Research article Special Issues

Influence of seasonality on Zika virus transmission

  • Received: 04 April 2024 Revised: 08 May 2024 Accepted: 28 May 2024 Published: 12 June 2024
  • MSC : 34C15, 34A34, 34C60, 37C75, 92D30

  • In order to study the impact of seasonality on Zika virus dynamics, we analyzed a non-autonomous mathematical model for the Zika virus (ZIKV) transmission where we considered time-dependent parameters. We proved that the system admitted a unique bounded positive solution and a global attractor set. The basic reproduction number, $ \mathcal{R}_0 $, was defined using the next generation matrix method for the case of fixed environment and as the spectral radius of a linear integral operator for the case of seasonal environment. We proved that if $ \mathcal{R}_0 $ was smaller than the unity, then a disease-free periodic solution was globally asymptotically stable, while if $ \mathcal{R}_0 $ was greater than the unity, then the disease persisted. We validated the theoretical findings using several numerical examples.

    Citation: Miled El Hajji, Mohammed Faraj S. Aloufi, Mohammed H. Alharbi. Influence of seasonality on Zika virus transmission[J]. AIMS Mathematics, 2024, 9(7): 19361-19384. doi: 10.3934/math.2024943

    Related Papers:

  • In order to study the impact of seasonality on Zika virus dynamics, we analyzed a non-autonomous mathematical model for the Zika virus (ZIKV) transmission where we considered time-dependent parameters. We proved that the system admitted a unique bounded positive solution and a global attractor set. The basic reproduction number, $ \mathcal{R}_0 $, was defined using the next generation matrix method for the case of fixed environment and as the spectral radius of a linear integral operator for the case of seasonal environment. We proved that if $ \mathcal{R}_0 $ was smaller than the unity, then a disease-free periodic solution was globally asymptotically stable, while if $ \mathcal{R}_0 $ was greater than the unity, then the disease persisted. We validated the theoretical findings using several numerical examples.



    加载中


    [1] L. R. Petersen, D. J. Jamieson, A. M. Powers, M. A. Honein, Zika virus, N. Engl. J. Med., 374 (2016), 1552–1563. http://doi.org/10.1056/NEJMra1602113
    [2] T. Magalhaes, B. D. Foy, E. T. Marques, G. D. Ebel, J. Weger-Lucarelli, Mosquito-borne and sexual transmission of Zika virus: recent developments and future directions, Virus Res., 254 (2018), 1–9. https://doi.org/10.1016/j.virusres.2017.07.011 doi: 10.1016/j.virusres.2017.07.011
    [3] L. Wang, P. Wu, M. Li, L. Shi, Global dynamics analysis of a Zika transmission model with environment transmission route and spatial heterogeneity, AIMS Math., 7 (2022), 4803–4832. https://doi.org/10.3934/math.2022268 doi: 10.3934/math.2022268
    [4] G. W. A. Dick, S. F. Kitchen, A. J. Haddow, Zika virus (i). isolations and serological specificity, T. Royal Soc. Tropical Med. Hyg., 46 (1952), 509–520. https://doi.org/10.1016/0035-9203(52)90042-4 doi: 10.1016/0035-9203(52)90042-4
    [5] Zika Virus, Microcephaly and Guillain-barr´e Ssyndrome. Situation Report, World Health Organization, 2023. Available from: https://iris.who.int/bitstream/handle/10665/204961/zikasitrep_7Apr2016_eng.pdf.
    [6] P. S. Mead, N. K. Duggal, S. A. Hook, M. Delorey, M. Fischer, D. Olzenak McGuire, et al., Zika virus shedding in semen of symptomatic infected men, New Engl. J. Med., 378 (2018), 1377–1385. https://doi.org/10.1056/NEJMoa1711038 doi: 10.1056/NEJMoa1711038
    [7] Z. Yue, Y. Li, F. M. Yusof, Dynamic analysis and optimal control of Zika virus transmission with immigration, AIMS Math., 8 (2023), 21893–21913. http://dx.doi.org/10.3934/math.20231116 doi: 10.3934/math.20231116
    [8] X. Zhao, Dynamical Systems in Population Biology, New York: Springer-Verlag, 2003.
    [9] J. LaSalle, The Stability of Dynamical Systems, New York: SIAM, 1976.
    [10] O. Diekmann, J. Heesterbeek, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Bio., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [11] P. V. den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [12] F. Brauer, C. Castillo-Chavez, A. Mubayi, S. Towers, Some models for epidemics of vectortransmitted diseases, Infect. Dis. Model., 1 (2016), 79–87. https://doi.org/10.1016/j.idm.2016.08.001 doi: 10.1016/j.idm.2016.08.001
    [13] S. K. Sasmal, I. Ghosh, A. Huppert, J. Chattopadhyay, Modeling the spread of Zika virus in a stage-structured population: effect of sexual transmission, Bull. Math. Biol., 80 (2016), 3038–3067. https://doi.org/10.1007/s11538-018-0510-7 doi: 10.1007/s11538-018-0510-7
    [14] M. A. Ibrahim, A. D´enes, Threshold dynamics in a model for Zika virus disease with seasonality, Bull. Math. Biol., 83 (2021), 27. https://doi.org/10.1007/s11538-020-00844-6 doi: 10.1007/s11538-020-00844-6
    [15] D. Xiao, Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting, Discrete Contin. Dynam. Syst. B, 21 (2016), 699–719. https://doi.org/10.3934/dcdsb.2016.21.699 doi: 10.3934/dcdsb.2016.21.699
    [16] M. El Hajji, D. M. Alshaikh, N. A. Almuallem, Periodic behaviour of an epidemic in a seasonal environment with vaccination, Mathematics, 11 (2023), 2350. https://doi.org/10.3390/math11102350 doi: 10.3390/math11102350
    [17] M. El Hajji, R. M. Alnjrani, Periodic trajectories for HIV dynamics in a seasonal environment with a general incidence rate, Int. J. Anal. Appl., 21 (2023), 96. https://doi.org/10.28924/2291-8639-21-2023-96 doi: 10.28924/2291-8639-21-2023-96
    [18] M. El Hajji, F. A. S. Alzahrani, R. Mdimagh, Impact of infection on honeybee population dynamics in a seasonal environment, Int. J. Anal. Appl., 22 (2024), 75. https://doi.org/10.28924/2291-8639-22-2024-75 doi: 10.28924/2291-8639-22-2024-75
    [19] M. A. Ibrahim, A. Denes, Stability and threshold dynamics in a seasonal mathematical model for measles outbreaks with double-dose vaccination, Mathematics, 11 (2023), 1791. https://doi.org/10.3390/math11081791 doi: 10.3390/math11081791
    [20] M. H. Alharbi, F. K. Alalhareth, M. A. Ibrahim, Analyzing the dynamics of a periodic typhoid fever transmission model with imperfect vaccination, Mathematics, 11 (2023), 3298. https://doi.org/10.3390/math11153298 doi: 10.3390/math11153298
    [21] M. El Hajji, Periodic solutions for an "SVIQR" epidemic model in a seasonal environment with general incidence rate, Int. J. Biomath., Online ready, 2024. https://doi.org/10.1142/S1793524524500335
    [22] M. A. Ibrahim, A. Denes, A mathematical model for lassa fever transmission dynamics in a seasonal environment with a view to the 2017-20 epidemic in Nigeria, Nonlinear Anal.: Real World Appl., 60 (2021), 103310. https://doi.org/10.1016/j.nonrwa.2021.103310 doi: 10.1016/j.nonrwa.2021.103310
    [23] M. El Hajji, Periodic solutions for chikungunya virus dynamics in a seasonal environment with a general incidence rate, AIMS Math., 8 (2023), 24888–24913. https://doi.org/10.3934/math.20231269 doi: 10.3934/math.20231269
    [24] M. El Hajji, R. M. Alnjrani, Periodic behaviour of HIV dynamics with three infection routes, Mathematics, 12 (2024), 123. https://doi.org/10.3390/math12010123 doi: 10.3390/math12010123
    [25] M. El Hajji, N. S. Alharbi, M. H. Alharbi, Mathematical modeling for a CHIKV transmission under the influence of periodic environment, Int. J. Anal. Appl., 22 (2024), 6. https://doi.org/10.28924/2291-8639-22-2024-6 doi: 10.28924/2291-8639-22-2024-6
    [26] J. Ma, Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models, Math. Biosci. Eng., 3 (2006), 161–172. https://doi.org/10.3934/mbe.2006.3.161 doi: 10.3934/mbe.2006.3.161
    [27] T. Zhang, Z. Teng, On a nonautonomous SEIRS model in epidemiology, Bull. Math. Biol., 69 (2007), 2537–2559. https://doi.org/10.1007/s11538-007-9231-z doi: 10.1007/s11538-007-9231-z
    [28] H. Almuashi, Mathematical analysis for the influence of seasonality on Chikungunya virus dynamics, Int. J. Anal. Appl., 22 (2024), 86. https://doi.org/10.28924/2291-8639-22-2024-86 doi: 10.28924/2291-8639-22-2024-86
    [29] N. Bacaer, S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421–436. https://doi.org/10.1007/s00285-006-0015-0 doi: 10.1007/s00285-006-0015-0
    [30] S. Guerrero-Flores, O. Osuna, C. V. de Leon, Periodic solutions for seasonal SIQRS models with nonlinear infection terms, Elect. J. Differ. Equ., 2019 (2019), 1–13.
    [31] Y. Nakata, T. Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment, J. Math. Anal. Appl., 363 (2010), 230–237. https://doi.org/10.1016/j.jmaa.2009.08.027 doi: 10.1016/j.jmaa.2009.08.027
    [32] W. Wang, X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equat., 20 (2008), 699–717. https://doi.org/10.1007/s10884-008-9111-8 doi: 10.1007/s10884-008-9111-8
    [33] F. A. Al Najim, Mathematical analysis for a Zika virus dynamics in a seasonal environment, Int. J. Anal. Appl., 22 (2024), 71. https://doi.org/10.28924/2291-8639-22-2024-71 doi: 10.28924/2291-8639-22-2024-71
    [34] F. Li, X. Zhao, Global dynamics of a reaction–diffusion model of Zika virus transmission with seasonality, Bull. Math. Biol., 83 (2020), 43. https://doi.org/10.1007/s11538-021-00879-3 doi: 10.1007/s11538-021-00879-3
    [35] W. Wang, M. Zhou, T. Zhang, Z. Feng, Dynamics of a Zika virus transmission model with seasonality and periodic delays, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106830. https://doi.org/10.1016/j.cnsns.2022.106830 doi: 10.1016/j.cnsns.2022.106830
    [36] A. Denes, M. A. Ibrahim, L. Oluoch, M. Tekeli, T. Tekeli, Impact of weather seasonality and sexual transmission on the spread of Zika fever, Sci. Rep., 9 (2019), 17055. https://doi.org/10.1038/s41598-019-53062-z doi: 10.1038/s41598-019-53062-z
    [37] J. D. Murray, Mathematical Biology ii: Spatial Models and Biomedical Applications, 2 Eds., Berlin: Springer, 1980.
    [38] A. Chakraborty, M. Haque, M. Islam, Mathematical modelling and analysis of dengue transmission in bangladesh with saturated incidence rate and constant treatment, Commun. Biomath., 3 (2020), 101–113. https://doi.org/10.5614/cbms.2020.3.2.2 doi: 10.5614/cbms.2020.3.2.2
    [39] N. Goswami, B. Shanmukha, Stability and optimal control analysis of Zika virus with saturated incidence rate, Malaya J. Mate., 8 (2020), 331–342. https://doi.org/10.26637/MJM0802/0004 doi: 10.26637/MJM0802/0004
    [40] E. Bonyah, K. Okosun, Mathematical modeling of Zika virus, Asian Pacif. J. Trop. Dis., 6 (2016), 673–679. https://doi.org/10.1016/S2222-1808(16)61108-8 doi: 10.1016/S2222-1808(16)61108-8
    [41] A. Alshehri, M. El Hajji, Mathematical study for Zika virus transmission with general incidence rate, AIMS Math., 7 (2022), 7117–7142. https://doi.org/10.3934/math.2022397 doi: 10.3934/math.2022397
    [42] Y. Dumont, F. Chiroleu, C. Domerg, On a temporal model for the chikungunya disease: modeling, theory and numerics, Math. Biosc., 213 (2008), 80–91. https://doi.org/10.1016/j.mbs.2008.02.008 doi: 10.1016/j.mbs.2008.02.008
    [43] E. J. Routh, A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion, Ann Arbor: Macmillan and Company, 1877.
    [44] A. Hurwitz, Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt, Math. Ann., 46 (1895), 273–284.
    [45] M. El Hajji, Mathematical modeling for anaerobic digestion under the influence of leachate recirculation, AIMS Math., 8 (2023), 30287–30312. https://doi.org/10.3934/math.20231547 doi: 10.3934/math.20231547
    [46] M. El Hajji, Influence of the presence of a pathogen and leachate recirculation on a bacterial competition, Int. J. Biomath., online ready, 2024. https://doi.org/10.1142/S1793524524500293
    [47] F. Zhang, X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496–516. https://doi.org/10.1016/j.jmaa.2006.01.085 doi: 10.1016/j.jmaa.2006.01.085
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(569) PDF downloads(61) Cited by(3)

Article outline

Figures and Tables

Figures(9)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog