In this paper, we consider a Thermoelastic system with boundary time-varying delay. Under some appropriate assumptions, the global well-posedness and exponential stability are obtained by using the variable norm technique of Kato and the energy method respectively.
Citation: Meng Hu, Xiaona Cui, Lingrui Zhang. Exponential stability of Thermoelastic system with boundary time-varying delay[J]. Electronic Research Archive, 2023, 31(1): 1-16. doi: 10.3934/era.2023001
In this paper, we consider a Thermoelastic system with boundary time-varying delay. Under some appropriate assumptions, the global well-posedness and exponential stability are obtained by using the variable norm technique of Kato and the energy method respectively.
[1] | A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinty memory and time delay, IMA J. Math. Control Inform., 30 (2013), 507–526. https://doi.org/10.1093/imamci/dns039 doi: 10.1093/imamci/dns039 |
[2] | S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integr. Equations, 21 (2008), 935–958. Available from: file:///C:/Users/97380/Downloads/1356038593.pdf. |
[3] | P. K. C. Wang, Asymptotic stability of a time-delayed diffusion system, J. Appl. Mech., 30 (1963), 500–504. https://doi.org/10.1115/1.3636609 doi: 10.1115/1.3636609 |
[4] | J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996. |
[5] | R. Datko, Not all feedback hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697–713. https://doi.org/10.1137/0326040 doi: 10.1137/0326040 |
[6] | R. Datko, Two examples of Ⅲ-posedness with respect to time delays revisited, IEEE Trans. Automat. Control, 42 (1997), 511–515. https://doi.org/10.1109/9.566660 doi: 10.1109/9.566660 |
[7] | R. Datko, J. Lagnese, M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152–156. https://doi.org/10.1137/0324007 doi: 10.1137/0324007 |
[8] | S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561–1585. https://doi.org/10.1137/060648891 doi: 10.1137/060648891 |
[9] | A. Benguessoum, Global existence and energy decay of solutions for a wave equation with a time-varying delay term, Mathematica, 63 (2021), 32–46. https://doi.org/10.24193/mathcluj.2021.1.04 doi: 10.24193/mathcluj.2021.1.04 |
[10] | B. Feng, X. Yang, K. Su, Well-posedness and stability for a viscoelastic wave equation with density and time-varying delay in $\mathbb{R}^n$, J. Integral Equations Appl., 31 (2019), 465–493. https://doi.org/10.1216/JIE-2019-31-4-465 doi: 10.1216/JIE-2019-31-4-465 |
[11] | W. Liu, General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback, J. Math. Phys., 54 (2013), 043504. https://doi.org/10.1063/1.4799929 doi: 10.1063/1.4799929 |
[12] | S. Nicaise, C. Pignotti, J. Valein, Exponential stability of the wave equation with boundary time-varying delay, Discrete Contin. Dyn. Syst.-S, 4 (2011), 693–722. https://doi.org/10.3934/dcdss.2011.4.693 doi: 10.3934/dcdss.2011.4.693 |
[13] | T. Caraballo, J. Real, L. Shaikhet, Method of Lyapunov functionals construction in stability of delay evolution equations, J. Math. Anal. Appl., 334 (2007), 1130–1145. https://doi.org/10.1016/j.jmaa.2007.01.038 doi: 10.1016/j.jmaa.2007.01.038 |
[14] | C. Huang, S. Vandewalle, An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays, SIAM J. Sci. Comput., 25 (2004), 1608–1632. https://doi.org/10.1137/S1064827502409717 doi: 10.1137/S1064827502409717 |
[15] | V. Barros, C. Nonato, C. Raposo, Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights, Electron. Res. Arch., 28 (2020), 205–220. https://doi.org/10.3934/era.2020014 doi: 10.3934/era.2020014 |
[16] | S. Nicaise, J. Valein, E. Fridman, Stability of the heat and the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst.-S, 2 (2009), 559–581. https://doi.org/10.3934/dcdss.2009.2.559 doi: 10.3934/dcdss.2009.2.559 |
[17] | M. I. Mustafa, Uniform stability for thermoelastic systems with boundary time-varying delay, J. Math. Anal. Appl., 383 (2011), 490–498. https://doi.org/10.1016/j.jmaa.2011.05.066 doi: 10.1016/j.jmaa.2011.05.066 |
[18] | A. J. Rudgers, Analysis of thermoacoustic wave propagation in elastic media, J. Acoust. Soc. Am., 88 (1990), 1078–1994. https://doi.org/10.1121/1.399856 doi: 10.1121/1.399856 |
[19] | M. Ömer, On the stabilization and stability robustness against small delays of some damped wave equations, IEEE Trans. Autom. Control, 40 (1995), 1626–1630. https://doi.org/10.1109/9.412634 doi: 10.1109/9.412634 |
[20] | G. Xu, S. Yung, L. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM. Control. Optim. Calc. Var., 12 (2006), 770–785. https://doi.org/10.1051/cocv:2006021 doi: 10.1051/cocv:2006021 |
[21] | G. Liu, L. Diao, Energy decay of the solution for a weak viscoelastic equation with a time-varying delay, Acta Appl. Math., 155 (2018), 9–19. https://doi.org/10.1007/s10440-017-0142-1 doi: 10.1007/s10440-017-0142-1 |
[22] | C. A. S. Nonato, C. A. Raposo, W. D. Bastos, A transmission problem for waves under time-varying delay and nonlinear weight, preprint, arXiv: 2102.07829. |
[23] | X. Yang, J. Zhang, S. Wang, Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay, Discrete Contin. Dyn. Syst., 40 (2020), 1493–1515. https://doi.org/10.3934/dcds.2020084 doi: 10.3934/dcds.2020084 |
[24] | X. Yang, An erratum on "Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay" (Discrete Continuous Dynamic Systems, 40(3), 2020, 1493–1515), Discrete Contin. Dyn. Syst, 42 (2022), 1493–1494. https://doi.org/10.3934/dcds.2021161 doi: 10.3934/dcds.2021161 |
[25] | H. Yassine, Well-posedness and asymptotic stability of solutions to the semilinear wave equation with analytic nonlinearity and time varying delay, J. Differ. Equations, 301 (2021), 169–201. https://doi.org/10.1016/j.jde.2021.08.018 doi: 10.1016/j.jde.2021.08.018 |
[26] | T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan, 5 (1953), 208–234. https://doi.org/10.2969/jmsj/00520208 doi: 10.2969/jmsj/00520208 |
[27] | T. Kato, Linear and quasi-linear equations of evolution of hyperbolic type, in Hyperbolicity, 72 (2011), 125–191. https://doi.org/10.1007/978-3-642-11105-1_4 |