Research article Special Issues

Regularity criteria for 3D MHD flows in terms of spectral components


  • Received: 26 November 2021 Revised: 17 April 2022 Accepted: 20 April 2022 Published: 20 June 2022
  • We extend the spectral regularity criteria of the Prodi-Serrin kind for the Navier-Stokes equations in a torus to the MHD equations. More precisely, the following is established: for any $ N > 0 $, let $ {{\boldsymbol x}}_{N} $ and $ {{\boldsymbol y}}_{N} $ be the sum of all spectral components of the velocity and magnetic field whose wave numbers possess absolute value greater that $ N $; then, it is possible to show that for any $ N $ the finiteness of the Prodi-Serrin norm of $ {{\boldsymbol x}}_{N} $ implies the regularity of the weak solution $ ({{\boldsymbol u}}, {{\boldsymbol h}}) $; thus, no restriction on the magnetic field is needed.

    Citation: J. Bravo-Olivares, E. Fernández-Cara, E. Notte-Cuello, M.A. Rojas-Medar. Regularity criteria for 3D MHD flows in terms of spectral components[J]. Electronic Research Archive, 2022, 30(9): 3238-3248. doi: 10.3934/era.2022164

    Related Papers:

  • We extend the spectral regularity criteria of the Prodi-Serrin kind for the Navier-Stokes equations in a torus to the MHD equations. More precisely, the following is established: for any $ N > 0 $, let $ {{\boldsymbol x}}_{N} $ and $ {{\boldsymbol y}}_{N} $ be the sum of all spectral components of the velocity and magnetic field whose wave numbers possess absolute value greater that $ N $; then, it is possible to show that for any $ N $ the finiteness of the Prodi-Serrin norm of $ {{\boldsymbol x}}_{N} $ implies the regularity of the weak solution $ ({{\boldsymbol u}}, {{\boldsymbol h}}) $; thus, no restriction on the magnetic field is needed.



    加载中


    [1] A. Schlüter, Dynamik des Plasma, I and II, Z. Naturforsch, 5a (1950), 72–78; 6a (1951), 73–79. https://doi.org/10.1515/zna-1950-0202 https://doi.org/10.1515/zna-1950-0202
    [2] S. B. Pikelner, Grundlagen der kosmischen Elektrodynamik, (1966), Moskau.
    [3] O. A. Ladyzhenkaya, The sixth millennium problem: Navier-Stokes equations, existence and smoothness, Uspekhi Mat. Nauk, 58 (2003), 45–78. https://doi.org/10.1070/RM2003v058n02ABEH000610 doi: 10.1070/RM2003v058n02ABEH000610
    [4] T. Buckmaster, V. Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. Math., 189 (2019), 101–144. https://doi.org/10.4007/annals.2019.189.1.3 doi: 10.4007/annals.2019.189.1.3
    [5] G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173–182. https://doi.org/10.1007/BF02410664 doi: 10.1007/BF02410664
    [6] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962), 187–195. https://doi.org/10.1007/BF00253344 doi: 10.1007/BF00253344
    [7] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauhtiers-Villars, Paris, 1969.
    [8] L. Escauriaza, G. Seregin, V. Sverak, Backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal., 169 (2003), 147–157. https://doi.org/10.1023/B:JOTH.0000041475.11233.d8 doi: 10.1023/B:JOTH.0000041475.11233.d8
    [9] P.-L. Lions, N. Masmoudi, Uniqueness of mild solutions of the Navier-Stokes system in $L^N$, Commun. Partial. Differ. Equ., 26 (2001), 2211–2226. https://doi.org/10.1081/PDE-100107819 doi: 10.1081/PDE-100107819
    [10] N. Kim, M. Kwak, M. Yoo, Regularity conditions of 3D Navier-Stokes flow in terms of large spectral components, Nonlinear Anal. Theory Methods Appl., 116 (2015), 75–84. https://doi.org/10.1016/j.na.2014.12.011 doi: 10.1016/j.na.2014.12.011
    [11] A. M. Alghamdi, S. Gala, C. Qian, M. A. Ragusa, The anisotropic integrability logarithmic regularity criterion for the 3D MHD equations, Electron. Res. Arch., 28 (2020), 183–193. https://doi.org/10.3934/era.2020012 doi: 10.3934/era.2020012
    [12] P. Damázio, M. A. Rojas-Medar, On some questions of the weak solutions of evolution equations for magnetohydrodynamic type, Proyecciones, 16 (1997), 83–97. https://doi.org/10.22199/S07160917.1997.0002.00001 doi: 10.22199/S07160917.1997.0002.00001
    [13] C. He, Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differ. Equ., 213 (2005), 235–254. https://doi.org/10.1016/j.jde.2004.07.002 doi: 10.1016/j.jde.2004.07.002
    [14] G. Lassner, Über Ein Rand-Anfangswert - Problem der Magnetohydrodinamik, Arch. Rat. Mech. Anal., 25 (1967), 388–405. https://doi.org/10.1007/BF00291938 doi: 10.1007/BF00291938
    [15] Y. Li, C. Zhao, Existence, uniqueness and decay properties of strong solutions to an evolutionary system of MHD type in $\mathbb{R}^3$, J. Dyn. Differ. Equ., 18 (2006), 393–426. https://doi.org/10.1007/s10884-006-9012-7 doi: 10.1007/s10884-006-9012-7
    [16] A. Mahalov, B. Nicolaenko, T. Shilkin, $L_{3, \infty}$-Solution to the MHD Equations, J. Math. Sci., 143 (2007), 2911–2923. https://doi.org/10.1007/s10958-007-0175-5 doi: 10.1007/s10958-007-0175-5
    [17] M. A. Rojas-Medar, J. L. Boldrini, The weak solutions and reproductive property for a system of evolution equations of magnetohydrodynamic type, Proyecciones, 13 (1994), 85–97. https://doi.org/10.22199/S07160917.1994.0002.00002 doi: 10.22199/S07160917.1994.0002.00002
    [18] C. Zhao, Initial boundary value problem for the evolution system of MHD type describing geophysical flow in three-dimensional domains, Math. Methods Appl. Sci., 26 (2003), 759–781. https://doi.org/10.1002/mma.394 doi: 10.1002/mma.394
    [19] C. Zhao, K. Li, On existence, uniqueness and $L_r$-exponential stability for stationary solutions to the MHD equations in three-dimensional domains, ANZIAM J., 46 (2004), 95–109. https://doi.org/10.1017/S1446181100013705 doi: 10.1017/S1446181100013705
    [20] J. C. Robinson, J. L. Rodrigo, W. Sadowski, The three-Dimensional Navier-Stokes Equations, Studies in Advanced Mathematics, Vol 157. Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781139095143
    [21] R. Temam, Navier-Stokes equations and nonlinear functional analysis, Society for industrial and applied mathemtics, 1995. https://doi.org/10.1137/1.9781611970050
    [22] H. B. da Veiga, J. Bemelmans, J. Brand, On a two components condition for regularity of the 3D Navier-Stokes equations under physical slip boundary conditions on non-flat boundaries, Math. Ann., 374 (2019), 1559–1596. https://doi.org/10.1007/s00208-018-1755-z doi: 10.1007/s00208-018-1755-z
    [23] S. Bosia, V. Pata, J. C. Robinson, A weak-$L^p$ Prodi-Serrin type regularity criterion for the Navier-Stokes equations, J. Math. Fluid Mech., 16 (2014), 721–725. https://doi.org/10.1007/s00021-014-0182-5 doi: 10.1007/s00021-014-0182-5
    [24] J. Neustupa, A refinement of the local Serrin-type regularity criterion for a suitable weak solution to the Navier-Stokes equations, Arch. Ration. Mech. Anal., 214 (2014), 525–544. https://doi.org/10.1007/s00205-014-0761-x doi: 10.1007/s00205-014-0761-x
    [25] B. Pineau, X. Yu, On Prodi- Serrin type conditions for the 3D Navier- Stokes equations, Nonlinear Anal., 190 (2020), 111612. https://doi.org/10.1016/j.na.2019.111612 doi: 10.1016/j.na.2019.111612
    [26] J. Wolf, A regularity criterion of Serrin-type for the Navier-Stokes equations involving the gradient of one velocity component, Analysis, 35 (2015), 259–292. https://doi.org/10.1515/anly-2014-1301 doi: 10.1515/anly-2014-1301
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1218) PDF downloads(101) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog