The two-component Novikov equation is an integrable generalization of the Novikov equation, which has the peaked solitons in the sense of distribution as the Novikov and Camassa-Holm equations. In this paper, we prove the existence of the H1-weak solution for the two-component Novikov equation by the regular approximation method due to the existence of three conserved densities. The key elements in our approach are some a priori estimates on the approximation solutions.
Citation: Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation[J]. Electronic Research Archive, 2020, 28(4): 1545-1562. doi: 10.3934/era.2020081
[1] | Cheng He, Changzheng Qu . Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28(4): 1545-1562. doi: 10.3934/era.2020081 |
[2] | Li Yang, Chunlai Mu, Shouming Zhou, Xinyu Tu . The global conservative solutions for the generalized camassa-holm equation. Electronic Research Archive, 2019, 27(0): 37-67. doi: 10.3934/era.2019009 |
[3] | Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324 |
[4] | Rong Chen, Shihang Pan, Baoshuai Zhang . Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29(1): 1691-1708. doi: 10.3934/era.2020087 |
[5] | Yazhou Wang, Yuzhu Wang . Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199 |
[6] | Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza . Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29(1): 1625-1639. doi: 10.3934/era.2020083 |
[7] | José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar . Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29(1): 1783-1801. doi: 10.3934/era.2020091 |
[8] | Lin Shen, Shu Wang, Yongxin Wang . The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28(2): 691-719. doi: 10.3934/era.2020036 |
[9] | Li-ming Xiao, Cao Luo, Jie Liu . Global existence of weak solutions to a class of higher-order nonlinear evolution equations. Electronic Research Archive, 2024, 32(9): 5357-5376. doi: 10.3934/era.2024248 |
[10] | Dengming Liu, Changyu Liu . On the global existence and extinction behavior for a polytropic filtration equation with variable coefficients. Electronic Research Archive, 2022, 30(2): 425-439. doi: 10.3934/era.2022022 |
The two-component Novikov equation is an integrable generalization of the Novikov equation, which has the peaked solitons in the sense of distribution as the Novikov and Camassa-Holm equations. In this paper, we prove the existence of the H1-weak solution for the two-component Novikov equation by the regular approximation method due to the existence of three conserved densities. The key elements in our approach are some a priori estimates on the approximation solutions.
This paper is devoted to the existence of weak solutions to the Cauchy problem for the two-component Novikov equation [18]
{mt+uvmx+(2vux+uvx)m=0,m=u−uxx,t>0,nt+uvnx+(2uvx+vux)n=0,n=v−vxx. | (1) |
Note that this system reduces respectively to the Novikov equation [23]
mt+3uuxm+u2mx=0, | (2) |
when
mt+2uxm+umx=0, | (3) |
when
The CH equation was proposed as a nonlinear model describing the unidirectional propagation of the shallow water waves over a flat bottom [1]. Based on the Hamiltonian theory of integrable systems, it was found earlier by using the method of recursion operator due to Fuchssteiner and Fokas [10]. It can also be obtained by using the tri-Hamiltonian duality approach related to the bi-Hamiltonian representation of the Korteweg-de Vries (KdV) equation [9,25]. The CH equation exhibits several remarkable properties. One is the the existence of the multi-peaked solitons on the line
The Novikov equation (2) can be viewed as a cubic generalization of the CH equation, which was introduced by Novikov [23,24] in the classification for a class of equations while they possesses higher-order generalized symmetries. Eq. (2) was proved to be integrable since it enjoys Lax-pair and bi-Hamiltonian structure [14], and is equivalent to the first equation in the negative flow of the Sawada-Kotera hierarchy via Liouville transformation [16]. The Novikov equation (2) also admits peaked solitons over the line
As the two-component generalization of Novikov equation (2), the so-called Geng-Xue system [11]
mt+3vuxm+uvmx=0,nt+3uvxn+uvnx=0, | (4) |
has been studied extensively [11,13]. The integrability [11,19], dynamics and structure of the peaked solitons of (4) [21] were discussed. In [13], well-posedness and wave breaking phenomena of the Cauchy problem of (4) were discussed. The single peakons and multi-peakons of system (4) were constructed in [21] by using compatibility of Lax-pair, which are not the weak solutions in the sense of distribution. Furthermore, the Geng-Xue system does not have the
The main object in this work is to investigate the existence of weak solutions to system (1). It is of great interest to understand the effect from interactions among the two-components, nonlinear dispersion and various nonlinear terms. More specifically, we shall consider the Cauchy problem of (1) and aim to leverage ideas from previous works on CH and Novikov equations. The weak solution of the Cauchy problem associated with (1) is established in Theorem 3.1.
The remainder of this paper is organized as follows. In the next section 2, we review some basic results and lemmas as well as invariant properties of momentum densities
In this section, we recall the local well-posedness, some properties of strong and weak solutions to equation (1) and several approximation results.
First, we introduce some notations. Throughout the paper, we denote the convolution by
With
{mt+uvmx+(2vux+uvx)m=0,m=u−uxx,t>0,x∈R,nt+uvnx+(2uvx+vux)n=0,n=v−vxx,u(0,x)=u0(x),v(0,x)=v0(x),x∈R. | (5) |
Note that if
{ut+uvux+Px∗(12u2xv+uuxvx+u2v)+12P∗(u2xvx)=0,t>0,x∈R,vt+uvvx+Px∗(12v2xu+vvxux+v2u)+12P∗(v2xux)=0,u(0,x)=u0(x),v(0,x)=v0(x),x∈R. | (6) |
Next we recall the local well-posedness and the conservation laws.
Lemma 2.1. [12] Let
u,v∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)) |
Moreover, the solution depends continuously on the initial data, i.e. the mapping
Lemma 2.2. [12] Let
∫R(u2(t,x)+u2x(t,x))dx=∫R(u20+u20x)dx,∫R(v2(t,x)+v2x(t,x))dx=∫R(v20+v20x)dx,∫R(u(t,x)v(t,x)+ux(t,x)vx(t,x))dx=∫R(u0v0+u0xv0x)dx. |
Moreover, we have
|u(t,x)|≤√22‖u0‖1,|v(t,x)|≤√22‖v0‖1. |
Note that equation (1) has the solitary waves with corner at their peaks. Obviously, such solitons are not strong solutions to equation (6). In order to provide a mathematical framework for the study of these solitons, we define the notion of weak solutions to equation (6). Let
Fu(u,v)=uvux+Px∗(12u2xv+uuxvx+u2v)+12P∗(u2xvx),Fv(u,v)=uvvx+Px∗(12v2xu+vvxux+v2u)+12P∗(v2xux). |
Then equation (6) can be written as
{ut+Fu(u,v)=0,vt+Fv(u,v)=0,u(0,x)=u0(x),v(0,x)=v0(x). | (7) |
Lemma 2.3. [22] Let
f,g∈L2((0,T);H1(R))anddfdt,dgdt∈L2((0,T);H−1(R)), |
then
⟨f(t),g(t)⟩−⟨f(s),g(s)⟩=∫ts⟨df(τ)dτ,g(τ)⟩dτ+∫ts⟨dg(τ)dτ,f(τ)⟩dτ |
for all
Throughout this paper, let
ρn=(∫Rρ(ξ)dξ)−1nρ(nx),x∈R,n≥1, |
where
ρ(x)={e1x2−1,for|x|<1,0,for|x|≥1. |
Next, we recall two crucial approximation results and two identities.
Lemma 2.4. [7] Let
[ρn∗(fμ)−(ρn∗f)(ρn∗μ)]→0,asn→∞inL1(R). |
Lemma 2.5. [7] Let
ρn∗(fg)−(ρn∗f)(ρn∗g)→0,asn→∞inL∞(R). |
Lemma 2.6. [7] Assume that
ddt∫R|ρn∗u|dx=∫R(ρn∗ut)sgn(ρn∗u)dx |
and
ddt∫R|ρn∗ux|dx=∫R(ρn∗uxt)sgn(ρn∗ux)dx. |
Consider the flow governed by
{dq(t,x)dt=(uv)(t,q),t>0,x∈R,q(0,x)=x,x∈R. | (8) |
Applying classical results in the theory of ODEs, one can obtain the following useful result on the above initial value problem.
Lemma 2.7. [12] Let
qx=exp(∫t0(uv)x(s,q(s,x))ds),∀(t,x)∈[0,T)×R. |
Furthermore, setting
m(t,q)=exp(−∫t0(2vux+uvx)(s,q(s,x))ds)m0,n(t,q)=exp(−∫t0(2uvx+vux)(s,q(s,x))ds)n0,∀(t,x)∈[0,T)×R. |
Theorem 2.8. Let
u,v∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)). |
Set
(i).m(t,⋅)≥0,n(t,⋅)≥0,u(t,⋅)≥0,v(t,⋅)≥0and|ux(t,⋅)|≤u(t,⋅),|vx(t,⋅)|≤v(t,⋅)onR;(ii).‖u(t,⋅)‖L1≤‖m(t,⋅)‖L1,‖u(t,⋅)‖L∞≤√22‖u(t,⋅)‖1=√22‖u0‖1,and‖v(t,⋅)‖L1≤‖n(t,⋅)‖L1,‖v(t,⋅)‖L∞≤√22‖v(t,⋅)‖1=√22‖v0‖1;(iii).‖ux(t,⋅)‖L1≤‖m(t,⋅)‖L1and‖vx(t,⋅)‖L1≤‖n(t,⋅)‖L1. |
Moreover, if
‖m(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖m0‖L1and‖n(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖n0‖L1. |
Proof. Let
u(t,x)=e−x2∫x−∞eym(t,y)dy+ex2∫∞xe−ym(t,y)dy, | (9) |
and
ux(t,x)=−e−x2∫x−∞eym(t,y)dy+ex2∫∞xe−ym(t,y)dy. | (10) |
From the above two relations and
|ux(t,x)|≤u(t,x)≤√22‖u(t,x)‖1. |
In view of Lemma 2.2, we obtain that
u(t,x)≤√22‖u0‖1,∀(t,x)∈R+×R. |
Since
((mn)13)t+((mn)13uv)x=0, |
it immediately follows that
ddt∫Rm(t,x)dx=−∫∞−∞(uvmx+(2vux+uvx)m)dx=∫∞−∞(vuxm−(uvm)x)dx≤‖u‖L∞‖v‖L∞∫∞−∞m(t,x)dx≤‖u0‖1‖v0‖1∫∞−∞m(t,x)dx. |
Since
‖m(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖m0‖L1. |
Similarly, we find
‖n(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖n0‖L1. |
This completes the proof of Theorem 2.8.
In this section, we will prove that there exists a unique global weak solution to equation (6), provided the initial data
Theorem 3.1. Let
u,v∈W1,∞(Rx×R)∩L∞(R+;H1(R)) |
with the initial data
Proof. First, we shall prove
‖u0‖L1=‖P∗m0‖L1=sup‖f‖L∞≤1∫Rf(x)(P∗m0)(x)dx=sup‖f‖L∞≤1∫Rf(x)∫RP(x−y)dm0(y)dx=sup‖f‖L∞≤1∫R(P∗f)(y)dm0(y)≤sup‖f‖L∞≤1‖P‖L1‖f‖L∞‖m0‖M(R)=‖m0‖M(R). | (11) |
Similarly, we have
‖v0‖L1≤‖n0‖M(R). | (12) |
We first prove that there exists a corresponding
Let us define
un0⟶u0H1(R),n→∞,vn0⟶v0H1(R),n→∞, | (13) |
and for all
‖un0‖1=‖ρn∗u0‖1≤‖u0‖1,‖vn0‖1≤‖v0‖1,‖un0‖L1=‖ρn∗u0‖L1≤‖u0‖L1,‖vn0‖L1≤‖v0‖L1, | (14) |
in view of Young's inequality. Note that for all
mn0=un0−un0,xx=ρn∗m0≥0,andnn0=vn0−vn0,xx=ρn∗v0≥0. |
Comparing with the proof of relation (11) and (12), we get
‖mn0‖L1≤‖m0‖M(R),and‖nn0‖L1≤‖n0‖M(R),n≥1. | (15) |
By Theorem 2.8, we obtain that there exists a global strong solution
un=un(⋅,un0),vn=vn(⋅,vn0)∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)) |
for every
‖unx(t,⋅)‖L∞≤‖un(t,⋅)‖L∞≤‖un(t,⋅)‖1=‖un0‖1≤‖u0‖1,‖vnx(t,⋅)‖L∞≤‖vn(t,⋅)‖L∞≤‖vn(t,⋅)‖1=‖vn0‖1≤‖v0‖1. | (16) |
By the above inequality, we have
‖un(t,⋅)vn(t,⋅)unx(t,⋅)‖L2≤‖un(t,⋅)‖L∞‖vn(t,⋅)‖L∞‖unx(t,⋅)‖L2≤‖un(t,⋅)‖21‖vn(t,⋅)‖1≤‖u0‖21‖v0‖1. | (17) |
Similarly, we have
‖vn(t,⋅)un(t,⋅)vnx(t,⋅)‖L2≤‖v0‖21‖u0‖1. | (18) |
By Young's inequality and (16), for all
‖Px∗(12(unx)2vn+ununxvnx+(un)2vn)+12P∗((unx)2vnx)‖L2≤‖Px‖L2‖12(unx)2vn+ununxvnx+(un)2vn‖L1+12‖P‖L2‖(unx)2vnx‖L1≤12‖unx‖2L2‖vn‖L∞+12‖un‖L∞‖unx‖L2‖vnx‖L2+‖un‖2L2‖vn‖L∞+12‖vnx‖L∞‖unx‖2L2≤52‖un‖21‖vn‖1≤52‖u0‖21‖v0‖1. | (19) |
Similarly, we get
‖Px∗(12(vnx)2un+vnunxvnx+(vn)2un)+12P∗((vnx)2unx)‖L2≤52‖v0‖21‖u0‖1. | (20) |
Combining (17)-(20) with equation (6) for all
‖ddtun(t,⋅)‖L2≤72‖u0‖21‖v0‖1,and‖ddtvn(t,⋅)‖L2≤72‖v0‖21‖u0‖1. | (21) |
For fixed
∫T0∫R([un(t,x)]2+[unx(t,x)]2+[unt(t,x)]2)dxdt≤(‖u0‖21+494‖u0‖41‖v0‖21)T,∫T0∫R([vn(t,x)]2+[vnx(t,x)]2+[vnt(t,x)]2)dxdt≤(‖v0‖21+494‖v0‖41‖u0‖21)T. | (22) |
It follows that the sequence
unk⇀uweaklyinH1(0,T)×R)fornk→∞ | (23) |
and
unk⟶u,a.e.on(0,T)×Rfornk→∞, | (24) |
for some
V[unkx(t,⋅)]=‖unkxx(t,⋅)‖L1≤‖unk(t,⋅)‖L1+‖mnk(t,⋅)‖L1≤2‖mnk(t,⋅)‖L1≤2e‖unk0‖1‖vnk0‖1t‖mnk0‖L1≤2e‖u0‖1‖v0‖1t‖m0‖M(R) |
and
‖unkx(t,⋅)‖L∞≤‖unk(t,⋅)‖1=‖unk0(t,⋅)‖1≤‖u0‖1. |
Applying Helly's theorem, we obtain that there exists a subsequence, denoted again by
V[ˆu(t,⋅)]≤2e‖u0‖1‖v0‖1t‖m0‖M(R). |
Since for almost all
unkx⟶uxa.e.on(0,T)×Rfornk→∞, | (25) |
and for a.e.
V[ux(t,⋅)]=‖uxx(t,⋅)‖M(R)≤2e‖u0‖1‖v0‖1t‖m0‖M(R). |
We can analogously extract a subsequence of
vnk⟶va.e.on(0,T)×Rfornk→∞andvnkx⟶vxa.e.on(0,T)×Rfornk→∞. | (26) |
By Theorem 2.8
‖12(unx)2vn+ununxvnx+(un)2vn+12(unx)2vnx‖L1≤3‖u0‖21‖v0‖1. |
For fixed
Px∗[12(unx)2vn+ununxvnx+(un)2vn]+P∗(12(unx)2vnx)⟶Px∗[12u2xvn+uuxvx+u2v]+P∗(12u2xvx),asn→∞. | (27) |
We can analogously obtain that
Px∗[12(vnx)2un+vnvnxunx+(vn)2un]+P∗(12(vnx)2unx)⟶Px∗[12v2xun+vvxux+v2u]+P∗(12v2xux),asn→∞. | (28) |
Combining (24)-(26) with (27) and (28), we deduce that
Since
u∈Cw,loc(R+;H1(R)). |
For a.e.
‖u(t,⋅)‖L∞≤‖u(t,⋅)‖1≤lim infnk→∞‖un(t,⋅)‖1=lim infnk→∞‖unk0(t,⋅)‖1≤lim infnk→∞‖P‖1‖mnk0(t,⋅)‖L1≤‖m0‖M(R), | (29) |
for a.e.
u∈L∞(R+×R)∩L∞(R+;H1(R)). |
Note that by Theorem 2.8 and (15), we have
‖unx(t,⋅)‖L∞≤‖un(t,⋅)‖L∞≤‖un(t,⋅)‖1≤‖P‖1‖mn0(t,⋅)‖L1≤‖m0(t,⋅)‖M(R). | (30) |
Combining this with (25), we deduce that
ux∈L∞(R+×R). |
This shows that
u∈W1,∞(R+×R)∩L∞(R+;H1(R)). |
Taking the same way as
v∈W1,∞(R+×R)∩L∞(R+;H1(R)). |
Please note that we use the subsequence of
Now, by a regularization technique, we prove that
{ρn∗ut+ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+12ρn∗P∗(u2xvx)=0,ρn∗vt+ρn∗(uvvx)+ρn∗Px∗(12v2xv+vuxvx+v2u)+12ρn∗P∗(v2xux)=0. | (31) |
By differentiation of the first equation of (31), we obtain
ρn∗uxt+ρn∗(uvux)x+ρn∗Px∗(12u2xvx)+ρn∗Pxx∗(12u2xv+uuxvx+u2v)=0. | (32) |
Note that
ρn∗uxt+ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx)=0. | (33) |
Take these two equation (32) and (33) into the integration below, we obtain
12ddt∫R(ρn∗u)2+(ρn∗ux)2dx=∫R(ρn∗u)(ρn∗ut)+(ρn∗ux)(ρn∗uxt)dx=−∫R(ρn∗u)(ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗ux)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (34) |
Note that
limn→∞‖ρn∗u−u‖L2=limn→∞‖ρn∗(uvux)−uvux‖L2=0. |
Therefore, by using H
∫R(ρn∗u)(ρn∗(uvux))dx⟶∫Ru2vuxdx,asn→∞. |
Similarly, for a.e.
∫R(ρn∗u)(ρn∗Px∗(12u2xv+uuxvx+u2v))dx⟶∫RuPx∗(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗u)(ρn∗P∗(12u2xvx))dx⟶∫RuP∗(12u2xvx)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗P∗(12u2xv+uuxvx+u2v))dx⟶∫RuxP∗(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗(12u2xv+uuxvx+u2v))dx⟶∫Rux(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗Px∗(12u2xvx))dx⟶∫RuxPx∗(12u2xvx)dx,asn→∞, |
as
∫R(ρn∗ux)(ρnx∗(uvux))dx=−∫R(ρn,xx∗u)(ρ∗(uvux))dx+∫R(ρn,xx∗u)(ρn∗uv)(ρn∗ux)dx+12∫R(ρn∗ux)2(ρn∗(uv)x)dx. | (35) |
Observe that
∫R(ρn∗ux)2(ρn∗(uv)x)dx⟶∫Ru2x(uv)xdx,asn→∞. |
On the other hand
‖ρnxx∗u‖L1≤‖uxx‖M(R)≤2e‖u0‖1‖v0‖1t‖m0‖M(R),∀t∈[0,T). |
As
‖(ρn∗uv)(ρn∗ux)−(ρn∗(uvux))‖L∞→0,n→∞. |
Therefore,
∫R(ρn,xx∗u)((ρn∗uv)(ρn∗ux)−ρn∗(uvux))dx→0,n→∞. |
In view of the above relations and (35), we obtain
∫R(ρn∗ux)(ρnx∗(uvux))dx→12∫Ru2x(uv)xdx,n→∞. | (36) |
Let us define
Eun(t)=∫R(ρn∗u)2+(ρn∗ux)2dx, | (37) |
and
Gun(t)=−2∫R(ρn∗u)(ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−2∫R(ρn∗ux)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. |
We have proved that for fixed
{ddtEun(t)=Gun(t),n≥1,Gun(t)→0,n→∞. | (38) |
Therefore, we get
Eun(t)−Eun(0)=∫t0Gun(s)ds,t∈[0,T),n≥1. | (39) |
By Young's inequality and H
|Gun(t)|≤Ku(T),n≥1. |
In view of (38) and (39), an application of Lebesgue's dominated convergence theorem yields that for fixed a.e.
limn→∞(Eun(t)−Eun(0))=0. |
By (24) and the above relation, for fixed
Eu(u)=limn→∞Eun(t)=limn→∞Eun(0)=Eu(u0). |
By Theorem 2.8, we infer that for all fixed
Next, we prove that
By differentiation of the second equation of (31), we obtain this relation:
ρn∗vxt+ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux)=0. | (40) |
In view of (31), (33) and (40), we obtain
ddt∫R(ρn∗u)(ρn∗v)+(ρn∗ux)(ρn∗vx)dx=∫R(ρn∗u)(ρn∗vt)+(ρn∗ux)(ρn∗vxt)+(ρn∗ut)(ρn∗v)+(ρn∗uxt)(ρn∗vx)dx=−∫R(ρn∗u)(ρn∗(uvvx)+ρn∗Px∗(12v2xu+vuxvx+v2u) |
+ρn∗P∗(12v2xux))dx−∫R(ρn∗ux)(ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux))dx−∫R(ρn∗v)(ρn∗(vuux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗vx)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (41) |
We can analogously get the similar convergence like the case
It is nature to define
Hn(t)=∫R(ρn∗u)(ρn∗v)+(ρn∗ux)(ρn∗vx)dx, | (42) |
and
Gu,vn(t)=−∫R(ρn∗u)(ρn∗(uvvx)+ρn∗Px∗(12v2xu+vuxvx+v2u)+ρn∗P∗(12v2xux))dx−∫R(ρn∗ux)(ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux))dx−∫R(ρn∗v)(ρn∗(vuux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗vx)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (43) |
And it is easy to get
Hn(t)−Hn(0)=∫t0Gu,vn(s)ds,t∈[0,T),n≥1. | (44) |
Similarly, we get this estimate by using Young's inequality and Holder's inequality:
|Gu,vn(t)|≤Ku,v(T),n≥1. |
An application of Lebesgue's dominated convergence theorem yields that for fixed a.e.
limn→∞[Hn(t)−Hn(0)]=0. |
By these convergence above, for fixed
H(u,v)=limn→∞Hn(t)=limn→∞Hn(0)=H(u0,v0), |
which indicates that
Since
‖m(t,⋅)‖≤3e‖u0‖1‖v0‖1t‖m0‖M(R). |
For any fixed
(u(t,⋅)−uxx(t,⋅))∈M(R). |
Therefore, in view of (24) and (25), we obtain that for all
unk(t,⋅)−unkxx(t,⋅)→u(t,⋅)−uxx(t,⋅)inD′(R). |
Since
u(t,⋅)−uxx(t,⋅)∈M+(R). |
Similarly, we arrive at the conclusion:
v(t,⋅)−vxx(t,⋅)∈M+(R). |
Finally, we show the uniqueness of the weak solutions of equation (6). Let
(f,g)∈W1,∞(R+×R)∩L∞(R+;H1(R))×W1,∞(R+×R)∩L∞(R+;H1(R)) |
Note that
‖u(t,⋅)−uxx(t,⋅)‖M(R)≤3e‖u0‖1‖v0‖1t‖m0‖M(R),‖v(t,⋅)−vxx(t,⋅)‖M(R)≤3e‖u0‖1‖v0‖1t‖n0‖M(R)fora.e.t∈[0,T). |
Define
M(T)=supt∈[0,T){‖u(t,⋅)−uxx(t,⋅)‖M(R)+‖v(t,⋅)−vxx(t,⋅)‖M(R)+‖ˉu(t,⋅)−ˉuxx(t,⋅)‖M(R)+‖ˉv(t,⋅)−ˉvxx(t,⋅)‖M(R)}. |
Then for fixed
‖u(t,⋅)‖L1≤‖P‖L1M(T)=M(T),‖ux(t,⋅)‖L1≤‖Px‖L1M(T)=M(T),‖v(t,⋅)‖L1,‖vx(t,⋅)‖L1,‖ˉu(t,⋅)‖L1,‖ˉux(t,⋅)‖L1,‖ˉv(t,⋅)‖L1and‖ˉvx(t,⋅)‖L1≤M(T). | (45) |
On the other hand, from (29) and (30), we have
‖u(t,⋅)‖L∞≤‖m0‖M(R)≤N,‖ux(t,⋅)‖L∞≤‖m0‖M(R)≤N,‖v(t,⋅)‖L∞≤‖n0‖M(R)≤N,‖vx(t,⋅)‖L∞≤‖n0‖M(R)≤N,‖ˉu(t,⋅)‖L∞,‖ˉux(t,⋅)‖L∞,‖ˉv(t,⋅)‖L∞and‖ˉvx(t,⋅)‖L∞≤N. | (46) |
Let us define
ˆu(t,x)=u(t,x)−ˉu(t,x)andˆv(t,x)=v(t,x)−ˉv(t,x),(t,x)∈[0,T)×R. |
Convoluting equation (6) for
ddt∫R|ρn∗ˆu|dx=∫Rρn∗ˆutsgn(ρn∗ˆu)dx=−∫Rρn∗(ˆuvux+ˉuuxˆv+ˉuˉvˆux)sgn(ρn∗ˆu)dx−∫Rρn∗Pxx∗(12ˆu(ux+ˉux)v+12ˉu2xˆv+ˆuuxvx+ˉuvxˆux+ˉuˉuxˆvx+ˆu(u+ˉu)v+u2ˆv)sgn(ρnx∗ˆu)dx−∫Rρn∗12P∗(ˆux(ux+ˉux)vx+ˉu2xˆvx)sgn(ρn∗ˆu)dx. | (47) |
Using (46) and Young's inequality, we infer that for a.e.
ddt∫R|ρn∗ˆu|dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx). | (48) |
where
ddt∫R|ρn∗ˆux|dx=∫Rρn∗ˆuxtsgn(ρnx∗ˆu)dx=−∫Rρn∗(ˆuvux+ˉuuxˆv+ˉuˉvˆux)xsgn(ρnx∗ˆu)dx−∫Rρn∗Pxx∗(12ˆu(ux+ˉux)v+12ˉu2xˆv+ˆuuxvx+ˉuvxˆux+ˉuˉuxˆvx+ˆu(u+ˉu)v+u2ˆv)sgn(ρnx∗ˆu)dx−∫Rρn∗12Px∗(ˆux(ux+ˉux)vx+ˉu2xˆvx)sgn(ρnx∗ˆu)dx=I1+I2+I3. | (49) |
For the term
I1=−∫Rρn∗(ˆuxvux+ˆuuxvx+ˆuvuxx+ˉuxuxˆv+ˉuuxxˆv+ˉuuxˆvx+ˉuxˉvˆux+ˉuˉvxˆux+ˉuˉvˆuxx)sgn(ρnx∗ˆu)dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)−∫Rρn∗(ˆuvuxx+ˉuuxxˆv+ˉuˉvˆuxx)sgn(ρnx∗ˆu)dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)−∫R(ρn∗ˆuv)(ρn∗uxx)sgn(ρnx∗ˆu)dx−∫R(ρn∗ˉuˆv)(ρn∗uxx)sgn(ρnx∗ˆu)dx−∫R(ρn∗ˉuˉv)(ρn∗ˆuxx)sgn(ρnx∗ˆu)dx+Rn(t) |
≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)+∫R(ρn∗(ˆuv)x)(ρn∗ux)sgn(ρnx∗ˆu)dx+∫R(ρn∗(ˉuˆv)x)(ρn∗ux)sgn(ρnx∗ˆu)dx+∫R(ρn∗(ˉuˉv)x)(ρn∗ˆux)sgn(ρnx∗ˆu)dx+Rn(t)≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)+Rn(t), | (50) |
where C is a constant depending on
{Rn(t)⟶0,n→∞,|Rn(t)|≤κ(T),n≥1,t∈[0,T). | (51) |
For the second term
I2=−∫Rρn∗Pxx∗(12ˆu(ux+ˉux)v+12ˉu2xˆv+ˆuuxvx+ˉuvxˆux+ˉuˉuxˆvx+ˆu(u+ˉu)v+u2ˆv)sgn(ρnx∗ˆu)dx≤2∫Rρn∗|12ˆu(ux+ˉux)v+12ˉu2xˆv+ˆuuxvx+ˉuvxˆux+ˉuˉuxˆvx+ˆu(u+ˉu)v+u2ˆv|dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx). | (52) |
For the final term
I3=−∫Rρn∗12Px∗(ˆux(ux+ˉux)vx+ˉu2xˆvx)sgn(ρnx∗ˆu)dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx). | (53) |
Adding these three terms, we obtain
ddt∫R|ρn∗ˆux|dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)+Rn(t). | (54) |
For these terms
ddt∫R|ρn∗ˆv|dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx),ddt∫R|ρn∗ˆvx|dx≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)+Rn(t). | (55) |
From (48), (54) and (55), we infer that
ddt(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)≤C(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)+Rn(t). | (56) |
If
(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)≤e∫t0C+˜Rn(τ)dτ(|ρn∗ˆu|+|ρn∗ˆux|+|ρn∗ˆv|+|ρn∗ˆvx|)(0,x), | (57) |
where
(∫R|ρn∗ˆu|dx+∫R|ρn∗ˆux|dx+∫R|ρn∗ˆv|dx+∫R|ρn∗ˆvx|dx)≤eCt(|ρn∗ˆu|+|ρn∗ˆux|+|ρn∗ˆv|+|ρn∗ˆvx|)(0,x), | (58) |
As
[1] |
An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. (1993) 71: 1661-1664. ![]() |
[2] |
A new integrable shallow water equation. Adv. Appl. Mech. (1994) 31: 1-33. ![]() |
[3] |
Analysis on the blow-up of solutions to a class of interable peakon equations. J. Funct. Anal. (2016) 270: 2343-2374. ![]() |
[4] |
Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. (1998) 181: 229-243. ![]() |
[5] | Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (1998) 26: 303-328. |
[6] |
Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. (2011) 173: 559-568. ![]() |
[7] |
Global weak solutions for a shallow water equation. Commun. Math. Phys. (2000) 211: 45-61. ![]() |
[8] |
Stability of peakons. Comm. Pure Appl. Math. (2000) 53: 603-610. ![]() |
[9] |
A. S. Fokas, P. J. Olver and P. Rosenau, A plethora of integrable bi-Hamiltonian equations, in Algebraic Aspects of Integrable Systems, Progr. Nonlinear Differential Equations Appl., 26, Birkhäuser, Boston, MA, 1997, 93–101. doi: 10.1007/978-1-4612-2434-1_5
![]() |
[10] |
Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D (1981/82) 4: 47-66. ![]() |
[11] |
An extension of integrable peakon equations with cubic nonlinearity. Nonlinearity (2009) 22: 1847-1856. ![]() |
[12] | C. He, X. C. Liu and C. Qu, Orbital stability of peakons and the trains of peakons for an integrable two-component Novikov system, work in progress. |
[13] |
A. Himonas and D. Mantzavinos, The initial value problem for a Novikov system, J. Math. Phys. 57 (2016), 21pp. doi: 10.1063/1.4959774
![]() |
[14] |
A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A, 41 (2008), 10pp. doi: 10.1088/1751-8113/41/37/372002
![]() |
[15] |
Blow-up phenomenon for the integrable Novikov equation. J. Math. Anal. Appl. (2012) 385: 551-558. ![]() |
[16] |
J. Kang, X. Liu, P. J. Olver and C. Qu, Liouville correspondences between integrable hierarchies, SIGMA Symmetry Integrability Geom. Methods Appl., 13 (2017), 26pp. doi: 10.3842/SIGMA.2017.035
![]() |
[17] |
Global weak solutions to the Novikov equation. J. Funct. Anal. (2013) 265: 520-544. ![]() |
[18] |
Two-component generalizations of the Novikov equation. J. Nonlinear Math. Phys. (2019) 26: 390-403. ![]() |
[19] |
On bi-Hamiltonian structure of two-component Novikov equation. Phys. Lett. A (2013) 377: 257-261. ![]() |
[20] |
Stability of peakons for the Novikov equation. J. Math. Pures Appl. (2014) 101: 172-187. ![]() |
[21] |
H. Lundmark and J. Szmigielski, An inverse spectral problem related to the Geng-Xue two-component peakon equation, Mem. Amer. Math. Soc., 244 (2016), 87pp. doi: 10.1090/memo/1155
![]() |
[22] |
J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Applied Mathematics and Mathematical Computation, 13, Chapman & Hall, London, 1996. doi: 10.1007/978-1-4899-6824-1
![]() |
[23] |
Perturbative symmetry approach. J. Phys. A (2002) 35: 4775-4790. ![]() |
[24] |
V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A, 42 (2009), 14pp. doi: 10.1088/1751-8113/42/34/342002
![]() |
[25] |
Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E (1996) 53: 1900-1906. ![]() |
[26] |
The periodic Cauchy problem for Novikov's equation. Int. Math. Res. Not. (2011) 2011: 4633-4648. ![]() |
[27] |
X. Wu and Z. Yin, Global weak solutions for the Novikov equation, J. Phys. A., 44 (2011), 17pp. doi: 10.1088/1751-8113/44/5/055202
![]() |
[28] |
On the weak solutions to a shallow water equation. Comm. Pure Appl. Math. (2000) 53: 1411-1433. ![]() |
1. | Byungsoo Moon, Orbital stability of periodic peakons for the generalized modified Camassa-Holm equation, 2021, 14, 1937-1632, 4409, 10.3934/dcdss.2021123 |