Research article

Time-dependent asymptotic behavior of the solution for evolution equation with linear memory

  • Received: 09 February 2023 Revised: 06 April 2023 Accepted: 17 April 2023 Published: 06 May 2023
  • MSC : 35B40, 35B41, 37L30

  • In this article, by using the operator decomposition technique, we discuss the existence of a time-dependent global attractor for a nonlinear evolution equation with linear memory within the theory of time-dependent space. Furthermore, the regularity and asymptotic structure of the time-dependent attractor are proved, which means that the time-dependent attractor of the evolution equation converges to the attractor of the limit wave equation when the coefficient $ \varepsilon(t)\rightarrow0 $ as $ t\rightarrow \infty $.

    Citation: Tingting Liu, Tasneem Mustafa Hussain Sharfi, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for evolution equation with linear memory[J]. AIMS Mathematics, 2023, 8(7): 16208-16227. doi: 10.3934/math.2023829

    Related Papers:

  • In this article, by using the operator decomposition technique, we discuss the existence of a time-dependent global attractor for a nonlinear evolution equation with linear memory within the theory of time-dependent space. Furthermore, the regularity and asymptotic structure of the time-dependent attractor are proved, which means that the time-dependent attractor of the evolution equation converges to the attractor of the limit wave equation when the coefficient $ \varepsilon(t)\rightarrow0 $ as $ t\rightarrow \infty $.



    加载中


    [1] I. L. Bogolubskey, Some examples of inelastic soliton interaction, Comput. phys. Commun., 13 (1977), 149–155. https://doi.org/10.1016/0010-4655(77)90009-1 doi: 10.1016/0010-4655(77)90009-1
    [2] W. G. Zhu, Nonlinear waves in elastic rods, Acta Solid Mech. Sin., 1 (1980), 247–253.
    [3] P. A. Clarkson, R. J. Levegue, R. Saxton, Solitary-wave interaction in elastic rods, Stud. Appl. Math., 75 (1986), 95–121. https://doi.org/10.1002/sapm198675295 doi: 10.1002/sapm198675295
    [4] V. Pata, A. Zucchi, Attractor for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505–529.
    [5] Y. Q. Xie, C. K. Zhong, The existence of global attractors for a class nonlinear evolution equation, J. Math. Anal. Appl., 336 (2007), 54–69. https://doi.org/10.1016/j.jmaa.2006.03.086 doi: 10.1016/j.jmaa.2006.03.086
    [6] Y. Q. Xie, C. K. Zhong, Asymptotic behavior of a class of nonlinear evolution equations, Nonlinear Anal., 71 (2009), 5095–5105. https://doi.org/10.1016/j.na.2009.03.086 doi: 10.1016/j.na.2009.03.086
    [7] A. N. Carvalho, J. W. Cholewa, Local well posedness, asymptotic behavior and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time, Trans. Amer. Math. Soc., 361 (2009), 2567–2588.
    [8] C. Y. Sun, L. Yang, J. Q. Duan, Asymptotic behavior for a semilinear second order evolution equation, Trans. Amer. Math. Soc., 363 (2011), 6085–6109.
    [9] F. Di Plinio, G. S. Duane, R. Temam, Time dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 29 (2011), 141–167. https://doi.org/10.3934/dcds.2011.29.141 doi: 10.3934/dcds.2011.29.141
    [10] F. J. Meng, M. H. Yang, C. K. Zhong, Attractors for wave equations with nonlinear damping on time-dependent space, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 205–225. http://doi.org/10.3934/dcdsb.2016.21.205 doi: 10.3934/dcdsb.2016.21.205
    [11] F. J. Meng, C. C. Liu, Necessary and sufficient conditions for the existence of time-dependent global attractor and application, J. Math. Phys., 58 (2017), 032702. https://doi.org/10.1063/1.4978329 doi: 10.1063/1.4978329
    [12] M. Conti, V. Pata, R. Temam, Attractors for processes on time-dependent spaces. Applications to wave equations, J. Differ. Equ., 255 (2013), 1254–1277. https://doi.org/10.1016/j.jde.2013.05.013 doi: 10.1016/j.jde.2013.05.013
    [13] M. Conti, V. Pata, Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Anal.-Real, 19 (2014), 1–10. https://doi.org/10.1016/j.nonrwa.2014.02.002 doi: 10.1016/j.nonrwa.2014.02.002
    [14] Q. Z. Ma, J. Wang, T. T. Liu, Time-dependent asymptotic behavior of the solution for wave equations with linear memory, Comput. Math. Appl., 76 (2018), 1372–1387. https://doi.org/10.1016/j.camwa.2018.06.031 doi: 10.1016/j.camwa.2018.06.031
    [15] Q. Z. Ma, J. Wang, T. T. Liu, Time-dependent attractor of wave equations with nonlinear damping and linear memory, Open Math. 17 (2019), 89–103. https://doi.org/10.1515/math-2019-0008
    [16] T. T. Liu, Q. Z. Ma, Time-dependent global attractor of nonlinear evolution equation with nonlinear damping, J. Sichuan Univ., 54 (2017), 917–924.
    [17] S. Borini, V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263–277.
    [18] J. Simon, Compact sets in the space $L^{p} (0, T; B)$, Ann. Mat. Pur. Appl., 146 (1987), 65–96.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1134) PDF downloads(65) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog