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1 Departamento de Matemática, Universidad de La Serena, La Serena, Chile
2 Departamento de Ecuaciones Diferenciales y Análisis Numérico, IMUS, Universidad de Sevilla,
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Abstract: We extend the spectral regularity criteria of the Prodi-Serrin kind for the Navier-Stokes
equations in a torus to the MHD equations. More precisely, the following is established: for any
N > 0, let xN and yN be the sum of all spectral components of the velocity and magnetic field whose
wave numbers possess absolute value greater that N; then, it is possible to show that for any N the
finiteness of the Prodi-Serrin norm of xN implies the regularity of the weak solution (u, h); thus, no
restriction on the magnetic field is needed.
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1. Introduction

In many situations, the motion of an incompressible electricity conductor fluid can be modeled by
the magneto-hydrodynamic equations (MHD). They form a Navier-Stokes-like system coupled to the
Maxwell equations. In the case of free motion of heavy ions not directly due to the electrical field (see
Schlüter [1] and Pikelner [2]), the related initial-value problem for the equations in the torus can be
reduced to

ut −
η

ρ
∆u + (u · ∇)u −

µ

ρ
(h · ∇)h = f −

1
ρ
∇

(
p∗ +

µ

2
|h|2

)
ht −

1
µσ
∆h + (u · ∇)h − (h · ∇)u = −∇w (1.1)

div u = div h = 0
u(x, 0) = u0(x), h(x, 0) = h0(x).
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Here, u and h are respectively the unknown velocity and magnetic fields; p∗ is the unknown hydro-
static pressure; w is an unknown function related to the motion of heavy ions (the density of electric
current j0 generated by this motion satisfies the identity curl j0 = −σ∇w); ρ, µ, σ and η are positive
constants (respectively, the mass density of the fluid, the magnetic permeability, the electric conduc-
tivity and the dynamic viscosity); finally, f is a given external force field. We complete (1.1) with
periodic in space boundary conditions for u and h.

In the context of the three-dimensional Navier-Stokes equations, uniqueness of weak solution is one
of the most dificult and misterious questions (see for instance [3]). For a sufficiently smooth solution,
uniqueness is proved quite easily; however, in the class of weak solutions, the problem remains open
(see however [4] for a recent result concerning non-uniqueness in a class of “very weak” solutions).

Among other works devoted to clarify and/or provide partial answers to this question, we can men-
tion [5] and [6], where one finds the so-called Prodi-Serrin condition (see [3]). By this we mean
an additional convenient hypothesis for the velocity making it possible to demonstrate that the weak
solution is global, regular and unique.

Let us set
V := {φ ∈ C∞(T3)3 : divφ = 0 ,

∫
φ dx = 0}

and let us introduce the spaces L2(T3) := L2(T3)3 , Hr(T3) = Hr(T3)3,

H := the closure of V in L2(T3) (1.2)

and
V := the closure of V in H1(T3). (1.3)

Recall that, for the Navier-Stokes equations, it is well known that, if u0 ∈ H and f ∈ L2(0,T ; H),
there exists at least one weak solution

u ∈ L2(0,T ; V) ∩ L∞(0,T ; H),

which is usually known as the Leray-Hopf solution. It is also known that, if u0 ∈ V, there exists
T∗ ∈ (0,+∞] such that the solution is strong and unique and, in particular,

u ∈ L2(0,T ′; H2(Ω)) ∩ L∞(0,T ′; V)

for all T ′ < T∗. Therefore, it is completely natural to ask under which conditions one has a global in
time strong solution for any initial data u0 ∈ V, without any restriction on the size of its norm.

The results in [5] and [6] assert that any weak solution to the Navier-Stokes equations is actually
strong up to t = T if

u ∈ Lr(0,T ; Lq(Ω)), (1.4)

where (r, q) is a Prodi-Serrin pair, that is,

2
r
+

3
q
= 1 with r ∈ [2,∞) and q ∈ (3,∞].

See also [7] for other properties satisfied by the weak solutions under the assumption (1.4) and [8, 9]
for the case q = 3.
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In the case of the torus, using the expansion of the solutions in terms of the spectral components, the
following was shown in [10]: let the ûk

= ûk(t) be the Fourier coefficients of u(· , t) associated to the
eigenfunctions eik·x for k = (k1, k2, k3) ∈ Z3 and let xN be for each N ≥ 1 the partial sum corresponding
to all k with |k1| , |k2| , |k3| > N; then, if for some Prodi-Serrin pair (r, q) with q > 3 one has

lim inf
N→+∞

∥xN∥Lr(0,T ;Lq(T3)) < +∞, (1.5)

the regularity of the solution u is guaranteed up to t = T . The same holds if one has

lim inf
N→+∞

∥∇xN∥Lr(0,T ;Lq(T3)) < +∞ (1.6)

for some (r, q) such that (2r, 2q) is a Prodi-Serrin pair with q > 3/2.
In this paper, our main purpose is to extend this regularity criteria to the framework of (1.1). Note

that, for this system, there exist many results in the literature concerning the existence of weak and
strong solutions and their regularity; see for instance [11–19]. In particular, some regularity results of
the Prodi-Serrin kind can be found. More precisely, if (r, q) is a Prodi-Serrin pair with q > 3 and a
weak solution to (1.1) satisfies

u ∈ Lr(0,T ; Lq(Ω)), h ∈ Lr(0,T ; Lq(Ω)), (1.7)

then the regularity of the solution is ensured (see for instance [13, 16]). A “better” result will be
established below (see Theorem 2.6).

The plan of the paper is as follows. In Section 2, some notations and function spaces are introduced
and the statement of the main result is given. Specifically we see that, if a Prodi-Serrin condition on
the velocity field is satisfied, the solution (u, p∗, h,w) to (1.1) is smooth. Section 3 is devoted to prove
this result. Finally, we present some additional comments in Section 4.

2. Preliminaries and main result

Let us start by recalling some definitions and elementary results.
The L2(T3)-inner product and norm will be respectively denoted by (· , ·) and ∥·∥; for any p with

1 ≤ p ≤ ∞, ∥·∥Lp , 1 ≤ p ≤ ∞ will stand for the norm in Lp(T3); also, the norms in the usual Sobolev
spaces Hm(T3) and Wk,p(T3) will be respectively denoted by ∥·∥Hm and ∥·∥Wk,p . The same notations will
be used for the corresponding vector-valued spaces.

In the sequel, the symbol C will stand for a generic positive constant. Sometimes, we will write Cq,
Cϵ , etc. in order to indicate explicitly the data on which it depends.

For any Banach space B and any q ∈ [1,+∞), we will denote by Lq(0,T ; B) the space formed by the
B-valued (classes of) functions in (0,T ) that are Lq-integrable in the sense of Bochner. On the other
hand, L∞(0,T ; B) will stand for the space of measurable and essentially bounded (classes of) functions
v : (0,T ) 7→ B.

The Lq(0,T ; B) are Banach spaces for the norms ∥ · ∥Lq(0,T ;B), where

∥v∥Lq(0,T ;B) :=


(∫ T

0
∥v(t)∥qB dt

)1/q

if q < +∞

ess sup[0,T ] ∥v(t)∥B if q = +∞.
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Note that, in terms of Fourier expansions, the spaces H and V, respectively given by (1.2) and (1.3),
can also be described as follows (see [20, 21]):

H =
{
h ∈ L2(T3) : ĥ

0
= 0, k · ĥ

k
= 0 ∀k ∈ Z3

}
and

V =
{
h ∈ H1(T3) : ĥ

0
= 0, k · ĥ

k
= 0 ∀k ∈ Z3

}
,

where, for any h, we denote by ĥ
k

the associated Fourier coefficients.
Throughout this paper, P : L2

(
T3

)
7→ H will stand for the usual orthogonal projector. We will also

use the Stokes operator A : D(A) ⊂ H 7→ H, given by

Av = −∆v ∀v ∈ D(A) := V ∩ H2(T3)

and the trilinear form b (· , · , ·), with

b (φ, ψ, ζ) =
3∑

i, j=1

∫
T3
φi ∂iψ j ζ j dx.

We will need in the sequel the Fourier expansions of u and h, respectively given by

u =
∑
k∈Z3

ûke2πik·x and h =
∑
k∈Z3

ĥ
k
e2πik·x, (2.1)

where ûk
= ûk (t) and ĥ

k
= ĥ

k
(t) are the Fourier coefficients. As in [13], for any N ≥ 1 we introduce

xN = QN (u) :=
∑

|k1 |,|k2 |,|k3 |>N
ûke2πik·x. (2.2)

In our main result, one of the following assumptions will be imposed:

• Hyp 1: (r, q) is a Prodi-Serrin pair with q > 3 and

lim inf
N→∞

∥QN (u)∥Lr(0,T ;Lq(T3)) < +∞.

• Hyp 2: (2r, 2q) is a Prodi-Serrin pair and one has q > 3/2 and

lim inf
N→∞

∥∇QN (u)∥Lr(0,T ;Lq(T3)) < +∞.

For convenience, let us introduce the positive constants α := ρ/µ , ν := η/µ and γ := 1/(µσ). Then,
the equations in (1.1) can be rewritten as follows:

αut − ν∆u + α(u · ∇)u − (h · ∇)h = α f − ∇p
ht − γ∆h + (u · ∇)h − (h · ∇)u = −∇w

div u = div h = 0

for some effective pressure p.
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Definition 2.1. Let us assume that u0, h0 ∈ H and f ∈ L2(0,T ; H) are given. A weak solution to the
MHD equations (1.1) is a couple (u, h) with u, h ∈ L2 (0,T ; V) ∩ L∞ (0,T ; H) such that

α(ut,φ) + ν(∇u,∇φ) + αb(u,u,φ) − b(h, h,φ) = α( f ,φ) ∀φ ∈ V
(ht,ϕ) + γ(∇h,∇ϕ) + b(u, h,ϕ) − b(h,u,ϕ) = 0 ∀ϕ ∈ V
u|t=0 = u0, h|t=0 = h0.

(2.3)

It is known that the MHD equations are solvable, see for instance Theorem 2.1 in [17]. More
precisely, the following holds:

Theorem 2.2. For any u0, h0 ∈ H and f ∈ L2(0,T ; H), there exists at least one weak solution (u, h)
to (1.1).

In the sequel, for any w ∈ L2(T3) with Fourier coefficients ŵk and any s ∈ R, whenever it makes
sense, we will set

(−∆)sw :=
∑
k∈Z3

ω̂k
λs

ke
2πik·x,

with the λk given by λk := 4π|k|2. On the other hand, for any weak solution (u, h) to (1.1) and any N ≥ 1,
we will introduce the corresponding vN , with

vN = u − xN =
∑
|k1 |≤N

ûke2πik·x +
∑

|k1 |>N, |k2 |≤N

ûke2πik·x

+
∑

|k1 |, |k2 |>N, |k3 |≤N

ûke2πik·x.

For the xN , we have the following Sobolev embedding result, whose proof can be found for instance
in [10] (see Theorem 2.0.3):

Theorem 2.3. Let q and s satisfy

q ∈ (2,+∞), s ∈ (0, 1) and
1
q
=

1
2
−

2s
3
.

Then, for any w ∈ H2s(T3), we have

∥w∥Lq ≤ Cq,s (∥(−∆)s w∥ + ∥w∥) . (2.4)

Although they may possess an infinite amount of spectral components and “live” in a space of
functions defined in a three-dimensional domain, the vN satisfy appropriate two-dimensional Sobolev
inequalities with constants depending on N. This is detailed in the following result (see [10],
Lemma 2.0.4):

Lemma 2.4. Let p and s be given with

p ∈ (2,+∞), s ∈ [0, 1/2) and
1
p
=

1
2
− s.

Let the vi be the components of vN . Then, if vN ∈ H2s(T3), one has

∥vi∥Lp ≤ Cq,s N1/2 ∥(−∆)svi∥ , i = 1, 2, 3. (2.5)

If vN ∈ V, one also has
∥vN∥Lp ≤ Cp N1/2 ∥vN∥

2/p
∥∇vN∥

1−2/p . (2.6)
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We will also need the following Interpolation Lemma:

Lemma 2.5. Let q and a satisfy

q ∈ [2, 6], a ∈ [0, 1] and
1
q
=

a
2
+

1 − a
6

. (2.7)

Then, for any function φ ∈ H1(T3) with zero mean, one has

∥φ∥Lq ≤ Cq ∥φ∥
a
∥∇φ∥1−a . (2.8)

The main result in this paper is the following:

Theorem 2.6. Let (u, h) be a weak solution to (1.1) and let us assume that Hyp 1 or Hyp 2 holds.
Then, u and h belong to L2(0,T ; D(A)) ∩ L∞(0,T ; V) and, consequently, (u, h) is a strong solution to
(1.1) up to t = T.

3. Proof of Theorem 2.6

A crucial fact used in the proof is that, due to periodicity, the Stokes and Laplace operators coincide
on D(A); in other words, −∆ sends D(A) into H.

In the sequel, we assume for simplicity that f = 0. A nonzero right hand side in the motion equation
in (1.1) does not change the proof significantly. Moreover, the usual convention of repeated indices
will be adopted and the index N will be omitted.

We will first establish the result under the assumption Hyp 2. Thus, let us take φ = Au and ϕ = Ah
in (2.3). We get: 

α

2
d
dt
∥∇u∥2 + ν∥Au∥2 = −αb(u,u, Au) + b(h, h, Au)

1
2

d
dt
∥∇h∥2 + γ∥Ah∥2 = −b(u, h, Ah) + b(h,u, Ah).

After integration by parts the right hand sides of these identities, we have:

α

2
d
dt
∥∇u∥2 + ν∥Au∥2 = −αb(∂iu,u, ∂iu) + b(∂ih, h, ∂iu)

−b(h, ∂iu, ∂ih)

1
2

d
dt
∥∇h∥2 + γ∥Ah∥2 = −b(∂iu, h, ∂ih) + b(∂ih,u, ∂ih)

+b(h, ∂iu, ∂ih).

Therefore, after addition, we obtain

1
2

d
dt

(
α∥∇u∥2 + ∥∇h∥2

)
+ ν∥Au∥2 + γ∥Ah∥2

= −αb(∂iu,u, ∂iu) + b(∂ih, h, ∂iu) − b(∂iu, h, ∂ih) + b(∂ih,u, ∂ih).
(3.1)

The terms in the right hand side of (3.1) must be bounded appropriately. In the sequel, we denote
by ϵ a small positive constant (to be chosen below) and we will use Hölder’s and Young’s inequalities,
Lemma 2.4 and Lemma 2.5.
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First, b(∂iu,u, ∂iu) can be bounded arguing as in [10], pp. 79–80. More precisely,

|b(∂iu,u, ∂iu)| ≤ |b(∂iv,u, ∂iu)| + |b(∂ix,u, ∂iu)|

and we get

|b(∂iv,u, ∂iu)| ≤ |b(∂iv,u, ∂iv)| + |b(∂iv,u, ∂ix)|
≤ C∥∇v∥2L4∥∇u∥ +C∥∇x∥Lq∥∇v∥Lp∥∇u∥Lp

≤ CN∥∇v∥∥Av∥∥∇u∥
+C∥∇x∥Lq∥∇v∥a∥Av∥1−a∥∇u∥a∥Au∥1−a

≤ Cϵ

(
∥∇x∥rLq + N2∥∇v∥2

)
∥∇u∥2 + ϵ∥Au∥2

and
|b(∂ix,u, ∂iu)| ≤ C∥∇x∥Lq∥∇u∥2Lp

≤ C∥∇x∥Lq∥∇u∥2a∥Au∥2−2a

≤ Cϵ∥∇x∥rLq∥∇u∥2 + ϵ∥Au∥2,

where p = 6r/(r + 2) and a = 1/r.
Hence, for any small ϵ > 0, one has

|b(∂iu,u, ∂iu)| ≤ Cϵ

(
∥∇x∥rLq + N2∥∇v∥2

)
∥∇u∥2 + 2ϵ∥Au∥2. (3.2)

Secondly, we observe that

|b(∂ih, h, ∂iu)| ≤ |b(∂ih, h, ∂iv)| + |b(∂ih, h, ∂ix)|

and
|b(∂ih, h, ∂iv)| ≤ |b(Ah, h, v)| + |b(∂ih, ∂ih, v)|

≤ 2∥v∥L4∥∇h∥L4∥Ah∥
≤ CN∥v∥1/2∥∇v∥1/2∥∇h∥1/2∥Ah∥3/2

≤ CϵN4∥v∥2∥∇v∥2∥∇h∥2 + ϵ∥Ah∥2,

(3.3)

while
|b(∂ih, h, ∂ix)| ≤ C∥∇x∥Lq∥∇h∥2Lp

≤ C∥∇x∥Lq∥∇h∥2a∥Ah∥2−2a

≤ Cϵ∥∇x∥rLq∥∇h∥2 + ϵ∥Ah∥2.
(3.4)

Therefore,

|b(∂ih, h, ∂iu)| ≤ Cϵ

(
∥∇x∥rLq + N4∥v∥2∥∇v∥2

)
∥∇h∥2

+2ϵ
(
∥Au∥2 + ∥Ah∥2

)
. (3.5)

Observe that the remaining terms in (3.1) can be bounded in the same way. Thus,

|b(∂iu, h, ∂ih)| + |b(∂ih,u, ∂ih)|

≤ Cϵ

(
∥∇x∥rLq + N4∥v∥2∥∇v∥2

)
∥∇h∥2 + 4ϵ

(
∥Au∥2 + ∥Ah∥2

)
.

(3.6)
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From (3.1), (3.2) and (3.6), the following differential inequality is obtained:

1
2

d
dt

(
α∥∇u∥2 + ∥∇h∥2

)
+ ν∥Au∥2 + γ∥Ah∥2

≤ CϵN4
(
∥∇x∥rLq + ∥v∥2∥∇v∥2

)
(∥∇u∥2 + ∥∇h∥2)

+ 8ϵ
(
∥Au∥2 + ∥Ah∥2

)
. (3.7)

If we take ϵ small enough, then (3.7) yields:

d
dt

(
α∥∇u∥2+∥∇h∥2

)
+ν∥Au∥2+γ∥Ah∥2≤Cβ(t)

(
α∥∇u∥2+∥∇h∥2

)
, (3.8)

where we have introduced β := ∥∇x∥rLq + ∥v∥2∥∇v∥2. Note that β ∈ L1(0,T ) in view of Hyp 2 and the
fact that u belong to the energy space L2(0,T ; V) ∩ L∞(0,T ; H).

Let us set Y(t) :=
(
α∥∇u∥2 + ∥∇h∥2

)
(t) and ν0 := min{ν, γ}. Then

dY
dt
+ ν0

(
∥Au∥2 + ∥Ah∥2

)
≤ Cβ(t)Y in (0,T ). (3.9)

Hence, from Gronwall’s Lemma, we obtain an estimate of Y in L∞(0,T ) and, additionally, estimates of
Au and Ah in L2(0,T ; L2(T3)).

More precisely, with B :=
∫ T

0
β(τ) dτ, we find that

Y(t) ≤ Y(0)eCB ∀ t ∈ [0,T ] (3.10)

and

ν0

∫ T

0

(
∥Au∥2 + ∥Ah∥2

)
(τ) dτ ≤ Y(0)eKB. (3.11)

This ends the proof when (2) is satisfied for some (r, q) with q > 3/2.
Now, let us assume that Hyp 1 is satisfied with q > 3. Let p and a be such that

1
q
+

1
p
=

1
2

and
1
p
=

1
6
+

a
3
. (3.12)

Then, the terms of the right hand side of (3.1) can be estimated in a way similar to (3.2)–(3.6). Indeed,
we have

|b(∂iu,u, ∂iu)| ≤ |b(∂iv,u, ∂iv)| + |b(∂iv,u, ∂ix)| + |b(∂ix,u, ∂iu)|
≤ |b(∂iv,u, ∂iv)| + |b(Av,u, x)| + |b(∂iv, ∂iu, x)|
+|b(x,u, Au)|. (3.13)

In the right hand side, the first term can be bounded as follows:

|b(∂iv,u, ∂iv)| ≤ C∥∇v∥2L4∥∇u∥
≤ CN∥∇v∥∥Av∥∥∇u∥
≤ CϵN2∥∇v∥2∥∇u∥2 + ϵ∥Au∥2.
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The second term satisfies
|b(Av,u, x)| ≤ C∥x∥Lq∥∇u∥Lp∥Av∥

≤ C∥x∥Lq∥∇u∥a∥Au∥2−a

≤ Cϵ∥x∥rLq∥∇u∥2 + ϵ∥Au∥2,

with a = 2/r. Moreover, similar estimates can be found for the third and fourth term:

|b(∂iv, ∂iu, x)| + |b(x,u, Au)| ≤ C∥x∥Lq∥∇u∥Lp∥Au∥
≤ Cϵ∥x∥rLq∥∇u∥2 + ϵ∥Au∥2.

Consequently,

|b(∂iu,u, ∂iu)| ≤ Cϵ

(
∥x∥rLq + N2∥∇v∥2

)
∥∇u∥2 + 4ϵ∥Au∥2. (3.14)

On the other hand, taking into account (3.3), with similar arguments and estimates, we find that

|b(∂ih, h, ∂iu)| ≤ Cϵ

(
∥x∥rLq + N4∥v∥2∥∇v∥2

)
∥∇h∥2

+3ϵ
(
∥Au∥2 + ∥Ah∥2

)
. (3.15)

The remaining terms can be bounded in the same way:

|b(∂iu, h, ∂ih)| + |b(∂ih,u, ∂ih)|
≤ Cϵ

(
∥x∥rLq + N2∥∇v∥2

)
∥∇h∥2 + ϵ∥Ah∥2. (3.16)

Therefore, from (3.1), (3.14), (3.15) and (3.16), we easily find as before that u and h are bounded in
L∞(0,T ; V), Au and Ah are bounded in L2(0,T ; L2(T3)) and, consequently, u and h are smooth. This
ends the proof when Hyp 1 is assumed.

4. Some additional comments and open questions

To our knowledge, it is unknown if the assumption Hyp 1 with q = 3 suffices to get the regularity
of (u, h). On the other hand, it is also unknown if Theorem 2.6 holds for systems similar to (1.1) in
a cylinder Ω × (0,T ), completed with Dirichlet boundary conditions on ∂Ω × (0,T ) (here, we assume
that Ω ⊂ R3 is a bounded connected open set).

Note to this respect that a relevant point that allowed good estimates in our proof in Section 3 is that
Av = −∆v for any v ∈ V, a property that disappears in the non-periodic framework independently of the
regularity of v. It would be very interesting to know how generic are the assumptions in Theorem 2.6,
that is, to answer the following question: How “large” (in a sense to specify) is the set of initial data
(u0, h0) such that at least one of the assumptions Hyp 1 or Hyp 2 holds? This will be the purpose of a
forthcoming paper.

Also, it makes sense to explore extensions and generalizations of Theorem 2.6 in several directions.
Thus, can Hyp 1 be weakened and replaced by a similar property in weak Lebesgue spaces? Or, can
Hyp 2 be relaxed to a condition on only some few derivatives? See [22–26] for some related work
in the Navier-Stokes context. Finally, let us indicate that it is completely meaningful to try to prove
results similar to those in this paper for variable density Navier-Stokes (and variable density MHD)
systems.
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