In this paper, a system of coupled quasi-linear and linear wave equations with a finite memory term is concerned. By constructing an appropriate Lyapunov function, we prove that the total energy associated with the system is stable under suitable conditions on memory kernel.
Citation: Zayd Hajjej, Menglan Liao. General stability for a system of coupled quasi-linear and linear wave equations and with memory term[J]. AIMS Mathematics, 2023, 8(12): 30668-30682. doi: 10.3934/math.20231567
In this paper, a system of coupled quasi-linear and linear wave equations with a finite memory term is concerned. By constructing an appropriate Lyapunov function, we prove that the total energy associated with the system is stable under suitable conditions on memory kernel.
[1] | M. Akil, Stability of piezoelectric beam with magnetic effect under (Coleman or Pipkin)-Gurtin thermal law, Z. Angew. Math. Phys., 73 (2022), 236. https://doi.org/10.1007/s00033-022-01867-w doi: 10.1007/s00033-022-01867-w |
[2] | M. Akil, H. Badawi, S. Nicaise, A. Wehbe, Stability results of coupled wave models with locally memory in a past history framework via nonsmooth coefficients on the interface, Math. Method. Appl. Sci., 44 (2021), 6950–6981. https://doi.org/10.1002/mma.7235 doi: 10.1002/mma.7235 |
[3] | M. Akil, Z. Hajjej, Exponential stability and exact controllability of a system of coupled wave equations by second-order terms (via Laplacian) with only one non-smooth local damping, Math. Method. Appl. Sci., 2023. https://doi.org/10.1002/mma.9724 |
[4] | M. Al-Gharabli, S. Messaoudi, On the energy decay of a viscoelastic piezoelectric beam model with nonlinear internal forcing terms and anonlinear feedback, Math. Method. Appl. Sci., 2023. https://doi.org/10.1002/mma.9666 |
[5] | A. M. Al-Mahdi, M. Al-Gharabli, S. A. Messaoudi, New general decay result for a system of viscoelastic wave equations with past history, Commun. Pure Appl. Anal., 20 (2021), 389–404. https://doi.org/10.3934/cpaa.2020273 doi: 10.3934/cpaa.2020273 |
[6] | M. M. Cavalcanti, H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 42 (2003), 1310–1324. https://doi.org/10.1137/S0363012902408010 doi: 10.1137/S0363012902408010 |
[7] | M. Conti, V. Pata, General decay properties of abstract linear viscoelasticity, Z. Angew. Math. Phys., 71 (2020), 1–21. https://doi.org/10.1007/s00033-019-1229-5 doi: 10.1007/s00033-019-1229-5 |
[8] | C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297–308. https://doi.org/10.1007/BF00251609 doi: 10.1007/BF00251609 |
[9] | M. J. Dos Santos, J. C. P. Fortes, M. L. Cardoso, Exponential stability for a piezoelectric beam with a magnetic effect and past history, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 5487–5501. https://doi.org/10.3934/dcdsb.2021283 doi: 10.3934/dcdsb.2021283 |
[10] | Y. Q. Guo, M. A. Rammaha, S. Sakuntasathien, Energy decay of a viscoelastic wave equation with supercritical nonlinearities, Z. Angew. Math. Phys., 69 (2018), 65. https://doi.org/10.1007/s00033-018-0961-6 doi: 10.1007/s00033-018-0961-6 |
[11] | Z. Hajjej, M. Liao, Exponential stability of a system of coupled wave equations by second order terms with a past history, AIMS Math., 8 (2023), 28450–28464. https://doi.org/10.3934/math.20231456 doi: 10.3934/math.20231456 |
[12] | W. Liu, Uniform decay of solutions for a quasilinear system of viscoelastic equations, Nonlinear Anal., 71 (2009), 2257–2267. https://doi.org/10.1016/j.na.2009.01.060 doi: 10.1016/j.na.2009.01.060 |
[13] | W. Liu, General decay and blow up of solution for a quasilinear viscoelastic equation with a nonlinear source, Nonlinear Anal., 73 (2010), 1890–1904. https://doi.org/10.1016/j.na.2010.05.023 doi: 10.1016/j.na.2010.05.023 |
[14] | S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 341 (2008), 1457–1467. https://doi.org/10.1016/j.jmaa.2007.11.048 doi: 10.1016/j.jmaa.2007.11.048 |
[15] | S. Messoaudi, M. Al-Gharabli, A. Al-Mahdi, On the existence and decay of a viscoelastic system with variable-exponent nonlinearity, Discrete Contin. Dyn. Syst. Ser. S, 16 (2023), 1557–1595. https://doi.org/10.3934/dcdss.2022183 doi: 10.3934/dcdss.2022183 |
[16] | S. A. Messaoudi, N. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Method. Appl. Sci., 30 (2007), 665–680. https://doi.org/10.1002/mma.804 doi: 10.1002/mma.804 |
[17] | K. Morris, A. O. Özer, Strong stabilization of piezoelectric beams with magnetic effects, In: 52nd IEEE Conference on Decision and Control, IEEE, Italy, 2013, 3014–3019. https://doi.org/10.1109/CDC.2013.6760341 |
[18] | K. A. Morris, A. O. Özer, Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects, SIAM J. Control Optim., 52 (2014), 2371–2398. https://doi.org/10.1137/130918319 doi: 10.1137/130918319 |
[19] | M. I. Mustafa, Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations, Nonlinear Anal.-Real, 13 (2012), 452–463. https://doi.org/10.1016/j.nonrwa.2011.08.002 doi: 10.1016/j.nonrwa.2011.08.002 |
[20] | M. I. Mustafa, M. Kafini, Decay rates for a coupled quasilinear system of nonlinear viscoelastic equations, J. Appl. Anal., 25 (2019), 97–110. https://doi.org/10.1515/jaa-2019-0011 doi: 10.1515/jaa-2019-0011 |
[21] | F. D. Plinio, V. Pata, S. Zelik, On the strongly damped wave equation with memory, Indiana Univ. Math. J., 57 (2008), 757–780. |
[22] | A. J. A. Ramos, C. S. L. Gonçalves, S. S. C. Neto, Exponential stability and numerical treatment for piezoelectric beams with magnetic effect, ESAIM Math. Model. Numer. Anal., 52 (2018), 255–274. https://doi.org/10.1051/m2an/2018004 doi: 10.1051/m2an/2018004 |
[23] | A. J. A. Ramos, A. O. Özer, M. M. Freitas, D. S. A. Júnior, J. D. Martins, Exponential stabilization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback, Z. Angew. Math. Phys., 72 (2021), 26. https://doi.org/10.1007/s00033-020-01457-8 doi: 10.1007/s00033-020-01457-8 |
[24] | A. Soufyane, M. Afilal, M. L. Santos, Energy decay for a weakly nonlinear damped piezoelectric beams with magnetic effects and a nonlinear delay term, Z. Angew. Math. Phys., 72 (2021), 166. https://doi.org/10.1007/s00033-021-01593-9 doi: 10.1007/s00033-021-01593-9 |
[25] | H. E. Zhang, G. Q. Xu, Z. J. Han, Stability of multi-dimensional nonlinear piezoelectric beam with viscoelastic infinite memory, Z. Angew. Math. Phys., 73 (2022), 159. https://doi.org/10.1007/s00033-022-01790-0 doi: 10.1007/s00033-022-01790-0 |