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1. Introduction

There have been lots of theoretical studies on the optimal control of PDEs with state constraints,
which form a foundation for its numerical approximation. Existence and uniqueness of the solutions,
Lagrange multipliers, optimality conditions, and important regularity results were derived for control
problems with state constraints in the pioneer work [1]. More discussion on these topics can be found
in [2,3]. In respect of numerical methods, the finite element approximation of state constrained control
problems has been widely investigated, and we don’t try to give a detailed introduction here, one can
find more works [4,5], including pointwise constraints, integral constraint and so on. At the same time,
many numerical strategies were developed to provide efficient approximation for these control prob-
lems. Bergounioux and Kunisch [6] used the primal-dual active set algorithm to solve state-constrained
problems. A semi-smooth Newton method was proposed to compute state-constrained control prob-
lems by De los Reyes and Kunisch [7]. Gong and Yan [8] established a mixed variational scheme
for control problems with pointwise state constrains, and a direct numerical algorithm was adopted
without the optimality conditions.
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In recent years, spectral method has been used to approximate control problems. Despite the re-
striction on the higher regularity of the approximated solutions, spectral method can provide fast con-
vergence rate and high-order accuracy with a smaller number of unknowns, which is significant to
successful applications of control problems. The spectral method was considered to solve the control
problems with integral state constraint, and a priori error estimates was established in [9]. Chen et
al. [10, 11] derived both the a priori and a posteriori error estimates for optimal control with control
constraints. However, they only provided the upper bound estimation for the a posteriori error indica-
tors, and numerical tests didn’t illustrate the performance of estimators. To investigate the efficiency
of adaptive strategy in the spectral method, we have to establish some successful a posteriori error
estimators as in the finite element framework. However, there are not much work on these aspects to
the best of our knowledge. In this work, we derive a posteriori error estimator, and prove that it can be
constructed as the upper and lower bounds of approximation error.

The plan of the article is as follows. Spectral approximation of the control problem is presented, and
optimality conditions of the exact problem and discretized problem are provided in the next section.
We establish the a posteriori error estimator, and construct it as the upper and lower bounds of the
approximation error in section 3. Numerical example confirms the theoretical result, and shows the
behaviour of the indicator in section 4.

In this paper, we let Q = (-1, 1)* and denote U = L*(Q)%, Y = Hy(Q)*, 0 = Ly(Q) = {g € L*(Q) |
fQ q = 0}, where Hé (Q) and H™ () with m being a positive integer are usual Sobolev spaces on Q. Let
C denote a positive constant independent of N, the order of the spectral method.

2. Spectral approximation and optimality conditions

In this section, we state the Galerkin spectral approximation and optimality conditions for the con-
trol problem with state constraint. The model under consideration is as follows: find (y, r,u) € YXOXU
such that

. 1 2 a0
yonm, J(u) = Elly(u) = Yolloo + Ellullo,g,

—vAym)+Vr=u+f inQ, 2.1)
V.-yu)=0 1inQ,
y(m) =0 onodQ,

where y,, f € L*(Q)?, Gog = {v € U ||| v |loq < d}, and d, v are positive constants. It is necessary to
introduce a weak formula of the state equations for spectral approximation of the optimal control. Let

a(w,v):vaw~Vv Yw,vey,

Q

b(v,r):frV~v Y(v,r)eY xQ.
Q

Then there exist two positive constants o and ¢ such that foranyu, ve Y, g € Q,

la@,v)l <o llullyllv iy,
b, pl <6 vyl gllo -
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By Poincare inequality, we can know that there exists a constant y > 0 such that

ay.y) 2y, Vyev. 22)
Furthermore, there exists a constant 5 > 0 (see, e.g., [12]) such that
b, q)
sup =L > Bliglly, Vg € 0. (2.3)
vy IVlly

Then the standard weak formula for the state equation can be presented as: find (y(u),r(w)) € Y x Q
such that
alym),w) —bw,r(u)) = u+ f,w) VYwey,
by(u),¢)=0 VY ¢eQ.
The problem (2.4) is well-posed by Babuska-Brezzi theorem and (2.2)-(2.3), and the control problem
(2.1) can be restated as follows (OCP): find (y,r,u) € Y X Q X U such that

(2.4)

. 1 ’ a5
yomin. | J(u) = Elly(u) = Yolloo + Ellullo,g,

a(y(w),w) —bw,r(w)) = (u+ f,w) Ywey,
b(y(u),) =0 V¢eO.
We can prove existence and uniqueness of the solutions for the control problem (OCP) by reformulating

it to a control-constrained problem. In fact, the control problem (OCP) can be equivalent to the control-
constrained problem

(2.5)

. 1 @
min - J@) = 5ly@) -yl o + 5 llo

a(y(u), w) — bw, r@w)) = @ + f,w) Ywey, (2.6)

b(y(u),$)=0 Vé¢eQ,
where constraint set %, = {u € U : ||Gulloqo < d} with the operator G : u — y(u). It is clear that %,

is a closed and convex subset in U, and the control problem (2.5) has a unique solution by the standard
theorem [13].

2.1. Spectral method approximation

Considering the spectral approximation of the control problem, we introduce the finite dimensional
spaces Yy, My_», and Uy to approximate spaces Y, Q, and U respectively, where Yy = (Q?\,)2 with
0% = {xy € Oy : xylao = 0}, My_» = On-o N LI(Q), Uy = (Qn)*, and Qy denotes the space
of all algebraic polynomials of degree less than or equal to N with respect to each single variable
x;, (i =1,2). Letting L,(x) be the nth-degree Legendre polynomial and ¢;(x) = \/ﬁ(Lk(x) — Lio(x)
(see [14], for example), then it holds

Oy = span{g ()¢, On = span{Li(OL;(0}jcpr  My2 = Ona NLH(Q).  (2.7)

We now approximate the state equations as follows

a(yn,wn) —bwy,ry) = (uy + f,wy) VYwyeYycCy,

(2.8)
b(yy,¢n) =0 Yoy € My, C Q.
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It can be known from [12] that there exists a constant Sy = O(N ) satisfying

b(vy, q)
vveYy ||VN||Y

> Bullglle ¥ g€ My_». (2.9)

It follows from BabuSka-Brezzi’s theory that problem (2.8) is well-posed, and the Legendre Galerkin
spectral approximation of (OCP) can be stated as (OCP)y :

) 1 a 2
min  Jy(@y) = =llyy — Yollo.o + =lunlls o
ey S = Yollog + 5 0.0

a(yn.wn) —bwy,ry) = (uy + fowy) YwyelYycCy,
b(yy,dn) =0 Voy € My, CQ,

(2.10)

where GY, = Yy N Gq.

2.2. Optimality conditions

We first derive optimality conditions for the exact problem (OCP) by the techniques and refined
results developed in [2], though we can complete the derivation by other strategies. Then the similar
conclusion is presented for the discretized problem (OCP)y.

Lemma 2.1. The triplet (y,r,u) is the solution of control problem (OCP) if and only if there is a
(y*,r', 1) € Y X Q X R such that

aly,w)—bw,r)=wm+ f,w) Ywey, (2.11a)
b(y,$)=0 VY ¢eQ, (2.11b)

a(q,y) +b(q.r)=((1+Dy—-y5,,9) Yqevy, (2.11¢)
by, w)=0 VYyeQ, (2.11d)

y+au=0 inQ, (2.11e)

where
1 { constant > 0 if [|yllo.o = d,

0 otherwise. (2.12)

Proof. We denote G : u — y the operator to solve the state equation (2.4), D(G(u)) the Gateaux
derivative of G at u. Furthermore, let U = Z = K = L*(Q)?, C = G4 respectively and uy = —f satisfy
the Slater type condition in Theorem 5.2 in [2], then there exists u € L*(2)? such that (u, u) satisfying

W,y —-Gm) <0 VveGuy,

, . (2.13)
J' ) + [D(Gw)] 1 =0,
where (G(u),u) € Y x U satisfies the control problem (OCP).
In the next analysis, it can be derived that
u=21y, (2.14)

where A satisfies (2.12). In fact, we can complete the proof by two cases: ||y|loo < d and ||y|loq = d.
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In the first case ||y|lo.o < d, the following inequality holds by (2.13)
(u,v—y)<0 VveGy.
Thus we have for all w € U and |lwl|lpq = 1

<p,(d—|ylloo)w+y—-y>

<p,w>= <0,
a d—ylloa
due to (d - |lylloo)w + y € G4y. Similarly,
<p,-w><0.
By (2.15) and (2.16)
u=0.
In the second case ||y|lo.o = d, it follows from (2.13) that
,v) 1 1
o= sp DL <ty
Vel2(Q)2,V£0 Voo d VeGuy d

1
< ZHIJHO,QHJ’HO,Q = |lulloq-

Then, we have
@, y) = llulloallyllo.qs

which implies that
u=21y AeR!,

and
A1>0.

Then, the identity (2.14) follows from (2.17)—(2.19).
It can be derived from (2.4) that for any v € L*(Q)?

a(y'mypv,w)=@wv,w) VYwey.
By y — yo + Ay € L*(Q)?, we can introduce the co-state equation as follows

a(q,y ) +b(q.r) =y -yo+Ay.q9) YqeY.
by, ¥)=0 VYyeQ.
Letting w = y* in (2.20) and ¢ = y’(u)v in (2.21), we have that for all v € L*(Q)?
<J'(u)+[DGw)|"'u,v >

=y = Yo, Y @) + (au,v) + A(y,y (u)v)
=y -y, + AW,y @y + (au,v) = (cu +y*,v).

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

2.21)

(2.22)
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Then (2.11)-(2.12) follows from (2.4), (2.13), (2.19), (2.21)-(2.22). Furthermore, lemma 2.1 can
be proved as soon as the uniqueness of the solution is derived for (2.11). In fact, letting both
(i, ri,ur,yy, 1y, A) and (yy, 12, U, y5, 15, A) satisfy (2.11), then we have

ay; =y, w)—bw,ri —r) =W —u,w) Ywey,

by, —y.,,¢)=0 V¢eO,

a(q.y1 —y) +blg.ri—r) = =y + iy, —hy,.q) Vqey,
by —y»¥) =0 VyeQ.

It follows that
—a(uy —uy,uy —ux) — (¥ — Y2, ¥1 — ¥2) = (1Y — Yy, ¥y — ¥a)- (2.23)
By (2.13)-(2.14), it holds that for all v € G4
4,y =y) <0, LO,v-y)=<0. (2.24)
It follows from (2.23) and (2.24) that
lleey — usllog + [lyy = Yalloo =0,

which implies u; = u,,y, = y,. Furthermore, it can be deduced that r; = rp,y] = y5,7r] = 15,4, = A,.
Then we can complete the proof of lemma 2.1 as we argue above. O

Similarly, we can derive optimality conditions for the discretized control problem (2.10), and obtain
the following result.

Lemma 2.2. The control problem (OCP)y has a unique solution, and the triple (yy,rn,uy) € Yy X
Mpy_> X Uy is the solution of (OCP)y if and only if there is a (¥}, ry, Ay) € Yy X My_» X R such that

a(yy,wn) —bwy,ry) = (uy + fowy) VwyeYy, (2.25a)
b(yn,¢n) =0 VY oy € My, (2.25b)

a(qy,yy) +b(gy, 1) = (L + A)yy = Yo, qn) ¥ gy € Y, (2.25¢)
b(yy,¥n) =0 Yy € My, (2.25d)

yy+tauy =0 inQ, (2.25¢)

where

(2.26)

I constant > 0 if || yy(uy) lloo=d,
N 0 otherwise.

Remark 2.1. (see, e.g., [10]). The optimal control u € H*(Q)* if the initial data functions y,, f €
L*(Q)? by (2.11).
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3. A posteriori error estimator

In this section, the a posteriori error estimates are derived, and an error indicator is established for
the spectral approximation of the control problem. We first recall two important spectral projection
operators and more details can be found in [15].

Lemma 3.1. Let P} : H)(Q)* — (QR)* be the projection operator, satisfying for any w € Hy(Q)*

f Viw —P)yw)-Voy =0 YwyeYy.
Q

Ifw € (H™(Q) N Hy(Q))* withm > 1, then
Iw — P) \Wlka < CN“" Wl k=0,1. (3.1

Lemma 3.2. Define Py : L*(Q) — Oy being the L? orthogonal projection operator, which satisfies for
any r € L*(Q)
(r—Pyr,un) =0 Y uy € Qy.
If r € H"(Q) with m > 0, then
Ir = Pyrlloe < CN7"|Irllma.

The following lemma is helpful for further analysis.

Lemma 3.3. Let (yy,uy,yy, Ay) be the solution of (2.25), then

max {|luyllo.q, Yyl lyylia 1A} < C.

Proof. By (yy,un,yy, An) satisfying the optimality conditions (2.25), we have

In(uy) = %II)’N —Yollgq + %”uN”gQ < In(=Pnf)
a
2
associating with (2.25a) and (2.25e), it holds that

1 1 @
= EllyN(_PNf) = yollga + =1l = Pufllgq = Ellyollé,g + EIIPNfIIS,Q <C,

lynllie + lyyllog + llunlloq < C. (3.2)

The discussion on estimating ||y} |1 o can be divided into two cases: |lyyllo.o < d and ||yylloo = d.
The first case |lyylloo < d, we have Ay = 0. Letting gy =y, in (2.25¢), we have

yyllie <C. (3.3)

The second case |lyylloo = d, let gy =y, — diz(yj‘v,yN)yN in (2.25¢). Then it holds

* 1 * *
alyy — ﬁ(yN’yN)yN’yN)
% 1 %
=y = Yo+ ANYn: Yy — E()’N».VN)J’N)
* 1 *
=0y — Yo In— E(ythN)yN)'
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It follows that
ayynYn) = Oy = Yo Yy — %(viz,yN)yN)
+ a(%(vi‘v,yw)ymﬁv)
= Oy = Y024 = 50w = Yo 303 3) (3.4)
+ %(y;kv’yN)a(J’N’y}kv)

2

C
2
< 8”)’7\/”1,9 + E

It follows from (3.3) and (3.4) that
llyyllie < C. (3.5)

Similarly, we can estimate |1y| by two cases: |[yylloo < d and |lyylloq = d.
If [yylloo < d, then |Ay] < C.
If |lyylloo = d, letting gy = yy in (2.25¢), we derive

AN N> IN) = ay, Yn) = OOy — Yo, Yn)-
Therefore, it can be derived that
|An| < C. (3.6)

Then we can complete the proof by (3.2), (3.5), and (3.6). O

3.1. Upper error bound

In this subsection, we establish the a posteriori error estimator and prove that it provides an
upper bound for the discretization errors. It is convenient to introduce an auxiliary system: find

(y(uy), r(uy), y*(uy), r*(uy)) such that

a(y(uy),w) — b(w,r(uy)) = (uy + Pvf,w) Ywey, (3.7a)
b(y(un),9) =0 V¢ e, (3.7b)

a(q,y (un)) + b(q,r*(uy)) = (1 + A)yy — Pnyo.9) Vg€, (3.7¢)
b(y*(un),y) =0 VYyeQ. (3.7d)

By utilizing lemma 3.1-3.3, we can get the following lemmas.
Lemma 3.4. Let (y,r,u,y*,r*, 1) and (yy, rn,Un, Y5, I'y> An) be the solutions of (2.11) and (2.25) re-
spectively. Then we have that

A=Ayl < Cly*(un) = yyllog + lly(@n) = yyllog + e —unllogo

-1 _1 (3.8)
+ N7 lyg = Payolloa + NI = Pnfllog)-

Electronic Research Archive Volume 30, Issue 9, 3193-3210.
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Proof. By (2.11) and (3.7), we have

aly —y(uy),w) —bw,r —r(uy)) = w—uy + f — Pvf,w) VYwey, (3.92)
by —y(un),¢) =0 V¢e0, (3.9b)
a(g,y" =y (uy)) +b(q,r" —r'(uy)) = (y —yy+
Ay = ANyy + Pnyo—Y0-9) YV q€eY, (3.9¢)
b(y* =y un),y)=0 YyeQ. (3.9d)

The following analysis is divided into three cases.
If [lylloo = d, let g = y in (3.9¢c). Then we have

a(y,y" =y @y) =@ —yy + Ay = Awyy.y) + (Pnyo = Yo, »)-
Letw =y* — y*(uy) in (2.11a), we have
Y=y + Ay = Ay + Ay — Awyw.y) = @+ f.y" =y @n) + 0o = Pnyo. ).
Thus it can be deduced that
A= Ad* = @+ f,y" =y @y) = (1 + W)@ = ¥y, ) + 0o — Py, y)- (3.10)
If llyylloo = d, let ¢ = y(uy) in (3.9¢) to obtain that
a(y(uy),y" =y Wy)) = (v = yy + Ay = Ay, y@n)) + (Pnyo = Yo, yun)).
Letw = y* — y*(uy) in (3.7a) to derive that

Y=Yy + A=Ay + Ay = ANYN: Yy +YUN) = Yy)
=@y +Pyf,y =y (uy)+ ¥y — Pnyo, yun)).
It follows that
(A= Ad* = (uy + Pyf,y" =y @n) — (L + D — yy, y@un))
— (A= AWy @) = yy) + g — Pxyo. y@y) — P yyuy)).

If |lylloo < d and |lyylloo < d, it follows from (2.12) and (2.26) that A = Ay = 0, which implies the
identity

(3.11)

A — Ayl =0. (3.12)
Lettingw =y — y(uy) in (3.92) and ¢ = r — r(uy) in (3.9b), we have that

a(y — y(uy),y — yy)) = @ —uy,y — y@y)) + (f = Pxf.y — yuy) — P\ (y — y(uy)))
< |le — unlloglly — y@nloa + CN7f = Py flloally — y@mlho
< (lle — unllog + CN'If = Pyflloo)lly — y@wn)lh o

which implies that
Iy = y@n)ll o + lIr = r@mlloo < Cliw — uylloo + CN7'If = Pyfllo- (3.13)

Electronic Research Archive Volume 30, Issue 9, 3193-3210.
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Then, we can derive from (2.11e), (2.25¢), (3.10)—(3.13), and lemma 3.3 that

|4 = Ayl < C(ly* = y*@mlloa + lly = yullog + ly@x) = yylloa + N7y — Pyyollo)

< C(llu —unlloo + llyy =¥ @mlloo + ly@y) — ynlloo
+ N7 'yo = Pwyolloa + N7'If = Pufllog),

which implies the lemma 3.4.

O

Lemma 3.5. Let (y,r,u,y",r*, 1) be the solution of (2.11), and (yy, rn,un, Yy, 'y> An) be the solution

of (2.25). Then we have that

lly@n) = yyllig + lIr(uy) = rylloo
< CN7'|lvAyy = Vry +uy + Pyflloa + CIV - yulloas
and
lly*(un) = yyllio + Ir@y) = ryllog
< CN7 YAy + Vg + (1 + )y — PuYolloa + CIIV - yilloo-

Proof. By (2.25) and (3.7), we have

Yy@n) = yulli o < a@y) = yu. y@y) = yy)
= a(y(uy) = Yy, Yn) = yy — P y@@y) = yy))

= b(y(uy) — yy — P yn) — yy), rwy) — ry) + b(yuy) — yy. ry) — ry)
= (vAyy — Vry — vAY(y) + Vruy), yuy) - yy — Py @n) = yy))

- b(.YNa r(uy) —ry)
= (vayy = Vry +uy + Pyf.y@y) — yy — P y@n) — yy)) — by, rwy) — ry)

< CN7'vAyy = Vry +uy + Pyfloally@y) = yylhia + CIV - yylloallr@y) = rylloo-

Noting that

b(P) W, r(uy) — ry) + bw — P yw, r(uy) — ry)

a(y(uy) = yy. P} yw) + bw — P} yw, r(uy) — ry)
—a(y(uy) = yy,w — P} yw) + a(y(uy) = yy, w)

+b(w — P yw, r(uy) — ry)

= (—vAyy + Vry —uy — Pyf,w — P) yw) + a(y(uy) — yy, w)

bw, r(uy) — ry)

It follows that

bw, —
Blran) = rulloa < sup 2@ =) |
vweY Wl

< CN_]”VA)’N = Vry +uy + Pyfllog + llyn) — yyllio-

Similarly, we can derive from (2.25) and (3.7) that

Yy @y) = yulli o < CNHvAyy + Vi + (1 + Aw)yy = Pryolloally” @) = yalha
+ ClIV - yylloallr @y) — rylloqs

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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and

blqg,r*(uy) —r:
Bl ) - rillo < sup 2L @) 7 1) |
v gy liglli .0

< CN7'vAyy + Vry + (1 + Ax)yy = Pyyollog + Clly*n) = yyll o

Then, we can complete the proof by (3.16)—(3.19) and Cauchy’s inequality with €.

The main result of this subsection can now be stated as follows.

(3.19)

Theorem 3.1. Let (y,r,u,y*,r*, 1) and (yy, n,Un,Y¥, Ty, An) be the solutions of (2.11) and (2.25)

respectively. Then we have that
llell < C(n7 + 6),

where the total approximation error |e|| is defined by
llell = lly — yylhia + Ir = ralloq + lly* = yylhie
+Ir" = rylloq + lle —uylloq + 12 — Anl,
the estimator n is given below
N=m=+m+n;+n,

m = N vAyy — Vry +uy + Pyfllog, 172 =11V - yyllogs
3 = N7UvAYy + Vg + (1 + An)yy — Payollogs 174 = IV - yilloas

and 0 is presented as follows

6 =Ny, — Pxyolloa + N'IIf = Pxfllog-
Proof. By (2.11e), (2.25¢), and (3.9), we have

allu —uyllio = a(u —uy,u —uy)
=@ —uy,yy =y Wy) — (W —uy,yy -y (uy) — au + auy)
=W —un,yy =y Wy) + (w—uy,y (uy) + au) — (u —uy,yy + auy)
=@ —uy,yy =y @y) +@—uy,y (uy) - y°)
=@ -—uy,yy—y @) = —yy+ Ay — Ayy,y - yuy))
+ (o — Pnyo,y —y@n)) + (f = Pnf,y" =y (uy)).
It is clear that by (2.12) and (2.26)

Ay, yy =¥ <0, AnQyy,y —yy) <0,
which implies that
—(Ay = Avyn,y —yy) < 0.
It follows from (3.24) and (3.26) that

allu — uN||§,g S@@—uy,yy—y@y)—Q-—yy.y—yuy)
—(Ay = ANyy, Yy — YWn)) + (o — Pyyo,y — y(uy))
+(f = Pnf.y —y'(un)),

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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associating with lemma 3.1 and lemma 3.3, we have

alle — uyllgq + Ily — y@m)ligo
<@ —uy,yy—y@y)+Qy—ywy),y —yuy) = Ay = yy.yy — yuy))

— (A =AMy, Yy —Y@n)) + (o — Pyyo,y — yuy))

+(f = PnSf.y -y (uy) (3.27)
< e(llu —uyllgq + Ily = y@mlii o + 1y =y @I g + 14— Ay

+ Ci(e)lly n) — yyllgo + Ily@y) — yyllg.o)

+ C1(ON*(lyy = Pxyollio + IIf = Prfllg.0)-

It can be derived from (3.9), (3.13), and lemma 3.3 that

ly* =y @Ml +r = r@yloo
< Clly = yylloa + Clldy = Awyylloa + CN"'lyy — Pyyollo

(3.28)
< Clly(uy) — yylloo + ClAd = Ay| + Cllu — upylloo
+ CN7'lyy — Payolloa + CN7'IIf = Py flloqs
associating with (3.13), (3.27), and lemma 3.4, it can be derived that
le — unlloq +Ily = y@mlloa < Cllyy =y @mlloq + llyy — y@mlloo) (3.29)
+CN"'(ly — Pwyollog + IIf = Pufllog)- '
Then the theorem follows from lemma 3.4, lemma 3.5, (3.13), and (3.28)-(3.29). O

3.2. Lower error bound

A lower bound for the error ||e|| is established to investigate the sharpness of the indicator in this
subsection. We first need some polynomial inverse estimates presented in the following lemma, which
can be found in [16].

Lemma 3.6. Let o, € R satisfy -1 < @ < B and § € [0,1]. Then there exist constant C,C, =
Co(a,B), and C3 = C5(06) such that for all zy € Oy

f IVan ()P Do (x)dx < C,N? f x(xX)dx, (3.30a)
Q Q

fg ()DL (x)dx < C,N*F~® fg 2 (D, (x)dx, (3.30b)
f IVan ()PP (x)dx < C3N** f 2 ()@ (x)dx, (3.30¢c)
Q Q

where ©q(x) is the distance function defined by
Dq(x) := dist(x, 0Q).
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In the subsequent analysis, we establish the lower bound for discretization error ||e|| by using lemma

3.6. In fact, lettinga = 0,8 =7y € (%, 1]in (3.30b), we can derive that
N~ f VAyy — Vry +uy + Py f*dx
Q
< CN?? fQ VAyy — Vry +uy + Py fIP @) dx.

Denote & = (VAyy — Vry + uy + PNf)q)g, then we have

fQ VAyy — Vry + uy + Py fI®)dx
= f(vAyN —Vry +uy + Pyf) - ddx
Q

= f(vA(yN—yHV(r—rN)+(uN—u)+(PNf—f))'l9dx
Q

< Clially = yullia + lIr = ralloq + lle = unlloa + N7'IF = Pyflloq)-

Furthermore, it follows from (3.30b) and (3.30c) that
W= [ Ay = T s+ PunOpfds
<C fg IV(vAyy — Vry +uy + Py f)P O dx
+C j; VAyy — Vry + uy + Py fPIVOL [ dx
< CN?*7) fg VAyy — Vry +uy + Py fIP®) dx
+C fg VAYy — Vry +uy + Py fPO7 dx
< CN*@™) fg VAyy — Vry + uy + Py fI®)dx.

Thus, we have
1

191q < CN(2‘7)( fQ lvAyy — Vry + uy + Py f|2q>gdx)2.
It follows from (3.31)—(3.33) that

m =N vAyy — Vry +uy + Py fllog

1

< CNH( fg lVAyy — Viy +uy + Py f|2(1%dx)2

< CN(ly = yyllia + lIr = ralloq + lle — uyllog + N7'If = Pufllog)-

It is clear that
m = f(V -y = f(V yn = Vy) < Cly -yl
QO Q

(3.31)

(3.32)

(3.33)

(3.34)
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Then, we have
m2 < Clly = yylho
Similarly, letting @ = 0,8 =7y € (%, 1] in (3.30b), it holds that

N7 f VAYy + Vi + (1 + Ay)yy — Pyyol*dx
Q
< CN»™ f VAYy + Vry + (1 + An)yy — Pyyol @) dx.
Q
Let 9" = (vAyy, + Vry + (1 + Ay)yy — Pyyo)®], to obtain that

fg VAYy + Vry + (1 + An)yy — Pyyol @) dx

= L(VA()'}‘V =YD+ Vry =)+ (L + Ayy = (L+ Dy) + (yo = Pryo)) - 9 dx

< Cl Loy —yyllia +1IF = rylloq + 14 = Ayl
+1ly = yulloa + N 7'y, — Payollog)-
Furthermore, it can be derived from (3.30b) and (3.30c) that

9Fa < C [ IVOAV, + 9+ (14 iy - PaygPoRds
Q
+C f VAYy + Vry + (1 + Ay)yy — Pyyo P IVO] Pdx
Q

< CN*@ f VAYy + Vry + (1 + Ay)yy — Pyyol’®hdx.
Q

which implies the inequality
1

9o < CN(Z‘”( fQ Ay + Y + (14 )y — PNy0|2c1>gdx)2.
It follows from (3.36)—(3.38) that
3 = N7 vAyy + Vry + (1 + Ay)yy — Payolloa

1

< CNy_l(f [VAyy + Vry + (1 + Ay)yy — PNyolzd%dx)2
Q

<CN(ly" = yylha +1Ir" = ryllog + 14 — Ayl
+1ly = yulloo + N7'lyo — Pwyollog).
Similar to 77,, we have
ns < Clly" = yyllie-
Then the estimation of lower error bound can be stated as following theorem.

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

Theorem 3.2. Let (y,r,u,y*,r*,A) and (yy,ry,un, Yy, 'y An) be the solutions of (2.11) and (2.25)

respectively. Then we have that
1
—n<C +0),
N (Ilell +6)
where e and 6 are defined in theorem 3.1.

Proof. The theorem follows from (3.34)-(3.35) and (3.39)-(3.40).

(3.41)

O
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4. Numerical experiment

In this section, we carry out a numerical example for the control problem (OCP) to investigate
whether the indicator 77 tends to zero at the same rate as the error ||e||. We are interested in the following
model: find (y,r,u) € Y X Q x U such that

) 1 1
yipin () = Slly() - Yollso + Ellullé,g,

—vAy(u)+Vr=u+f inQ, 4.1)
V.yu)=0 inQ,
y(m) =0 onodQ,

where G,y = {v € U ||| v |lpa < d}. The data of this example are as follows
Yo=Ay'+Vr+(1+Qy, f=-Ay+Vr—u,
and d = V6r. The exact solutions are given by

y =y" = (—n(1 + cosmx;) sin wx,, wsin wx; (1 + cos wxy)),
r = m?cosmx; Sinmx,, r*=m’sin;mx, cosax,, A=0.2.

We solve the discrete system (2.25) via Arrow-Hurwicz algorithm (see, for example, [17] and [18]).
Arrow-Hurwicz Algorithm: we describe the main steps of the algorithm as follows.

e Step 1: Letk = 0, choose a step size p > 0, give the initial values A} and uS,.

o Step2: Letl=0anduy’ =uk.

e Step 3: Solve the state equations

a(y]](\}l’wN)_b(wN’ rf\}l) = (u]](\}l+f,WN) VWN (S YN7
b()’/;,’l,@v) =0 VYoye My,

and the co-state equations

a(yi, wy) + b wy) = (1 + 2)y5 —yo,wy) Vwy e Yy,
byy' ) =0, Yy € My_,.
o Step 4: Let ulf\}m = u]]‘\}l - PN(y;f’l + Cmi}l)- It
ey = wllo.q > Tolu,

let / = [ + 1 and then we turn to Step 3.

o Step 5: A1 = max{0, 2 + p(lly¥lloq — ).
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Table 1. The values of discretization errors, indicator n, and 6.

N 4 8 12 16
llw —uylloo 1.34228 5.24377e-3  2.92731e-6  1.46001e-7
lly —ynlho 847190 6.22992e-2 5.06155e-5  9.72122e-7
llr = rullos  7.29581 6.14368e-2  5.16530e-5  2.38419e-7
lly* —yillia 8.49494 6.23009e-2 5.06195e-5  1.04945¢-6
I = rylloe  7.29581 6.14371e-2  5.16530e-5  2.92002e¢-7
|4 = Al 0.20000 1.15717e-4 1.56612e-10 2.92860e-12
llell 33.1007 2.52833e-1 2.07468e-4  2.69799¢-6
n 429463 3.18312e-1 2.40411e-4  1.49619e-6
0 5.55155 6.44712e-3  1.5818le-6  2.79281e-7

e Step 6: Stop if | A4/' — A% | < Tol, and output

Kl _ okl kil k
uN:uN$ yN_yN, rN_rNa /lNa
k+1 _ o kl+1 _
else, letuy =wuy ",k =k+ 1, and turn to Step 2.

Denote yy = (yvi-Yn2), Yy = Vi Yao)» and uy = (uy, uyz), we have the following expressions by
the property of (2.7)

N-2 N-2 N
YNm = Z Viim@i(x)Pj(x2), Yy = Z Viim®i(x1);(X2),  Unm = Z i Li (1)L i(x2),
=0 =0 =0
N-2 N-2
ry = Z rijLi(x))Lj(xy), ry = Z riLi(x)Li(x2), m=12, ryp=0, ry=0.
i,j=0 i,j=0

The numerical results are presented in Table 1. The table shows that the errors decrease rapidly with
a relatively small number of unknowns, which is important in a number of applications. We further
plot the error |le|| and the error indicator i versus the ploynomial degree N in Figure 1, where the
longitudinal axis is in logarithmic scale. It can be observed from the figure that the two curves are very
close to each other, which implies that the indicator is nearly equivalent to the error ||e||. Moreover, it
seems that the error ||e|| and the indicator 77 decay with the rate 10},_%, which shows that the proposed
method for the control problem is very efficient and the spectral accuracy is achieved. Compared
with the case of finite element method, it can be seen that the indicator developed in this work can be
implemented more simply and can provide successful estimation for the errors with less computational
load, which is helpful for developing the hp adaptive spectral element method for the optimal control
problems.

5. Conclusions

In this paper, the upper and lower bounds of approximation error are provided with the help of the
a posteriori error indicator. The illustrative numerical experiment shows the performance of the error
estimator. In our future work, we hope to extend these results to adaptive method in the hp spectral
element framework, which will be compared with the adaptive sp finite element method for optimal
control problems.
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log(error)

Figure 1. The total error ||e|| and error estimator 7.
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