (2016), 2168–2187. https://doi.org/10.1016/j.jfa.2016.01.021 doi: 10.1016/j.jfa.2016.01.021
    [10] X. Zhai, Global wellposedness and large time behavior of solutions to the Hall-magnetohydrodynamics equations, Z. Anal. Anwend., 39 (2020), 395–419. https://doi.org/10.4171/zaa/1665 doi: 10.4171/zaa/1665
    [11] Y. Zhou, Q. Bie, Q. Wang, Z. Yao, On Liouville type theorems for three-dimensional stationary MHD and Hall-MHD equations, Sci. Sin. Math., 52 (2022), 1–10. https://doi.org/10.1360/SSM-2022-0059 doi: 10.1360/SSM-2022-0059
    [12] D. Chae, P. Degond, J. G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 31 (2014), 555–565. https://doi.org/10.1016/j.anihpc.2013.04.006 doi: 10.1016/j.anihpc.2013.04.006
    [13] D. Chae, S. Weng, Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations, Discrete Contin. Dyn. Syst., 36 (2016), 5267–5285. https://doi.org/10.48550/arXiv.1512.03491 doi: 10.48550/arXiv.1512.03491
    [14] Z. Zhang, X. Yang, S. Qiu, Remarks on Liouville type result for the 3D Hall-MHD system, J. Partial Differ. Equations, 3 (2015), 286–290. http://dx.doi.org/10.4208/jpde.v28.n3.7 doi: 10.4208/jpde.v28.n3.7
    [15] L. Kang, X. Deng, Q. Bie, Energy conservation for the nonhomogeneous incompressible Hall-MHD equations, J. Math. Phys., 62 (2021), 031506. https://doi.org/10.1063/5.0042696 doi: 10.1063/5.0042696
    [16] L. Kang, X. Deng, Y. Zhou, Energy conservation for the nonhomogeneous incompressible Hall-MHD equations in a bounded domain, Results Appl. Math., 12 (2021), 100178. https://doi.org/10.1016/j.rinam.2021.100178 doi: 10.1016/j.rinam.2021.100178
    [17] Q. Bie, L. Kang, Q. Wang, Z. Yao, Regularity and energy conservation for the compressible MHD equations (in Chinese), Sci. Sin. Math., 52 (2022), 741–756. https://doi.org/10.1360/SSM-2020-0339 doi: 10.1360/SSM-2020-0339
    [18] Y. Wang, B. J. Zuo, Energy and cross-helicity conservation for the three-dimensional ideal MHD equations in a bounded domain, J. Differ. Equations, 268 (2020), 4079–4101. https://doi.org/10.1016/j.jde.2019.10.045 doi: 10.1016/j.jde.2019.10.045
    [19] X. Wang, S. Liu, Energy conservation for the weak solutions to the 3D compressible magnetohydrodynamic equations of viscous non-resistive fluids in a bounded domain, Nonlinear Anal. RWA, 62 (2021), 103359. https://doi.org/10.1016/j.nonrwa.2021.103359 doi: 10.1016/j.nonrwa.2021.103359
    [20] T. Wang, X. Zhao, Y. Chen, M. Zhang, Energy conservation for the weak solutions to the equations of compressible magnetohydrodynamic flows in three dimensions, J. Math. Anal. Appl., 480 (2019), 123373. https://doi.org/10.1016/j.jmaa.2019.07.063 doi: 10.1016/j.jmaa.2019.07.063
    [21] J. L. Lions, Sur la régularité et l'unicité des solutions turbulentes des équations de Navier Stokes, Rend. Semin. Mat. Univ. Padova, 30 (1960), 16–23.
    [22] M. Shinbrot, The energy equation for the Navier-Stokes system, SIAM J. Math. Anal., 5 (1974), 948–954. https://doi.org/10.1137/0505092 doi: 10.1137/0505092
    [23] H. B. da Veiga, J. Yang, On the Shinbrot's criteria for energy equality to Newtonian fluids: a simplified proof, and an extension of the range of application, Nonlinear Anal., 196 (2020), 111809. https://doi.org/10.1016/j.na.2020.111809 doi: 10.1016/j.na.2020.111809
    [24] C. Yu, A new proof to the energy conservation for the Navier-Stokes equations, preprint, arXiv: 1604.05697.
    [25] C. Yu, The energy equality for the Navier-Stokes equations in bounded domains, preprint, arXiv: 1802.07661.
    [26] Q. Nguyen, P. Nguyen, B. Tang, Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206–4231. https://doi.org/10.1088/1361-6544/ab28ae doi: 10.1088/1361-6544/ab28ae
    [27] C. Yu, Energy conservation for the weak solutions of the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), 1073–1087. https://doi.org/10.1007/s00205-017-1121-4 doi: 10.1007/s00205-017-1121-4
    [28] R. M. Chen, Z. L. Liang, D. H. Wang, R. Z. Xu, Energy equality in compressible fluids with physical boundaries, SIAM J. Math. Anal., 52 (2020), 1363–1385. https://doi.org/10.1137/19M1287213 doi: 10.1137/19M1287213
    [29] L. C. Berselli, E. Chiodaroli, On the energy equality for the 3D Navier-Stokes equations, Nonlinear Anal., 192 (2020), 111704. https://doi.org/10.1016/j.na.2019.111704 doi: 10.1016/j.na.2019.111704
    [30] Z. Liang, Regularity criterion on the energy conservation for the compressible Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A., 151 (2021), 1954–1971. https://doi.org/10.1017/prm.2020.87 doi: 10.1017/prm.2020.87
    [31] Y. Wang, Y. Ye, Energy conservation via a combination of velocity and its gradient in the Navier-Stokes system, preprint, arXiv: 2106.01233.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1236) PDF downloads(112) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog