We extend the spectral regularity criteria of the Prodi-Serrin kind for the Navier-Stokes equations in a torus to the MHD equations. More precisely, the following is established: for any $ N > 0 $, let $ {{\boldsymbol x}}_{N} $ and $ {{\boldsymbol y}}_{N} $ be the sum of all spectral components of the velocity and magnetic field whose wave numbers possess absolute value greater that $ N $; then, it is possible to show that for any $ N $ the finiteness of the Prodi-Serrin norm of $ {{\boldsymbol x}}_{N} $ implies the regularity of the weak solution $ ({{\boldsymbol u}}, {{\boldsymbol h}}) $; thus, no restriction on the magnetic field is needed.
Citation: J. Bravo-Olivares, E. Fernández-Cara, E. Notte-Cuello, M.A. Rojas-Medar. Regularity criteria for 3D MHD flows in terms of spectral components[J]. Electronic Research Archive, 2022, 30(9): 3238-3248. doi: 10.3934/era.2022164
We extend the spectral regularity criteria of the Prodi-Serrin kind for the Navier-Stokes equations in a torus to the MHD equations. More precisely, the following is established: for any $ N > 0 $, let $ {{\boldsymbol x}}_{N} $ and $ {{\boldsymbol y}}_{N} $ be the sum of all spectral components of the velocity and magnetic field whose wave numbers possess absolute value greater that $ N $; then, it is possible to show that for any $ N $ the finiteness of the Prodi-Serrin norm of $ {{\boldsymbol x}}_{N} $ implies the regularity of the weak solution $ ({{\boldsymbol u}}, {{\boldsymbol h}}) $; thus, no restriction on the magnetic field is needed.
[1] | A. Schlüter, Dynamik des Plasma, I and II, Z. Naturforsch, 5a (1950), 72–78; 6a (1951), 73–79. https://doi.org/10.1515/zna-1950-0202 https://doi.org/10.1515/zna-1950-0202 |
[2] | S. B. Pikelner, Grundlagen der kosmischen Elektrodynamik, (1966), Moskau. |
[3] | O. A. Ladyzhenkaya, The sixth millennium problem: Navier-Stokes equations, existence and smoothness, Uspekhi Mat. Nauk, 58 (2003), 45–78. https://doi.org/10.1070/RM2003v058n02ABEH000610 doi: 10.1070/RM2003v058n02ABEH000610 |
[4] | T. Buckmaster, V. Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. Math., 189 (2019), 101–144. https://doi.org/10.4007/annals.2019.189.1.3 doi: 10.4007/annals.2019.189.1.3 |
[5] | G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173–182. https://doi.org/10.1007/BF02410664 doi: 10.1007/BF02410664 |
[6] | J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962), 187–195. https://doi.org/10.1007/BF00253344 doi: 10.1007/BF00253344 |
[7] | J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauhtiers-Villars, Paris, 1969. |
[8] | L. Escauriaza, G. Seregin, V. Sverak, Backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal., 169 (2003), 147–157. https://doi.org/10.1023/B:JOTH.0000041475.11233.d8 doi: 10.1023/B:JOTH.0000041475.11233.d8 |
[9] | P.-L. Lions, N. Masmoudi, Uniqueness of mild solutions of the Navier-Stokes system in $L^N$, Commun. Partial. Differ. Equ., 26 (2001), 2211–2226. https://doi.org/10.1081/PDE-100107819 doi: 10.1081/PDE-100107819 |
[10] | N. Kim, M. Kwak, M. Yoo, Regularity conditions of 3D Navier-Stokes flow in terms of large spectral components, Nonlinear Anal. Theory Methods Appl., 116 (2015), 75–84. https://doi.org/10.1016/j.na.2014.12.011 doi: 10.1016/j.na.2014.12.011 |
[11] | A. M. Alghamdi, S. Gala, C. Qian, M. A. Ragusa, The anisotropic integrability logarithmic regularity criterion for the 3D MHD equations, Electron. Res. Arch., 28 (2020), 183–193. https://doi.org/10.3934/era.2020012 doi: 10.3934/era.2020012 |
[12] | P. Damázio, M. A. Rojas-Medar, On some questions of the weak solutions of evolution equations for magnetohydrodynamic type, Proyecciones, 16 (1997), 83–97. https://doi.org/10.22199/S07160917.1997.0002.00001 doi: 10.22199/S07160917.1997.0002.00001 |
[13] | C. He, Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differ. Equ., 213 (2005), 235–254. https://doi.org/10.1016/j.jde.2004.07.002 doi: 10.1016/j.jde.2004.07.002 |
[14] | G. Lassner, Über Ein Rand-Anfangswert - Problem der Magnetohydrodinamik, Arch. Rat. Mech. Anal., 25 (1967), 388–405. https://doi.org/10.1007/BF00291938 doi: 10.1007/BF00291938 |
[15] | Y. Li, C. Zhao, Existence, uniqueness and decay properties of strong solutions to an evolutionary system of MHD type in $\mathbb{R}^3$, J. Dyn. Differ. Equ., 18 (2006), 393–426. https://doi.org/10.1007/s10884-006-9012-7 doi: 10.1007/s10884-006-9012-7 |
[16] | A. Mahalov, B. Nicolaenko, T. Shilkin, $L_{3, \infty}$-Solution to the MHD Equations, J. Math. Sci., 143 (2007), 2911–2923. https://doi.org/10.1007/s10958-007-0175-5 doi: 10.1007/s10958-007-0175-5 |
[17] | M. A. Rojas-Medar, J. L. Boldrini, The weak solutions and reproductive property for a system of evolution equations of magnetohydrodynamic type, Proyecciones, 13 (1994), 85–97. https://doi.org/10.22199/S07160917.1994.0002.00002 doi: 10.22199/S07160917.1994.0002.00002 |
[18] | C. Zhao, Initial boundary value problem for the evolution system of MHD type describing geophysical flow in three-dimensional domains, Math. Methods Appl. Sci., 26 (2003), 759–781. https://doi.org/10.1002/mma.394 doi: 10.1002/mma.394 |
[19] | C. Zhao, K. Li, On existence, uniqueness and $L_r$-exponential stability for stationary solutions to the MHD equations in three-dimensional domains, ANZIAM J., 46 (2004), 95–109. https://doi.org/10.1017/S1446181100013705 doi: 10.1017/S1446181100013705 |
[20] | J. C. Robinson, J. L. Rodrigo, W. Sadowski, The three-Dimensional Navier-Stokes Equations, Studies in Advanced Mathematics, Vol 157. Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781139095143 |
[21] | R. Temam, Navier-Stokes equations and nonlinear functional analysis, Society for industrial and applied mathemtics, 1995. https://doi.org/10.1137/1.9781611970050 |
[22] | H. B. da Veiga, J. Bemelmans, J. Brand, On a two components condition for regularity of the 3D Navier-Stokes equations under physical slip boundary conditions on non-flat boundaries, Math. Ann., 374 (2019), 1559–1596. https://doi.org/10.1007/s00208-018-1755-z doi: 10.1007/s00208-018-1755-z |
[23] | S. Bosia, V. Pata, J. C. Robinson, A weak-$L^p$ Prodi-Serrin type regularity criterion for the Navier-Stokes equations, J. Math. Fluid Mech., 16 (2014), 721–725. https://doi.org/10.1007/s00021-014-0182-5 doi: 10.1007/s00021-014-0182-5 |
[24] | J. Neustupa, A refinement of the local Serrin-type regularity criterion for a suitable weak solution to the Navier-Stokes equations, Arch. Ration. Mech. Anal., 214 (2014), 525–544. https://doi.org/10.1007/s00205-014-0761-x doi: 10.1007/s00205-014-0761-x |
[25] | B. Pineau, X. Yu, On Prodi- Serrin type conditions for the 3D Navier- Stokes equations, Nonlinear Anal., 190 (2020), 111612. https://doi.org/10.1016/j.na.2019.111612 doi: 10.1016/j.na.2019.111612 |
[26] | J. Wolf, A regularity criterion of Serrin-type for the Navier-Stokes equations involving the gradient of one velocity component, Analysis, 35 (2015), 259–292. https://doi.org/10.1515/anly-2014-1301 doi: 10.1515/anly-2014-1301 |