Research article Special Issues

An error estimator for spectral method approximation of flow control with state constraint

  • Received: 07 March 2022 Revised: 17 May 2022 Accepted: 18 May 2022 Published: 20 June 2022
  • We consider the spectral approximation of flow optimal control problems with state constraint. The main contribution of this work is to derive an a posteriori error estimator, and show the upper and lower bounds for the approximation error. Numerical experiment shows the efficiency of the error indicator, which will be used to construct reliable adaptive hp spectral element approximation for flow control in the future work.

    Citation: Fenglin Huang, Yanping Chen, Tingting Lin. An error estimator for spectral method approximation of flow control with state constraint[J]. Electronic Research Archive, 2022, 30(9): 3193-3210. doi: 10.3934/era.2022162

    Related Papers:

  • We consider the spectral approximation of flow optimal control problems with state constraint. The main contribution of this work is to derive an a posteriori error estimator, and show the upper and lower bounds for the approximation error. Numerical experiment shows the efficiency of the error indicator, which will be used to construct reliable adaptive hp spectral element approximation for flow control in the future work.



    加载中


    [1] E. Casas, Control of an elliptic problem with pointwise state constraints, SIAM J. Control Optim., 24 (1986), 1309–1318. https://doi.org/10.1137/0324078 doi: 10.1137/0324078
    [2] E. Casas, Boundary control of semilinear elliptic equations with pointwise state constraints, SIAM J. Control Optim., 31 (1993), 993–1006. https://doi.org/10.1137/0331044 doi: 10.1137/0331044
    [3] F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods, and Applications, Grad. Stud. Math. 112, American Mathematical Society, Providence, RI, 2010.
    [4] O. Benedix, B. Vexler, A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints, Comput. Optim. Appl., 44 (2009), 3–25. https://doi.org/10.1007/s10589-008-9200-y doi: 10.1007/s10589-008-9200-y
    [5] W. Liu, D. Yang, L. Yuan, C. Ma, Finite elemtnt approximations of an optimal control problem with integral state constraint, SIAM J. Numer. Anal., 48 (2010), 1163–1185. https://doi.org/10.1137/080737095 doi: 10.1137/080737095
    [6] M. Bergounioux, K. Kunisch, Primal-dual strategy for state-constrained optimal control problems, Comput. Optim. Appl., 22 (2002), 193–224. https://doi.org/10.1023/A:1015489608037 doi: 10.1023/A:1015489608037
    [7] J. De los Reyes, K. Kunisch, A semi-smooth newton method for regularized state-constrained optimal control of the Navier-Stokes equations, Computing, 78 (2006), 287–309. https://doi.org/10.1007/s00607-006-0183-1 doi: 10.1007/s00607-006-0183-1
    [8] W. Gong, N. Yan, A mixed finite element scheme for optimal control problems with pointwise state constraints, J. Sci. Comput., 46 (2011), 182–203. https://doi.org/10.1007/s10915-010-9392-z doi: 10.1007/s10915-010-9392-z
    [9] J. Zhou, D. Yang, Spectral mixed Galerkin method for state constrained optimal control problem governed by the first bi-harmonic equation, Int. J. Comput. Math., 88 (2011), 2988–3011. https://doi.org/10.1080/00207160.2011.563845 doi: 10.1080/00207160.2011.563845
    [10] Y. Chen, N. Yi, W.B. Liu, A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), 2254–2275. https://doi.org/10.1137/070679703 doi: 10.1137/070679703
    [11] Y. Chen, F. Huang, N. YI, W. B. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by Stokes equations, SIAM J. Numer. Anal., 49 (2011), 1625–1648. https://doi.org/10.1137/080726057 doi: 10.1137/080726057
    [12] C. Bernardi, Y. Maday, Uniform inf-sup conditions for the spectral discretization of the Stokes problem, Math. Models Methods Appl. Sci., 9 (1999), 395–414. https://doi.org/10.1142/S0218202599000208 doi: 10.1142/S0218202599000208
    [13] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.
    [14] J. Shen, Efficient Spectral-Galerkin Method I: Direct Solvers for the Second and Fourth Order Equations Using Legendre Polynomials, SIAM J. Sci. Comput., 15 (1994), 1489–1505. https://doi.org/10.1137/0915089 doi: 10.1137/0915089
    [15] C. Canuto, M. Hussaini, A. Quarteroni, T. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.
    [16] J. Melenk, B. Wohlmuth, On residual-based a posteriori error estimation in hp-FEM, Adv. Comput. Math., 15 (2001), 311–331. https://doi.org/10.1023/A:1014268310921 doi: 10.1023/A:1014268310921
    [17] R. Glowinski, J. Lions, R. Tr$\acute{e}$moli$\grave{e}$res, Numerical analysis of variational inequalities, Amsterdam, North-Holland, 1981.
    [18] H. Niu and D. Yang, Finite element analysis of optimal control problem governed by Stokes equations with $L^2$-norm state-constriants, J. Comput. Math., 29 (2011), 589–604. https://www.jstor.org/stable/43693666
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1561) PDF downloads(78) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog