Research article

Traveling-wave and numerical solutions to nonlinear evolution equations via modern computational techniques

  • Received: 03 October 2023 Revised: 09 November 2023 Accepted: 12 November 2023 Published: 07 December 2023
  • MSC : 35A24, 35B35, 35Q51, 35Q92, 65N06, 65N40, 65N45, 65N50

  • In this research, we apply some new mathematical methods to the study of solving couple-breaking soliton equations in two dimensions. Soliton solutions for equations with free parameters like the wave number, phase component, nonlinear coefficient and dispersion coefficient can be obtained analytically by adding trigonometric, rational and hyperbolic functions. We will also look into how two-dimensional diagrams are affected by the wave phenomena, illustrating the answers with a mix of two- and three-dimensional graphs. The proposed system will be transformed into a numerical system by using the finite difference method to simulate Black-Scholes equations numerically. Furthermore, we will evaluate the stability and accuracy of the numerical findings by making analytical and graphical comparisons with precise solutions and we will talk about the error analysis of the numerical scheme. All forms of nonlinear evolutionary systems can benefit from the methods utilized in this work because they are sufficient and acceptable.

    Citation: Abdulghani R. Alharbi. Traveling-wave and numerical solutions to nonlinear evolution equations via modern computational techniques[J]. AIMS Mathematics, 2024, 9(1): 1323-1345. doi: 10.3934/math.2024065

    Related Papers:

  • In this research, we apply some new mathematical methods to the study of solving couple-breaking soliton equations in two dimensions. Soliton solutions for equations with free parameters like the wave number, phase component, nonlinear coefficient and dispersion coefficient can be obtained analytically by adding trigonometric, rational and hyperbolic functions. We will also look into how two-dimensional diagrams are affected by the wave phenomena, illustrating the answers with a mix of two- and three-dimensional graphs. The proposed system will be transformed into a numerical system by using the finite difference method to simulate Black-Scholes equations numerically. Furthermore, we will evaluate the stability and accuracy of the numerical findings by making analytical and graphical comparisons with precise solutions and we will talk about the error analysis of the numerical scheme. All forms of nonlinear evolutionary systems can benefit from the methods utilized in this work because they are sufficient and acceptable.



    加载中


    [1] A. Akbulut, S. Islam, H. Rezazadeh, F. Tascan, Obtaining exact solutions of nonlinear partial differential equations via two different methods, Int. J. Mod. Phys. B, 36 (2022), 2250041. https://doi.org/10.1142/S0217979222500412 doi: 10.1142/S0217979222500412
    [2] W. X. Ma, X. Yong, H. Zhang, Diversity of interaction solutions to the (2+1)-dimensional Ito equation, Comput. Math. Appl., 75 (2018), 289–295. https://doi.org/10.1016/j.camwa.2017.09.013 doi: 10.1016/j.camwa.2017.09.013
    [3] Y. Ozkam, E. Yasar, M. Osman, Novel multiple soliton and front wave solutions for the 3D-Vakhnenko-Parkes equation, Mod. Phys. Lett. B, 36 (2022). https://doi.org/10.1142/S0217984922500038
    [4] M. Bashar, S. Islam, Exact solutions to the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation by using modified simple equation and improve F-expansion methods, Phys. Open, 5 (2020), 100027. https://doi.org/10.1016/j.physo.2020.100027 doi: 10.1016/j.physo.2020.100027
    [5] A. Alharbi, M. Almatrafi, Analytical and numerical solutions for the variant Boussinseq equations, J. Taibah Univ. Sci., 14 (2020), 454–462. https://doi.org/10.1080/16583655.2020.1746575 doi: 10.1080/16583655.2020.1746575
    [6] A. Alharbi, M. Almatrafi, Numerical investigation of the dispersive long wave equation using an adaptive moving mesh method and its stability, Results Phys., 16 (2020), 102870. https://doi.org/10.1016/j.rinp.2019.102870 doi: 10.1016/j.rinp.2019.102870
    [7] A. Alharbi, M. Almatrafi, Riccati-Bernoulli Sub-ODE approach on the partial differential equations and applications, Int. J. Math. Comput. Sc., 15 (2020), 367–388.
    [8] A. Alharbi, M. Almatrafi, New exact and numerical solutions with their stability for Ito integro-differential equation via Riccati-Bernoulli sub-ODE method, J. Taibah Univ. Sci., 14 (2020), 1447–1456.
    [9] A. Alharbi, M. Almatrafi, Exact and numerical solitary wave structures to the variant Boussinesq system, Symmetry, 12 (2020), 1473.
    [10] M. Almatrafi, A. Alharbi, C. Tunç, Constructions of the soliton solutions to the good Boussinesq equation, Adv. Differential Equ., 629 (2020). https://doi.org/10.1186/s13662-020-03089-8
    [11] A. Alharbi, M. Almatrafi, A. Seadawy, Construction of the numerical and analytical wave solutions of the Joseph-Egri dynamical equation for the long waves in nonlinear dispersive systems, Int. J. Mod. Phys. B, 2020, 2050289. https://doi.org/10.1142/S0217979220502896
    [12] A. Alharbi, M. Almatrafi, K. Lotfy, Constructions of solitary travelling wave solutions for Ito integro-differential equation arising in plasma physics, Results Phys., 19 (2020), 103533. https://doi.org/10.1016/j.rinp.2020.103533 doi: 10.1016/j.rinp.2020.103533
    [13] A. Alharbi, M. Almatrafi, Exact solitary wave and numerical solutions for geophysical KdV equation, J. King Saud Univ. Sci., 6 (2022), 102087. https://doi.org/10.1016/j.jksus.2022.102087 doi: 10.1016/j.jksus.2022.102087
    [14] S. Zaki, Solitary wave interactions for the modified equal width equation, Comput. Phys. Commun., 126 (2000), 219–231. https://doi.org/10.1016/S0010-4655(99)00471-3 doi: 10.1016/S0010-4655(99)00471-3
    [15] A. Wazwaz, The tanh method and the sine-cosine method for solving the KP-MEW equation, Int. J. Comput. Math., 82 (2005), 235–246. https://doi.org/10.1080/00207160412331296706 doi: 10.1080/00207160412331296706
    [16] M. Almatrafi, A. Alharbi, A. Seadawy, Structure of analytical and numerical wave solutions for the Ito integro-differential equation arising in shallow water waves, J. King Saud Univ. Sci., 33 (2021), 101375. https://doi.org/10.1016/j.jksus.2021.101375 doi: 10.1016/j.jksus.2021.101375
    [17] A. Alharbi, M. Faisal, F. Shah, M. Waseem, R. Ullah, S. Sherbaz, Higher order numerical approaches for nonlinear equations by decomposition technique, IEEE Access, 7 (2019), 44329–44337. https://doi.org/10.1109/ACCESS.2019.2906470 doi: 10.1109/ACCESS.2019.2906470
    [18] R. Radha, M. Lakshmanan, Dromion like structures in the (2+1)-dimensional breaking soliton equation, Phys. Lett. A, 197 (1995). https://doi.org/10.1016/0375-9601(94)00926-G
    [19] Z. Yan, H. Zhang, Constructing families of soliton-like solutions to a (2+1)-dimensional breaking soliton equation using symbolic computation, Int. J. Comput. Math. Appl., 44 (2002), 1439–1444. https://doi.org/10.1016/S0898-1221(02)00268-7 doi: 10.1016/S0898-1221(02)00268-7
    [20] Y. Chen, L. Biao, H. Zhang, Symbolic computation and construction of soliton-like solutions to the (2+1)-dimensional breaking soliton equation, Commun. Theor. Phys., 40 (2003), 137–142. https://dx.doi.org/10.1088/0253-6102/40/2/137 doi: 10.1088/0253-6102/40/2/137
    [21] Z. Wang, S. Tian, J. Cheng, The $\bar{\partial}$-dressing method and soliton solutions for the three-component coupled Hirota equations, J. Math. Phys., 62 (2021), 093510. https://doi.org/10.1063/5.0046806 doi: 10.1063/5.0046806
    [22] S. Tian, M. Xu, T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. Roy. Soc. Lond. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
    [23] L. Yuan, S. Tian, J. Cheng, Riemann-Hilbert problem and interactions of solitons in the component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
    [24] S. Dong, Schrödinger equation with the potential $V(r) = Ar^{-4} + Br^{-3} + Cr^{-2 }+ Dr^{-1}$, Phys. Scripta, 64 (2001), 273. https://dx.doi.org/10.1238/Physica.Regular.064a00273 doi: 10.1238/Physica.Regular.064a00273
    [25] S. Dong, The ansatz method for analyzing Schrödinger's equation with three anharmonic potentials in D dimensions, J. Genet. Couns., 15 (2002), 385–395. https://doi.org/10.1023/A:1021220712636 doi: 10.1023/A:1021220712636
    [26] Y. Guo, W. Li, S. Dong, Gaussian solitary solution for a class of logarithmic nonlinear Schrödinger equation in (1 + n) dimensions, Results Phys., 44 (2023), 109187. https://doi.org/10.1016/j.rinp.2022.106187 doi: 10.1016/j.rinp.2022.106187
    [27] R. López, G. Sun, O. C. Nieto, C. Y. Márquez, S. Dong, Analytical traveling-wave solutions to a generalized Gross-Pitaevskii equation with some new time and space varying nonlinearity coefficients and external fields, Phys. Lett. A, 381 (2017), 2978–2985. https://doi.org/10.1016/j.physleta.2017.07.012 doi: 10.1016/j.physleta.2017.07.012
    [28] A. Başhan, A mixed algorithm for numerical computation of soliton solutions of the coupled KdV equation: Finite difference method and differential quadrature method, Appl. Math. Comput., 360 (2019), 42–57. https://doi.org/10.1016/j.amc.2019.04.073 doi: 10.1016/j.amc.2019.04.073
    [29] A. Başhan, A mixed methods approach to Schrödinger equation: Finite difference method and quartic B-spline based differential quadrature method, Int. J. Optim. Control, 9 (2019), 223–235. https://doi.org/10.11121/ijocta.01.2019.00709 doi: 10.11121/ijocta.01.2019.00709
    [30] A. Başhan, Y. Uçar, N. M. Yağmurlu, A. Esen, A new perspective for quintic B-spline based Crank-Nicolson-differential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation, Eur. Phys. J. Plus, 133 (2018), 12. https://doi.org/10.1140/epjp/i2018-11843-1 doi: 10.1140/epjp/i2018-11843-1
    [31] A. Başhan, A novel approach via mixed Crank-Nicolson scheme and differential quadrature method for numerical solutions of solitons of mKdV equation, Pramana, 92 (2019), 84. https://doi.org/10.1007/s12043-019-1751-1 doi: 10.1007/s12043-019-1751-1
    [32] A. Başhan, A novel outlook to the mKdV equation using the advantages of a mixed method, Appl. Anal., 102 (2023), 65–87. https://doi.org/10.1080/00036811.2021.1947493 doi: 10.1080/00036811.2021.1947493
    [33] Y. Peng, E. Krishnan, Two classes of new exact solutions to (2+1)-dimensional breaking soliton equation, Commun. Theor. Phys., 44 (2005), 807–809. https://dx.doi.org/10.1088/6102/44/5/807 doi: 10.1088/6102/44/5/807
    [34] I. Inan, Generalized Jacobi elliptic function method for traveling wave solutions of (2+1)-dimensional breaking soliton equation, Cankaya Univ. J. Sci. Eng., 7 (2010), 39–50.
    [35] W. Cheng, Y. Chen, Nonlocal symmetry and exact solutions of the (2+1)-dimensional breaking soliton equation, Commun. Nonlinear Sci., 29 (2015), 198–207. https://dx.doi.org/10.1016/j.cnsns.2015.05.007 doi: 10.1016/j.cnsns.2015.05.007
    [36] M. S. Osman, On multi-soliton solutions for the (2+1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide, Comput. Math. Appl., 75 (2018), 1–6. https://dx.doi.org/10.1016/j.camwa.2017.08.033 doi: 10.1016/j.camwa.2017.08.033
    [37] J. Manafian, M. Behnam, M. Abapour, Lump-type solutions and interaction phenomenon to the (2+1)-dimensional breaking soliton equation, Appl. Math. Comput., 356 (2019), 13–41. https://dx.doi.org/10.1016/j.amc.2019.03.016 doi: 10.1016/j.amc.2019.03.016
    [38] M. Kumar, D. Tanwar, Lie symmetries and invariant solutions of $(2+1)$-dimensional breaking soliton equation, Pranama J. Phys., 94 (2020), 23. https://dx.doi.org/10.1007/s12043-019-1885-1 doi: 10.1007/s12043-019-1885-1
    [39] H. Baskonus, A. Kumar, G. Wei, Deeper investigations of the (4 + 1)-dimensional Fokas and (2 + 1)-dimensional breaking soliton equations, Int. J. Mod. Phys. B, 34 (2020), 2050152. https://dx.doi.org/10.1142/S0217979220501520 doi: 10.1142/S0217979220501520
    [40] A. Alharbi, Numerical solutions to two-dimensional fourth order parabolic thin film equations using the Parabolic Monge-Ampere method, AIMS Math., 8 (2023), 16463–16478. https://dx.doi.org/10.3934/math.2023841 doi: 10.3934/math.2023841
    [41] B. Ren, P. Chu, Dynamics of D'Alembert wave and soliton molecule for a (2+1)-dimensional generalized breaking soliton equation, Chinese J. Physiol., 74 (2021), 296–301. https://dx.doi.org/10.1016/j.cjph.2021.07.025 doi: 10.1016/j.cjph.2021.07.025
    [42] M. Kaplan, A. Akbulut, The analysis of the soliton-type solutions of conformable equations by using generalized Kudryashov method, Opt. Quant. Electron., 53 (2021), 498. https://doi.org/10.1007/s11082-021-03144-y doi: 10.1007/s11082-021-03144-y
    [43] Y. Qin, Y. Gao, Y. Shen, Y. Sun, G. Meng, X. Yu, Solitonic interaction of a variable coefficient (2 + 1)-dimensional generalized breaking soliton equation, Phys. Scripta, 88 (2013), 045004. https://dx.doi.org/10.1088/0031-8949/88/04/045004 doi: 10.1088/0031-8949/88/04/045004
    [44] D. Kumar, Application of the modified Kudryashov method to the generalized Schrödinger-Boussinesq equations, Opt. Quant. Electron., 50 (2018), 329. https://doi.org/10.1007/s11082-018-1595-9 doi: 10.1007/s11082-018-1595-9
    [45] M. Mirzazadeh, K. Hosseini, K. Dehingia, S. Salahshour, A second-order nonlinear Schrödinger equation with weakly nonlocal and parabolic laws and its optical solitons, Optic, 242 (2021), 166911. https://doi.org/10.1016/j.ijleo.2021.166911 doi: 10.1016/j.ijleo.2021.166911
    [46] T. Xia, S. Xiong, Exact solutions of (2 + 1)-dimensional Bogoyavlenskii's Breaking soliton equation with symbolic computation, Comput. Math. Appl., 60 (2010), 919–923. https://doi.org/10.1016/j.camwa.2010.05.037 doi: 10.1016/j.camwa.2010.05.037
    [47] A. Alharbi, M. Almatrafi, M. Abdelrahman, Analytical and numerical investigation for Kadomtsev-Petviashvili equation arising in plasma physics, Phys. Scripta, 95 (2020), 045215. https://dx.doi.org/10.1088/1402-4896/ab6ce4 doi: 10.1088/1402-4896/ab6ce4
    [48] A. Alharbi, A Study of traveling wave structures and numerical investigation of two-dimensional Riemann problems with their stability and accuracy, Comp. Model. Eng. Sci., 134 (2023), 2193–2209. https://doi.org/10.32604/cmes.2022.018445 doi: 10.32604/cmes.2022.018445
    [49] W. Ma, Riemann-Hilbert problems and inverse scattering of nonlocal real reverse-spacetime matrix AKNS hierarchies, Physica D, 177 (2022), 104522. https://doi.org/10.1016/j.geomphys.2022.104522 doi: 10.1016/j.geomphys.2022.104522
    [50] W. Ma, Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions, J. Geom. Phys., 430 (2022), 133078. https://doi.org/10.1016/j.physd.2021.133078 doi: 10.1016/j.physd.2021.133078
    [51] O. Bogoyavlenskiĭ, Overturning solitons in new two-dimensional integrable equations, Izv. Akad. Nauk SSSR Ser. Mat., 53 (1989), 243–257. https://doi.org/10.1070/IM1990v034n02ABEH000628 doi: 10.1070/IM1990v034n02ABEH000628
    [52] F. Calogero, A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform. Pt. I, Nuovo Cim. B, 32 (1976), 201–242, https://doi.org/10.1007/BF02727634 doi: 10.1007/BF02727634
    [53] F. Calogero, A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform. II, Nuovo Cim. B, 39 (1977), 1–54. https://doi.org/10.1007/BF02738174 doi: 10.1007/BF02738174
    [54] A. Kazeykina, C. Klein, Numerical study of blow-up and stability of line solitons for the Novikov- Veselov equation, Nonlinearity, 30 (2017), 2566. https://dx.doi.org/10.1088/1361-6544/aa6f29 doi: 10.1088/1361-6544/aa6f29
    [55] B. Sagar, S. Saha, Numerical soliton solutions of fractional (2+1)-dimensional Nizhnik-Novikov-Veselov equations in nonlinear optics, Int. J. Mod. Phys. B, 35 (2021), 2150090. http://dx.doi.org/10.1142/S0217979221500909 doi: 10.1142/S0217979221500909
    [56] C. Bai, C. Bai, H. Zhao, A new generalized algebraic method and its application in nonlinear evolution equations with variable coefficients, Z. Naturforsch. A, 60 (2005), 211–220. https://doi.org/10.1515/zna-2005-0401 doi: 10.1515/zna-2005-0401
    [57] A. Aasaraai, The application of modified F-expansion method solving the Maccari's system, J. Adv. Math. Comput. Sci., 11 (2015), 1–14. http://dx.doi.org/10.9734/BJMCS/2015/19938 doi: 10.9734/BJMCS/2015/19938
    [58] L. Shampine, M. Reichelt, The matlab ode suite, SIAM J. Sci. Comput., 18 (1997), 1–22. https://doi.org/10.1137/S1064827594276424
    [59] P. Brown, A. Hindmarsh, L. R. Petzold, Using Krylov methods in the solution of large-scale differential-algebraic systems, SIAM J. Sci. Comput., 15 (1994), 1467–1488. https://doi.org/10.1137/0915088 doi: 10.1137/0915088
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(581) PDF downloads(41) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog