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Abstract: In order to study the impact of seasonality on Zika virus dynamics, we analyzed a non-
autonomous mathematical model for the Zika virus (ZIKV) transmission where we considered time-
dependent parameters. We proved that the system admitted a unique bounded positive solution and a
global attractor set. The basic reproduction number, R0, was defined using the next generation matrix
method for the case of fixed environment and as the spectral radius of a linear integral operator for
the case of seasonal environment. We proved that if R0 was smaller than the unity, then a disease-free
periodic solution was globally asymptotically stable, while if R0 was greater than the unity, then the
disease persisted. We validated the theoretical findings using several numerical examples.
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1. Introduction

Zika virus infection is a recurring mosquito-borne flavivirus that it is transmitted through mosquito
bites [1–3]. Zika virus was first detected in Uganda in 1947 [4]. According to the World Health
Organization, about 86 countries were affected by Zika virus since the outbreak began [5]. In 2015 and
during two years more than 4,000 pregnant women were infected with Zika virus in Brazil which affect
their new babies born [6, 7].

The mathematical modeling in epidemiology began in the late 19th century and played an important
role in studying, predicting, and proposing optimal control strategies for infectious diseases. A large
number of mathematical models were proposed for a variety of infectious diseases [8–11]. In particular,
several mathematical models predicting the transmission of Zika virus were proposed [12–14]. Many
diseases prove seasonal comportment and thus taking account of seasonally in diseases modeling
is important. For example, periodic fluctuations has the main impact in the evolution of disease
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transmissions which affect the contact rates that will change seasonally. Furthermore, periodic changes
can affect birth rates of populations and thus, vaccination programs change seasonally. Variants of
mathematical models are extensively used to model seasonally recurrent diseases. The mathematical
models that describe these diseases are seasonally forced. Therefore, the seasonality of infectious
diseases is very repetitive [15], and several mathematical models in epidemiology considering the
impact of seasonality were analyzed [14, 16–25]. When considering the seasonality in a mathematical
model, the basic reproduction number can be approximated either trough the time-averaged model
as in [26–28] or other ways as in [29–33]. In [34], the authors studied a periodic reaction-diffusion
mathematical model for Zika virus transmission with seasonal and spatial heterogeneous structure,
in [35], studied a partial differential equation model with periodic delay and in [36], the authors studied
the impact of weather seasonality on the spread of Zika fever. Our aim is to consider the impact of
the seasonality on the dynamics of ZIKV with a generalized incidence rate. The basic reproduction
number, R0, was defined using the next generation matrix method in the case of the fixed environment
and by using an integral linear operator for the case of seasonal environment. We perform the global
analysis of the proposed system. It is deduced that the disease-free solution is globally asymptotically
stable if R0 < 1. However, for the case where R0 > 1, we proved the persistence of disease. The
theoretical findings were confirmed by intensive numerical example.

The structure of this manuscript is as follows. In the next Section, we describe a generalised
compartmental model for ZIKV dynamics in a seasonal environment. In Section 3, we consider in the
first step the case of a fixed environment, we calculate R0, and we study the local and global stability of
the equilibria of the system. It is deduced that the disease-free steady state is stable if R0 < 1; however,
the endemic steady state is stable if R0 > 1. In section 6, we focus on the influence of the seasonality.
We prove that the virus-free periodic solution is stable if R0 < 1; however, the disease will persist if
R0 > 1. We give in Section 7 several numerical tests confirming the theoretical results. We finish by
giving some concluding remarks in section 8.

2. Generalised Zika epidemic model

The ZIKV transmission follows the following steps. Mosquitoes get the virus when biting infected
humans. Later, infected mosquitoes spread the ZIKV when biting uninfected humans. It should
be noted that infected mosquitoes remain infected until they die. However, an infected human can
recover and become immune against the disease. Thus, the model that we proposed here uses an
SI compartmental model to predict the virus transmission in the mosquitoes population and a SIR-
compartmental model to predict the virus spread within the human population [37]. Thus, the proposed
model is a compartmental one generalizing the ones given in [38–41] and described by the following
five dimensional dynamics of ordinary differential equations.

Ẋh
s (t) = mh(t)Λh(t) − βh(t) fh(Xv

i (t))Xh
s (t) − mh(t)Xh

s (t),
Ẋh

i (t) = βh(t) fh(Xv
i (t))Xh

s (t) − (rh(t) + u(t) + mh(t))Xh
i (t),

Ẋh
r (t) = (rh(t) + u(t))Xh

i (t) − mh(t)Xh
r (t),

Ẋv
s(t) = mv(t)Λv(t) − βv(t) fv(Xh

i (t))Xv
s(t) − mv(t)Xv

s(t),
Ẋv

i (t) = βv(t) fv(Xh
i (t))Xv

s(t) − mv(t)Xv
i (t)

(2.1)

with the positive initial condition (Xh
s (0), Xh

i (0), Xh
r (0), Xv

s(0), Xv
i (0)) ∈ R5

+. The susceptible human
are denoted by Xh

s , the infected human population are denoted by Xh
i and the recovered human are
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denoted by Xh
r . Similarly, the susceptible mosquito are denoted by Xv

s and the infected mosquito
are denoted by Xv

i . More details on the meaning of the parameters are resumed in Table 1. The
susceptible human catches up with the infection at a rate βh fh(Xv

i )Xh
s , with βh describing the contact

rate of uninfected human and infected mosquito, and fh is the infected mosquito to uninfected human
incidence rate. In the mosquito population, the susceptible mosquito catches up with the infection at a
rate βv fv(Xh

i )Xv
s , where βv is the contact rate of uninfected mosquito and infected human, and fv is the

infected human to uninfected mosquito incidence rate. The bilinear incidence rates in epidemiological
models are intensively used [42]. When considering real data of disease dynamics, incidence rates are
more appropriate with nonlinear forms [32].

Table 1. Meaning of parameters of (6.1).

Notation Definition
mhΛh Periodic human recruitment rate
mhΛv Periodic mosquito recruitment rate
fh Periodic incidence rate for Xv

i and Xh
s

fv Periodic incidence rate for Xh
i and Xv

s

βh Periodic contact rate for Xv
i and Xh

s

βv Periodic contact rate for Xh
i and Xv

s

mh Periodic human death rate
mv Periodic mosquito death rate
rh Periodic human natural recovery rate
u Periodic human recovery rate by the use of treatment

We suppose that the parameters of the considered system are non-negative continuous bounded and
T -periodic functions. We assume also that a susceptible human catches up with the infection only in
the presence of an infected mosquito and similarly, a susceptible mosquito becomes infected only in
the presence of an infected human and that transmission rates increase with the infected human and
infected mosquitoes. Therefore, the model (2.1) satisfied the assumption given hereafter.

Assumption 1. (1) fh and fv are non-negative C1(R+), increasing concave functions satisfying
fh(0) = fv(0) = 0.

(2) Λh(t), Λv(t), βh(t), βv(t), mh(t), mv(t), rh(t) and u(t) are continuous, bounded and T-periodic non-
negative functions.

Lemma 1. X f ′h(X) ≤ fh(X) ≤ X f ′h(0) and X f ′v (X) ≤ fv(X) ≤ X f ′v (0), ∀X ∈ R+.

Proof. For X, X1 ∈ R+, let g1(X) = fh(X) − X f ′h(X). By using Assumption 1, we have f ′h(X) ≥ 0 and
f ′′h (X) ≤ 0. Then, g′1(X) = −X f ′′h (X) > 0 and g1(X) ≥ g1(0) = 0 which leads to fh(X) ≥ X f ′h(X). By
the same way, let g2(X) = fh(X) − X f ′h(0) then g′2(X) = f ′h(X) − f ′h(0) < 0 and g2(X) ≤ g2(0) = 0 then
fh(X) ≤ X f ′h(0). The proof is the same for the function fv. □

3. Case of autonomous system

We start by studying the case of constant parameters and thus we obtain the following system
considered already in [41].
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Ẋh
s = mhΛh − βh fh(Xv

i )Xh
s − mhXh

s ,

Ẋh
i = βh fh(Xv

i )Xh
s − (rh + u + mh)Xh

i ,

Ẋh
r = (rh + u)Xh

i − mhXh
r ,

Ẋv
s = mvΛv − βv fv(Xh

i )Xv
s − mvXv

s ,

Ẋv
i = βv fv(Xh

i )Xv
s − mvXv

i ,

(3.1)

such that (Xh
s (0), Xh

i (0), Xh
r (0), Xv

s(0), Xv
i (0)) ∈ R5

+.
We begin by giving some basic properties of the system (3.1) as follows.

3.1. Basic properties

Lemma 2. The dynamics (3.1) admits an invariant attractor set given by

Γ1 =
{
(Xh

s , X
h
i , X

h
r , X

v
s , X

v
i ) ∈ R5

+; Xh
s + Xh

i + Xh
r = Λh, Xv

s + Xv
i = Λv

}
.

Proof. Since Ẋh
s |Xh

s=0= mhΛh > 0, Ẋh
i |Xh

i =0= βh fh(Xv
i )Xh

s ≥ 0, Ẋh
r |Xh

r=0= (u + rh)Xh
i ≥ 0, Ẋv

s |Xv
s=0=

mvΛv > 0, and Ẋv
i |Xv

i =0= βv fv(Xh
i )Xv

s ≥ 0. Therefore, R5
+ is invariant by the model (3.1). Let us denote

by Th = Xh
s + Xh

i + Xh
r and Tv = Xv

s + Xv
i to be the sizes of the total human and mosquitoes populations,

respectively. From Eq (3.1) we have Ṫh = mhΛh − mhTh. Hence Th = Λh if Th(0) = Λh. Similarly,
Ṫv = mvΛv − mvTv. Hence Tv = Λv if Tv(0) = Λv. □

Let us now discuss the existence and uniqueness of equilibrium points of system (3.1).

3.2. Steady states: existence and uniqueness

We start by calculating the basic reproduction number of our system (3.1) denoted by R0 [10, 11].
We consider the matrices

F =
(

0 βh f ′h(0)Λh

βv f ′v (0)Λv 0

)
and

V =
(

rh + u + mh 0
0 mv

)
.

Then,

FV−1 =


0

βh f ′h(0)Λh

mv
βv f ′v (0)Λv

(rh + u + mh)
0


and R0 is given by

R0 =

√
βhβv f ′h(0) f ′v (0)ΛhΛv

mv(rh + u + mh)
.

Lemma 3. • If R0 ≤ 1, then the system (3.1) admits an equilibrium point denoted by E0 =

(Λh, 0, 0,Λv, 0).
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• If R0 > 1, then the system (3.1) admits two steady states; E0 and an endemic equilibrium point
denoted by Ē.

Proof. To prove the existence and uniqueness of the equilibria according to the values of the basic
reproduction number, let E(Xh

s , X
h
i , X

h
r , X

v
s , X

v
i ) be any steady state satisfying

0 = mhΛh − βh fh(Xv
i )Xh

s − mhXh
s ,

0 = βh fh(Xv
i )Xh

s − (rh + u + mh)Xh
i ,

0 = (rh + u)Xh
i − mhXh

r ,

0 = mvΛv − βv fv(Xh
i )Xv

s − mvXv
s ,

0 = βv fv(Xh
i )Xv

s − mvXv
i ,

(3.2)

which is equivalent to

Xh
s = Λh −

rh + u + mh

mh
Xh

i , X
h
r =

(rh + u)Xh
i

mh
, Xv

i =
βv fv(Xh

i )Λv

βv fv(Xh
i ) + mv

,

and
Xv

s =
mvΛv

mv + βv fv(Xh
i )
.

Now, using the second equation of (3.2), one has

βh fh

( βv fv(Xh
i )Λv

βv fv(Xh
i ) + mv

)(
Λh −

(rh + u + mh)
mh

Xh
i

)
− (rh + u + mh)Xh

i = βh fh(Xv
i )Xh

s − (rh + u + mh)Xh
i

= 0.

If Xh
i = 0, then we obtain an equilibrium point given by the ZIKV-free equilibrium point E0 =

(Λh, 0, 0,Λv, 0). If Xh
i , 0, let us define the function g as follows:

g(Xh
i ) =

βh fh

(
βv fv(Xh

i )Λv

βv fv(Xh
i ) + mv

)
Xh

i

(
Λh −

(rh + u + mh)
mh

Xh
i

)
− (rh + u + mh).

The limit of the function g at the origin is

lim
Xh

i→0+
g(Xh

i ) = lim
Xh

i→0+

βh fh

( βv fv(Xh
i )Λv

βv fv(Xh
i ) + mv

)
Xh

i

Λh − (rh + u + mh)

=
βhβv f ′h(0) f ′v (0)ΛhΛv

mv
− (rh + u + mh)

= (rh + u + mh)(R2
0 − 1) > 0 if R0 > 1.

Note that the value of g at Λh is

g(Λh) =
βh

Λh
fh

(
βv fv(Λh)Λv

βv fv(Λh) + mv

) (
Λh −

(rh + u + mh)
mh

Λh

)
− (rh + u + mh)

= −
βhβv fh(Λv) fv(Λh)
βv fv(Λh) + mv

(rh + u)
mh

− (rh + u + mh) < 0.
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Furthermore, the derivative of g on (0,Λh) is expressed as follows

g′(Xh
i ) =

Xh
i Λv

mvβv f ′v (Xh
i )

(βv fv(Xh
i ) + mv)2

βh f ′h
( βv fv(Xh

i )Λv

βv fv(Xh
i ) + mv

)
− βh fh

( βv fv(Xh
i )Λv

βv fv(Xh
i ) + mv

)
(Xh

i )2

×
(
Λh −

(rh + u + mh)
mh

Xh
i

)
−

βh fh

( βv fv(Xh
i )Λv

βv fv(Xh
i ) + mv

)
Xh

i

(rh + u + mh)
mh

=

mvβhβv f ′v (Xh
i )Xh

i Λv

(βv fv(Xh
i ) + mv)2

f ′h
( βv fv(Xh

i )Λv

βv fv(Xh
i ) + mv

)
− βh fh

( βv fv(Xh
i )Λv

βv fv(Xh
i ) + mv

)
(Xh

i )2
Λh

−

mvβhβv f ′v (Xh
i )Xh

i Λv

(βv fv(Xh
i ) + mv)2

f ′h
( βv fv(Xh

i )Λv

βv fv(Xh
i ) + mv

)
(Xh

i )2

(rh + u + mh)
mh

Xh
i

≤

mvβh

(βv fv(Xh
i ) + mv)

fh

( βv fv(Xh
i )Λv

βv fv(Xh
i ) + mv

)
− βh fh

( βv fv(Xh
i )Λv

βv fv(Xh
i ) + mv

)
(Xh

i )2
Λh

−

mvβhβv f ′v (Xh
i )Xh

i Λv

(βv fv(Xh
i ) + mv)2

f ′h
( βv fv(Xh

i )Λv

βv fv(Xh
i ) + mv

)
(Xh

i )2

(rh + u + mh)
mh

Xh
i

= −
βv fv(Xh

i )

(βv fv(Xh
i ) + mv)(Xh

i )2
βh fh

( βv fv(Xh
i )Λv

βv fv(Xh
i ) + mv

)
Λh

−

mvβhβv f ′v (Xh
i )Xh

i Λv

(βv fv(Xh
i ) + mv)2

f ′h
( βv fv(Xh

i )Λv

βv fv(Xh
i ) + mv

)
(Xh

i )2

(rh + u + mh)
mh

Xh
i

< 0,∀Xh
i ∈ (0,Λh).

Therefore, we deduce that the function g is decreasing. Then g has a unique root X̄h
i ∈ (0,Λh).

Therefore,

X̄h
s = Λh −

rh + u + mh

mh
X̄h

i , X̄
h
r =

(rh + u)X̄h
i

mh
, X̄v

i =
Λvβv fv(X̄h

i )

βv fv(X̄h
i ) + mv

, X̄v
s =

mvΛv

mv + βv fv(X̄h
i )
,

and the endemic steady state denoted by Ē = (X̄h
s , X̄

h
i , X̄

h
r , X̄

v
s , X̄

v
i ) exists if only if R0 > 1. □

4. Local stability

We aim in this section to study the local stability of both equilibrium points E0 and Ē with respect
to the values R0.

Theorem 1. For R0 < 1, E0 is locally asymptotically stable (LAS).
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Proof. The Jacobian matrix for E0 is

J0 =


−mh 0 0 0 −βh f ′h(0)Λh

0 −(rh + u + mh) 0 0 βh f ′h(0)Λh

0 (rh + u) −mh 0 0
0 −βv f ′v (0)Λv 0 −mv 0
0 βv f ′v (0)Λv 0 0 −mv


admitting the following three eigenvalues λ1 = λ2 = −mh < 0 and λ3 = −mv < 0. By considering the
sub-matrix

S j0 :=
(
−(rh + u + mh) βh f ′h(0)Λh

βv f ′v (0)Λv −mv

)
where the trace satisfies Trace(S j0) = −(rh + u + mh + mv) < 0 and det(S j0) = mv(rh + u + mh) −
βhβv f ′h(0) f ′v (0)ΛhΛv = mv(rh+u+mh)(1−R2

0). Therefore J0 admits four eigenvalues with negative real
parts if R0 < 1 and then E0 is LAS for R0 < 1. □

Theorem 2. For R0 > 1, Ē = (X̄h
s , X̄

h
i , X̄

h
r , X̄

v
s , X̄

v
i ) is LAS.

Proof. By calculating the Jacobian matrix at Ē = (X̄h
s , X̄

h
i , X̄

h
r , X̄

v
s , X̄

v
i ), we obtain :

J1 =


−(βh fh(X̄v

i ) + mh) 0 0 0 −βh f ′h(X̄v
i )X̄h

s

βh fh(X̄v
i ) −(rh + u + mh) 0 0 βh f ′h(X̄v

i )X̄h
s

0 (rh + u) −mh 0 0
0 −βv f ′v (X̄h

i )X̄v
s 0 −(βv fv(X̄h

i ) + mv) 0
0 βv f ′v (X̄h

i )X̄v
s 0 βv fv(X̄h

i ) −mv


admitting the following characteristic polynomial:

P(X) = −(X + mv)(X + mh)(X3 + a2X2 + a1X + a0),

where

a2 = βv fv(X̄h
i ) + mv + βh fh(X̄v

i ) + mh + rh + u + mh > 0,
a1 = (βv fv(X̄h

i ) + mv + rh + u + mh)(βh fh(X̄v
i ) + mh) + (βv fv(X̄h

i ) + mv)(rh + u + mh)
−βhβv f ′v (X̄h

i ) f ′h(X̄v
i )X̄h

s X̄v
s ,

a0 = (βv fv(X̄h
i ) + mv)(βh fh(X̄v

i ) + mh)(rh + u + mh) − mhβhβv f ′v (X̄h
i ) f ′h(X̄v

i )X̄h
s X̄v

s .

Using the fact that

f ′h(X̄v
i ) ≤

fh(X̄v
i )

X̄v
i

, f ′v (X̄h
i ) ≤

fv(X̄h
i )

X̄h
i

, (rh + u + mh) =
βh fh(X̄v

i )X̄h
s

X̄h
i

,

and

mv =
βv fv(X̄h

i )X̄v
s

X̄v
i

,
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we obtains

a1 ≥ (βv fv(X̄h
i ) + mv)(βh fh(X̄v

i ) + mh) + (rh + u + mh)(βh fh(X̄v
i ) + mh)

+βhβv fh(X̄v
i ) fv(X̄h

i )
X̄h

s

X̄h
i

> 0,

a0 = β2
hβv f 2

h (X̄v
i ) fv(X̄h

i )
X̄h

s X̄v
s

X̄h
i X̄v

i

+ βhβv fh(X̄v
i ) fv(X̄h

i )
X̄h

s

X̄h
i

(βh fh(X̄v
i ) + mh) > 0,

a2a1 − a0 =
(
βv fv(X̄h

i ) + mv + βh fh(X̄v
i ) + mh

)
(βv fv(X̄h

i ) + mv)(βh fh(X̄v
i ) + mh)

+
(
βv fv(X̄h

i ) + mv + βh fh(X̄v
i ) + mh + rh + u + mh

)
(rh + u + mh)(βh fh(X̄v

i ) + mh)

+
(
βv fv(X̄h

i ) + mv + βh fh(X̄v
i ) + mh + rh + u + mh

)
(βv fv(X̄h

i ) + mv)(rh + u + mh)

−
(
βv fv(X̄h

i ) + mv + βh fh(X̄v
i ) + mh + rh + u

)
βhβv f ′v (X̄h

i ) f ′h(X̄v
i )X̄h

s X̄v
s

+βhβv fh(X̄v
i ) fv(X̄h

i )
X̄h

s

X̄h
i

[
βv fv(X̄h

i ) + mv + rh + u + mh
]

≥
(
βv fv(X̄h

i ) + mv + βh fh(X̄v
i ) + mh

)
(βv fv(X̄h

i ) + mv)(βh fh(X̄v
i ) + mh)

+
(
βv fv(X̄h

i ) + mv + βh fh(X̄v
i ) + mh + rh + u + mh

)
(rh + u + mh)(βh fh(X̄v

i ) + mh)

+mhβhβv fv(X̄h
i ) fh(X̄v

i )
X̄h

s X̄v
s

X̄h
i X̄v

i

+ βhβv fh(X̄v
i ) fv(X̄h

i )
X̄h

s

X̄h
i

[
βv fv(X̄h

i ) + mv + rh + u + mh
]

> 0.

By applying the Routh-Hurwitz criterion [43, 44], we deduce easily that the eigenvalues have negative
real parts (see [45, 46] for an other application). Thus, Ē is LAS. □

5. Global stability

Theorem 3. If R0 ≤ 1, then E0 is globally asymptotically stable (GAS).

Proof. Consider the Lyapunov function U0(Xh
s , X

h
i , X

h
r , X

v
s , X

v
i ):

U0(Xh
s , X

h
i , X

h
r , X

v
s , X

v
i ) =

mv

βh f ′h(0)
Xh

i + ΛhXv
i .

Clearly, U0(Xh
s , X

h
i , X

h
r , X

v
s , X

v
i ) > 0 for all Xh

s , X
h
i , X

h
r , X

v
s , X

v
i > 0 and U0 (Λh, 0, 0,Λv, 0) = 0. The time

derivative of U0 is :

dU0

dt
=

mv

βh f ′h(0)

(
βh fh(Xv

i )Xh
s − (rh + u + mh)Xh

i

)
+ Λh

(
βv fv(Xh

i )Xv
s − mvXv

i

)
≤

mv

βh f ′h(0)

(
βh f ′h(0)Xv

iΛh − (rh + u + mh)Xh
i

)
+ Λh

(
βv f ′v (0)Xh

i Λv − mvXv
i

)
≤

(
ΛhΛvβv f ′v (0) −

mv

βh f ′h(0)
(rh + u + mh)

)
Xh

i =
mv(rh + u + mh)

βh f ′h(0)
(R2

0 − 1)Xh
i .

If R0 ≤ 1, then
dU0

dt
≤ 0 for all Xh

s , X
h
i , X

h
r , X

v
s , X

v
i > 0. Let

W0 =

{
(Xh

s , X
h
i , X

h
r , X

v
s , X

v
i ) :

dU0

dt
= 0

}
.
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It can be easily shown that W0 = {E0} . Applying LaSalle’s invariance principle [9], we deduce that E0

is GAS when R0 ≤ 1. □

Define the set

Γ2 =
{
(Xh

s , X
h
i , X

h
r , X

v
s , X

v
i ) ∈ R5

+ : 0 < Xh
s ≤ X̄h

s , 0 < Xh
i ≤ X̄h

i , 0 < Xh
r ≤ X̄h

r , 0 < Xv
s ≤ X̄v

s , 0 < Xv
i ≤ X̄v

i

}
.

Theorem 4. If R0 > 1, then Ē = (X̄h
s , X̄

h
i , X̄

h
r , X̄

v
s , X̄

v
i ) is GAS in Γ2.

Proof. Let us define the function G(X) = X − 1 − ln(X) which is a positive function defined on R∗+
with derivative G′(X) = 1 −

1
X

. Consider the Lyapunov function denoted by Ū(Xh
s , X

h
i , X

h
r , X

v
s , X

v
i ) and

defined as:

Ū(Xh
s , X

h
i , X

h
r , X

v
s , X

v
i ) = G

(
Xh

s

X̄h
s

)
+G

(
Xh

i

X̄h
i

)
+G

(
Xv

s

X̄v
s

)
+G

(
Xv

i

X̄v
i

)
.

Clearly, Ū(Xh
s , X

h
i , X

h
r , X

v
s , X

v
i ) > 0 for all Xh

s , X
h
i , X

h
r , X

v
s , X

v
i > 0 and Ū(X̄h

s , X̄
h
i , X̄

h
r , X̄

v
s , X̄

v
i ) = 0. The time

derivative of Ū is :

dŪ
dt

=

(
1 −

X̄h
s

Xh
s

) (
mhΛh − βh fh(Xv

i )Xh
s − mhXh

s

)
+

(
1 −

X̄h
i

Xh
i

) (
βh fh(Xv

i )Xh
s − (rh + u + mh)Xh

i

)
+

(
1 −

X̄v
s

Xv
s

) (
mvΛv − βv fv(Xh

i )Xv
s − mvXv

s

)
+

(
1 −

X̄v
i

Xv
i

) (
βv fv(Xh

i )Xv
s − mvXv

i

)
.

By using the fact that

mhΛh = βh fh(X̄v
i )X̄h

s + mhX̄h
s , (rh + u + mh)X̄h

i = βh fh(X̄v
i )X̄h

s ,

mvΛv = βv fv(X̄h
i )X̄v

s + mvX̄v
s ,mvX̄v

i = βv fv(X̄h
i )X̄v

s ,

we get

dŪ
dt

=

(
1 −

X̄h
s

Xh
s

) (
βh fh(X̄v

i )X̄h
s + mhX̄h

s − βh fh(Xv
i )Xh

s − mhXh
s

)
+

(
1 −

X̄h
i

Xh
i

) (
βh fh(Xv

i )Xh
s − (rh + u + mh)Xh

i

)
+

(
1 −

X̄v
i

Xv
i

) (
βv fv(Xh

i )Xv
s − mvXv

i

)
+

(
1 −

X̄v
s

Xv
s

) (
βv fv(X̄h

i )X̄v
s + mvX̄v

s − βv fv(Xh
i )Xv

s − mvXv
s

)
= −

mh(Xh
s − X̄h

s )2

Xh
s

+

(
1 −

X̄h
s

Xh
s

) (
βh fh(X̄v

i )X̄h
s − βh fh(Xv

i )Xh
s

)
+

(
1 −

X̄h
i

Xh
i

) (
βh fh(Xv

i )Xh
s − (rh + u + mh)Xh

i

)
+

(
1 −

X̄v
i

Xv
i

) (
βv fv(Xh

i )Xv
s − mvXv

i

)
−

mv(Xv
s − X̄v

s)
2

Xv
s

+

(
1 −

X̄v
s

Xv
s

) (
βv fv(X̄h

i )X̄v
s − βv fv(Xh

i )Xv
s

)
= −

mh(Xh
s − X̄h

s )2

Xh
s

−
mv(Xv

s − X̄v
s)

2

Xv
s
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+
βh

Xh
s
(Xh

s − X̄h
s )

(
fh(X̄v

i )X̄h
s − fh(Xv

i )Xh
s

)
+
βv

Xv
s

(
Xv

s − X̄v
s

) (
fv(X̄h

i )X̄v
s − fv(Xh

i )Xv
s

)
+βh

(
Xh

i − X̄h
i

) (
fh(Xv

i )
Xh

s

Xh
i

− fh(X̄v
i )

X̄h
s

X̄h
i

)
+ βv

(
Xv

i − X̄v
i

) (
fv(Xh

i )
Xv

s

Xv
i
− fv(X̄h

i )
X̄v

s

X̄v
i

)
= −

mh(Xh
s − X̄h

s )2

Xh
s

−
mv(Xv

s − X̄v
s)

2

Xv
s

+
βh

Xh
s
(Xh

s − X̄h
s )

(
fh(X̄v

i )X̄h
s − fh(Xv

i )Xh
s

)
+
βv

Xv
s

(
Xv

s − X̄v
s

) (
fv(X̄h

i )X̄v
s − fv(Xh

i )Xv
s

)
+

(
1 −

X̄h
i

Xh
i

) (
βh fh(Xv

i )Xh
s − (rh + u + mh)X̄h

i

)
+

(
1 −

X̄v
i

Xv
i

) (
βv fv(Xh

i )Xv
s − mvX̄v

i

)
.

Therefore,
dŪ
dt
≤ 0 for all Xh

s , X
h
i , X

h
r , X

v
s , X

v
i ∈ Γ2 and

dŪ
dt
= 0 if and only if (Xh

s , X
h
i , X

h
r , X

v
s , X

v
i ) =

(X̄h
s , X̄

h
i , X̄

h
r , X̄

v
s , X̄

v
i ) = 0. Using the LaSalle’s invariance principle [9], we obtain the global stability of

Ē in Γ2. □

6. Case of periodic environment

In this section, we return to the main system (2.1) studying the seasonality influence that we write
it in the following way:

Ẋh
i (t) = βh(t) fh(Xv

i (t))Xh
s (t) − (rh(t) + u(t) + mh(t))Xh

i (t),
Ẋv

i (t) = βv(t) fv(Xh
i (t))Xv

s(t) − mv(t)Xv
i (t),

Ẋh
s (t) = mh(t)Λh(t) − βh(t) fh(Xv

i (t))Xh
s (t) − mh(t)Xh

s (t),
Ẋh

r (t) = (rh(t) + u(t))Xh
i (t) − mh(t)Xh

r (t),
Ẋv

s(t) = mv(t)Λv(t) − βv(t) fv(Xh
i (t))Xv

s(t) − mv(t)Xv
s(t),

(6.1)

with positive initial condition (Xh
i (0), Xv

i (0), Xh
s (0), Xh

r (0), Xv
s(0)) ∈ R5

+. Let ρ(t) to be a continuous,
positive T -periodic function. Let us denote by ρu = max

t∈[0,T )
ρ(t) and ρl = min

t∈[0,T )
ρ(t).

6.1. Preliminary

Let us consider the two-dimensional system{
Ẋh

s (t) = mh(t)(Λh(t) − Xh
s (t)),

Ẋv
s(t) = mv(t)(Λv(t) − Xv

s(t)),
(6.2)

such that (Xh
s (0), Xv

s(0)) ∈ R2
+. System (6.2) admits exactly one T -periodic solution (X̄h

s (t), X̄v
s(t))

globally attractive in R2
+ with X̄h

s (t) > 0 and X̄v
s(t) > 0. Then, the main system (6.1) admits exactly one

disease-free periodic solution E0(t) = (0, 0, X̄h
s (t), 0, X̄v

s(t)).

Proposition 1. The positive compact set

Σu =
{
(Xh

i , X
v
i , X

h
s , X

h
r , X

v
s) ∈ R

5
+ / Xh

s + Xh
i + Xh

r ≤ Λ
u
h, Xv

s + Xv
i ≤ Λ

u
v

}
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is an invariant and attractor of all solutions of model (6.1) such that

lim
t→∞

Xh
s (t) + Xh

i (t) + Xh
r (t) − X̄h

s (t) = 0,

lim
t→∞

Xv
s(t) + Xv

i (t) − X̄v
s(t) = 0.

(6.3)

Proof. It is easy to see that

Ẋh
s (t) + Ẋh

i (t) + Ẋh
r (t) = mh(t)[Λh(t) − (Xh

s (t) + Xh
i (t) + Xh

r (t))] ≤ 0, if Xh
s (t) + Xh

i (t) + Xh
r (t) ≥ Λu

h,

and Ẋv
s(t)+ Ẋv

i (t) = mh(t)[Λv(t)− (Xv
s(t)+Xv

i (t))] ≤ 0, if Xv
s(t)+Xv

i (t) ≥ Λu
v . Let us define B1(t) = Xh

s (t)+
Xh

i (t) + Xh
r (t) and B2(t) = Xv

s(t) + Xv
i (t). Consider x1(t) = B1(t) − X̄h

s (t), t ≥ 0, then ẋ1(t) = −mh(t)x1(t),
and therefore lim

t→∞
x1(t) = lim

t→∞
(B1(t) − X̄h

s (t)) = 0. Similarly, consider x2(t) = B2(t) − X̄v
s(t), t ≥ 0,

therefore ẋ2(t) = −mv(t)x2(t), and then lim
t→∞

x2(t) = lim
t→∞

(B2(t) − X̄v
s(t)) = 0. □

6.2. Disease-free trajectory

In this section, we shall define the expression of the basic reproduction number; R0, according to
the definition given by the theory in [32]. For X = (Xh

i , X
v
i , X

h
s , X

h
r , X

v
s), let

F (t, X) =


βh(t) fh(Xv

i (t))Xh
s (t)

βv(t) fv(Xh
i (t))Xv

s(t)
0
0
0


,V−(t, X) =


(rh(t) + u(t) + mh(t))Xh

i (t)
mv(t)Xv

i (t)
βh(t) fh(Xv

i (t))Xh
s (t) + mh(t)Xh

s (t)
mh(t)Xh

r (t)
βv(t) fv(Xh

i (t))Xv
s(t) + mv(t)Xv

s(t)


and

V+(t, X) =


0
0

mh(t)Λh(t)
(rh(t) + u(t))Xh

i (t)
mv(t)Λv(t)


andV(t, X) = V−(t, X)−V+(t, X). Therefore, the dynamics (6.1) can be written in the following way:

Ẋ = f (t, X(t)) = F (t, X) −V(t, X). (6.4)

Then, it easy to see that conditions (A1)–(A5) of [32, Section 1] are valid.
The dynamics (6.4) admits a disease-free periodic trajectory X̄(t) = E0(t) = (0, 0, X̄h

s (t), 0, X̄v
s(t)).

Let us define

M(t) =
(
∂ fi(t, X̄(t))

∂X j

)
3≤i, j≤5

with fi(t, X(t)) and Xi are the i-th components of f (t, X(t)) and X, respectively. An easy calculus
gives us

M(t) =


−mh(t) 0 0

0 −mh(t) 0
0 0 −mv(t)

 .
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Therefore, r(βM(T )) < 1 and the solution X̄(t) is linearly asymptotically stable in Ωs ={
(0, 0, Xh

s , 0, X
v
s) ∈ R5

+

}
. Therefore, the condition (A6) of [32, Section 1] holds.

Let us define A+(t) and A−(t) to be two matrices defined by

A+(t) =
(
∂Fi(t, X̄(t))

∂X j

)
1≤i, j≤2

and A−(t) =
(
∂Vi(t, X̄(t))

∂X j

)
1≤i, j≤2

.

An easy calculus gives us

A+(t) =
(

0 βh(t) f ′h(0)X̄h
s (t)

βv(t) f ′v (0)X̄v
s(t) 0

)
,

A−(t) =
(

(rh(t) + u(t) + mh(t)) 0
0 mv(t)

)
.

Consider Z(s1, s2), the solution of the dynamics
d
dt

Z(s1, s2) = −A−(s1)Z(s1, s2) for any s1 ≥ s2, with
Z(s1, s1) = I2. Thus, condition (A7) of [32, Section 1] is valid.

In order to define the basic reproduction number, R0, of (6.1), we define a linear integral operator
as follows

(Lφ)(ξ) =
∫ ∞

0
Z(ξ, ξ − w)A+(ξ − w)φ(ξ − w)dw, ∀ξ ∈ R, φ ∈ CT (6.5)

where CT is the ordered Banach space of T -periodic functions defined on R to R2. Therefore,

R0 = r(L).

Theorem 5. By using [32, Theorem 2.2], the following statements are verified:

• R0 < 1 ⇔ r(βF−V(T )) < 1.
• R0 = 1 ⇔ r(βF−V(T )) = 1.
• R0 > 1 ⇔ r(βF−V(T )) > 1.

We deduce that E0(t) is asymptotically stable if R0 < 1 and it is unstable if R0 > 1. Now, we show
that if R0 < 1 then E0(t) = (0, 0, X̄h

s (t), 0, X̄v
s(t)) is globally asymptotically stable and thus the disease is

extinct.

Theorem 6. E0(t) is globally asymptotically stable for R0 < 1, however, it is unstable for R0 > 1.

Proof. Since Theorem 5 affirms that E0(t) is locally stable for R0 < 1 and that it is unstable for R0 > 1,
we need to prove the global attractivity for R0 < 1. We obtained the limits (6.3) in Proposition 1;
therefore for κ1 > 0, there exists a time T1 > 0 satisfying Xh

s (t) + Xh
i (t) + Xh

r (t) ≤ X̄h
s (t) + κ1 and

Xv
s(t) + Xv

i (t) ≤ X̄v
s(t) + κ1 for t > T1. Therefore, Xh

s (t) ≤ X̄h
s (t) + κ1 and Xv

s(t) ≤ X̄v
s(t) + κ1; and{

Ẋh
i (t) ≤ βh(t) f ′h(0)Xv

i (t)(X̄h
s (t) + κ1) − (rh(t) + u(t) + mh(t))Xh

i (t),
Ẋv

i (t) ≤ βv(t) f ′v (0)Xh
i (t)(X̄v

s(t) + κ1) − mv(t)Xv
i (t),

(6.6)

for t > T1. Let us define the matrix M2(t) as follows

M2(t) =
(

0 βh(t) f ′h(0)
βv(t) f ′v (0) 0

)
. (6.7)
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Since r(φF−V(T )) < 1, we can chose κ1 > 0 small enough such that r(φF−V+κ1 M2(T )) < 1. Consider now
the following two-dimensional system, ˙̄Xh

i (t) = βh(t) f ′h(0)X̄v
i (t)(X̄h

s (t) + κ1) − (rh(t) + u(t) + mh(t))X̄h
i (t),

˙̄Xv
i (t) = βv(t) f ′v (0)X̄h

i (t)(X̄v
s(t) + κ1) − mv(t)X̄v

i (t).
(6.8)

From the theory in [47], there exists a positive function x1(t) that it is T -periodic satisfying w(t) ≤
x1(t)ea1t where w(t) =

(
Xh

i (t), Xv
i (t)

)T
and a1 =

1
T ln

(
r(φF−V+κ1 M2(T )

)
< 0. Thus, lim

t→∞
Xh

i (t) = 0 and

lim
t→∞

Xv
i (t) = 0. Furthermore, we have that lim

t→∞
Xh

s (t) − X̄h
s (t) = lim

t→∞
Z1(t) − Xh

s (t) − X̄h
i (t) − X̄h

r (t) = 0 and

lim
t→∞

Xv
s(t) − X̄v

s(t) = lim
t→∞

Z2(t) − Xv
i (t) − X̄v

s(t) = 0. Therefore, E0(t) satisfies the globally attractivity for
R0 < 1. □

Now, we show that if R0 > 1 then Xh
i (t) and Xv

i (t) are uniformly persistent and then the disease
persists in the population.

6.3. The endemic solution

Let us define X0 = (Xh
i (0), Xv

i (0), Xh
s (0), Xh

r (0), Xv
s(0)) and X1 = (0, 0, X̄h

s (0), 0, X̄v
s(0)) and consider

the Poincaré map Q : R5
+ → R

5
+ associated with the model (6.1) such that X0 7→ u(T, X0) is the solution

of system (6.1) with the initial value u(0, X0) = X0 ∈ R5
+. Consider the sets

Ω =
{
(Xh

i , X
v
i , X

h
s , X

h
r , X

v
s) ∈ R

5
+

}
, Ω0 = Int(R5

+), ∂Ω0 = Ω \Ω0

and
M∂ = {X0 ∈ ∂Ω0 : Qp(X0) ∈ ∂Ω0,∀ p ≥ 0} .

Note that Q is point dissipative. Furthermore, Ω and Ω0 are invariant. Through the theory in [8, 47],
we obtain

M∂ =
{
(0, 0, Xh

s , 0, X
v
s), Xh

s ≥ 0, Xv
s ≥ 0

}
(6.9)

with M∂ ⊇
{
(0, 0, Xh

s , 0, X
v
s), Xh

s ≥ 0, Xv
s ≥ 0

}
. It remains to prove that M∂ \{

(0, 0, Xh
s , 0, X

v
s), Xh

s ≥ 0, Xv
s ≥ 0

}
= ∅. Consider (X0) ∈ M∂ \

{
(0, 0, Xh

s , 0, X
v
s), Xh

s ≥ 0, Xv
s ≥ 0

}
.

If Xv
i (0) = 0 and 0 < Xh

i (0), then Ẋv
i (t)|t=0 = βv(t) fv(Xh

i (0))Xv
s(0) > 0. If Xv

i (0) > 0 and Xh
i (0) = 0,

therefore Xv
i (t), Xh

s (t) > 0 for any t > 0. Then, ∀ t > 0, we have

Xh
i (t) =

[
Xh

i (0) +
∫ t

0
(βh(ω) fh(Xv

i (ω))Xh
s (ω))e

∫ ω

0
(rh(z) + u(z) + mh(z))dz

dω
]

× e
−

∫ t

0
(rh(z) + u(z) + mh(z))dz

> 0

which implies that X(t) < ∂Ω0 for 0 < t ≪ 1 and that Ω0 is positively invariant and thus the satisfaction
of (6.9). Therefore, Q admits a fixed point X1 in M∂. We obtain the following result.

Theorem 7. If R0 > 1, then the system (6.1) has at least a periodic trajectory satisfying ∃ η > 0 such
that ∀ X0 ∈ Int(R+)2 × R3

+ and lim inf
t→∞

Xh
i (t) ≥ η > 0, lim inf

t→∞
Xv

i (t) ≥ η > 0.
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Proof. The goal is to prove the trajectories of (6.1) are uniformly persistent with respect to (Ω0, ∂Ω0)
using the properties of the Poincaré map, Q as in [8, Theorem 3.1.1]. Since r(φF−V(T )) > 1, then
∃ ε > 0 satisfying r(φF−V−εM2(T )) > 1. Let consider the following two-dimensional system{

Ẋh
sγ(t) = mh(t)Λh(t) − βh(t) fh(γ)Xh

sγ(t) − mh(t)Xh
sγ(t),

Ẋv
sγ(t) = mv(t)Λv(t) − βv(t) fv(γ)Xv

sγ(t) − mv(t)Xv
sγ(t).

(6.10)

The Poincaré map, Q related to the system (6.10) has a unique fixed point (X̄h
sγ, X̄

v
sγ) that it is globally

attractive. By using the implicit function theorem, γ 7→ (X̄h
sγ, X̄

v
sγ) is continuous. Thus, γ > 0 can be

chosen small enough such that X̄h
sγ(t) > X̄h

s (t) − ε, and X̄v
sγ(t) > X̄v

s(t) − ε, ∀ t > 0. Since the solution
is continuous with respect to X0, then there exists γ∗ > 0 satisfying ∥X0 − u(t, X1)∥ ≤ γ∗; therefore

∥u(t, X0) − u(t, X1)∥ < γ for all t ∈ [0,T ].

We aim to prove that

lim sup
p→∞

d(Qp(X0), X1) ≥ γ∗ ∀ X0 ∈ Ω0 (6.11)

by contradiction. Assume that lim sup
p→∞

d(Qp(X0), X1) < γ∗ for some X0 ∈ Ω0. We can assume that

d(Qp(X0), X1) < γ∗,∀ p > 0. Then we obtain

∥u(t,Qp(X0)) − u(t, X1)∥ < γ for all p > 0 and t ∈ [0,T ].

Assume that t ≥ 0 can be written as t = pT + t1 with t1 ∈ [0,T ) and p = ⌊
t
T
⌋ . Therefore

∥u(t, X0) − u(t, X1)∥ = ∥u(t1,Qp(X0)) − u(t1, X1)∥ < γ for all t ≥ 0.

Set (Xh
i (t), Xv

i (t), Xh
s (t), Xh

r (t), Xv
s(t)) = u(t, X0). Therefore 0 ≤ Xh

i (t), Xv
i (t) ≤ γ, t ≥ 0 and{

Ẋh
s (t) ≥ mh(t)Λh(t) − βh(t) fh(γ)Xh

s (t) − mh(t)Xh
s (t),

Ẋv
s(t) ≥ mv(t)Λv(t) − βv(t) fv(γ)Xv

s(t) − mv(t)Xv
s(t).

(6.12)

The Poincaré map, Q associated with the system (6.10) has a fixed point (X̄h
sγ, X̄

v
sγ) which is globally

attractive where X̄h
sγ(t) > X̄h

s − ε, and X̄v
sγ(t) > X̄v

s(t) − ε; then, ∃ T2 > 0 satisfying Xh
s (t) > X̄h

s (t) − ε
and Xv

s(t) > X̄v
s(t) − ε for t > T2. Then, for t > T2, we have{

Ẋh
i (t) ≥ βh(t) fh(Xv

i (t))(X̄h
s (t) − ε) − (rh(t) + u(t) + mh(t))Xh

i (t),
Ẋv

i (t) ≥ βv(t) fv(Xh
i (t))(X̄v

s(t) − ε) − mv(t)Xv
i (t).

(6.13)

Since r(φF−V−εM2(T )) > 1, then there exists a T -periodic positive function x(t) [47] satisfying J(t) ≥

eatx(t) with a =
1
T

ln r
(
φF−V−εM2(T )

)
> 0, thus lim

t→∞
Xh

i (t) = ∞ which is impossible since the solution is
bounded. Therefore, (6.11) is satisfied and Q is weakly uniformly persistent with respect to (Ω0, ∂Ω0).
Regarding Proposition 1, the Poincaré map, Q admits a global attractor. Therefore X1 is an isolated
invariant set of Ω and W s(X1) ∩ Ω0 = ∅. Thus any solution in M∂ should converge to X1 which is
an acyclic in M∂. Applying [8, Theorem 1.3.1 and Remark 1.3.1], we deduce that Q is uniformly
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persistent with respect to (Ω0, ∂Ω0). Moreover, using [8, Theorem 1.3.6], Q has a fixed point X̃0 =

(X̃h
i , X̃

v
i , X̃

h
s , X̃

h
r , X̃

v
s) ∈ Ω0 with X̃0 ∈ Int(R+)2 × R3

+.
Assume that X̃h

s = 0 and by inject this in system (6.1), X̃h
s (t) verifies

˙̃Xh
s (t) = mh(t)Λh(t) − βh(t) fh(X̃v

i (t))X̃h
s (t) − mh(t)X̃h

s (t), (6.14)

with X̃h
s = X̃h

s (nT ) = 0, n = 1, 2, 3, · · · . From Proposition 1, ∀ κ3 > 0, ∃ T3 > 0 such that X̃v
i (t) ≤ Λu

v+κ3

for t > T3. Therefore, we get
˙̃Xh

s (t) ≥ mh(t)Λh(t) − βh(t) fh(Λu
v + κ3)X̃h

s (t) − mh(t)X̃h
s (t), for t ≥ T3. (6.15)

∃ n̄ > 0 satisfying nT > T3,∀ n > n̄. Then we obtain

X̃h
s (nT ) ≥

[
X̃h

s (0) +
∫ nT

0
mh(z)Λh(z)e

∫ z

0

(
βh(t) fh(Λu

v + κ3) + mh(t)
)
dt

dz
]

× e
−

∫ nT

0

(
βh(t) fh(Λu

v + κ3) + mh(t)
)
dt

for n > n̄ which is impossible since X̃h
s (nT ) = 0. Therefore, X̃h

s (0) > 0 and then X̃0 is a T -periodic
positive solution of system (6.1). □

7. Numerical investigation

Our objective of this section is to present some numerical simulations regarding the proposed
mathematical model (2.1) that consider the influence of periodicity on the dynamics of the Zika virus.
This model is a five dimensional compartmental model considering the dynamics of a population
consisting of susceptible humans, infected humans, recovered humans, susceptible and infected
mosquitoes. Several numerical illustrations will be used to exemplify the suitability and utility of
the proposed Zika virus structure in the seasonal environment. All numerical simulations were done
using the MATLAB R2024a software.

We used Monod-type functions for modelling both incidence rates:

fh(X) =
X

ζh + X
and fv(X) =

X
ζv + X

where ζh and ζv are nonnegative constants. Note that the functions fh and fv are continuous, increasing
and concave. Many diseases prove seasonal comportment and thus taking account of seasonally
in diseases modeling is important. Variants of mathematical models are extensively used to model
seasonally recurrent diseases. Seasonality may come from various sources. A famous example of
a seasonally forced function can take the following form k(t) = k0(1 + k1 cos(2π(t + ψ))), where
k0 ≥ 0 is the baseline transmission parameter, 0 < k1 ≤ 1 is the amplitude of the seasonal variation
in transmission and 0 ≤ ψ ≤ 1 is the phase angle. Therefore, for all numerical simulations, the
periodic functions that reflect the influence of seasonality on the dynamics of the Zika virus dynamics
are given by

Λh(t) = Λ0
h(1 + Λ1

h cos(2π(t + ψ))), Λv(t) = Λ0
v(1 + Λ1

v cos(2π(t + ψ))),
βh(t) = β0

h(1 + β1
h cos(2π(t + ψ))), βv(t) = β0

v(1 + β1
v cos(2π(t + ψ))),

mh(t) = m0
h(1 + m1

h cos(2π(t + ψ))), mv(t) = m0
v(1 + m1

v cos(2π(t + ψ))),
rh(t) = r0

h(1 + r1
h cos(2π(t + ψ))), u(t) = u0(1 + u1 cos(2π(t + ψ))).

(7.1)
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The parameter values employed to generate the figures in this section are as follows: The constants
ζh, ζv, Λ0

h, Λ0
v , β0

h, β0
v , m0

h, m0
v , r0

h and u0 and the phase shift ψ are given in Table 2. Unfortunately,
we have no biological data to use for our simulations. Parameters values considered here have no
biological meaning and are chosen arbitrarily.

The seasonal cycles frequencies Λ1
h, Λ1

v , β1
h, β1

v , m1
h, m1

v , r1
h and u1 are displayed in Table 3.

Table 2. ζh, ζv, ψ, Λ0
h, Λ0

v , m0
h, m0

v , r0
h and u0.

Parameter ζh ζv Λ0
h Λ0

v m0
h m0

v r0
h u0 ψ

Value 200 100 10 9 0.1 0.15 0.3 0.35 0

Table 3. Λ1
h, Λ1

v , β1
h, β1

v , m1
h, m1

v , r1
h and u1.

Parameter Λ1
h Λ1

v β1
h β1

v m1
h m1

v r1
h u1

Value 0.43 0.49 0.41 0.72 0.42 0.38 0.58 0.75

Numerical investigations of the considered model are discussed for three cases, namely, autonomous
system (the parameters are assumed to be constants), periodic contact between human and mosquito
(where only contact rates are assumed to be periodic functions with same period) and full seasonal
environment (where all parameters are assumed to be periodic functions with same period).

7.1. Autonomous system

The numerical examples given in this subsection deal with the case of autonomous system with
fixed parameters.



Ẋh
s (t) = m0

hΛ
0
h − β

0
h fh(Xv

i (t))Xh
s (t) − m0

hXh
s (t),

Ẋh
i (t) = β0

h fh(Xv
i (t))Xh

s (t) − (r0
h + u0 + m0

h)Xh
i (t),

Ẋh
r (t) = (r0

h + u0)Xh
i (t) − m0

hXh
r (t),

Ẋv
s(t) = m0

vΛ
0
v − β

0
v fv(Xh

i (t))Xv
s(t) − m0

vXv
s(t),

Ẋv
i (t) = β0

v fv(Xh
i (t))Xv

s(t) − m0
vXv

i (t),

(7.2)

with (Xh
s (0), Xh

i (0), Xh
r (0), Xv

s(0), Xv
i (0)) ∈ R5

+. We calculated R0 using the next generation matrix
method [10, 11].

In Figure 1 we present the numerical simulations of the model (7.2) for two values of the basic
reproduction number. As it can be seen, the solutions of the system (7.2) converge to endemic
equilibrium point, Ē = (X̄h

s , X̄
h
i , X̄

h
r , X̄

v
s , X̄

v
i ), reflecting the persistence of disease when R0 > 1 (left),

however, it converges asymptotically to the disease-free equilibrium point E0 = (Λ0
h, 0, 0,Λ

0
v , 0) for

the case where R0 ≤ 1 (right). In Figures 2 and 3, we consider several initial conditions where
all corresponding solutions converge to the same equilibrium point for both cases of the R0 values.
Therefore, Figures 2 and 3 confirm the global stability of E0 and Ē for the cases R0 ≤ 1 and R0 > 1,
respectively.
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Figure 1. Trajectories of the system (7.2) for β0
h = 15 and β0

v = 12 then R0 ≈ 2.68 > 1(left)
and for β0

h = 3 and β0
v = 2.5 then R0 ≈ 0.55 < 1 (right).

Figure 2. Trajectories of the system (7.2) for β0
h = 15 and β0

v = 12 then R0 ≈ 2.68 > 1.

Figure 3. Trajectories of the system (7.2) for β0
h = 3 and β0

v = 2.5 then R0 ≈ 0.55 < 1.

AIMS Mathematics Volume 9, Issue 7, 19361–19384.



19378

7.2. Case of seasonal contact

The numerical examples given in this subsection deal with the case where only contact between
humans and mosquitoes is assumed to be seasonal and then the contact rates, βh and βv are periodic
functions. 

Ẋh
s (t) = m0

hΛ
0
h − βh(t) fh(Xv

i (t))Xh
s (t) − m0

hXh
s (t),

Ẋh
i (t) = βh(t) fh(Xv

i (t))Xh
s (t) − (r0

h + u0 + m0
h)Xh

i (t),
Ẋh

r (t) = (r0
h + u0)Xh

i (t) − m0
hXh

r (t),
Ẋv

s(t) = m0
vΛ

0
v − βv(t) fv(Xh

i (t))Xv
s(t) − m0

vXv
s(t),

Ẋv
i (t) = βv(t) fv(Xh

i (t))Xv
s(t) − m0

vXv
i (t).

(7.3)

with (Xh
s (0), Xh

i (0), Xh
r (0), Xv

s(0), Xv
i (0)) ∈ R5

+. We calculated R0 using the time-averaged dynamics as
in [26, 27]. Several other approximations of R0 are used in [30, 31]. In Figure 4, the solutions of
the system (7.3) converge to a periodic orbit reflecting the persistence of disease when R0 > 1 (left),
however, it converges asymptotically to the periodic solution E0(t) = (X̄h

s (t), 0, 0, X̄v
s(t), 0) for the case

where R0 ≤ 1 (right). In Figures 5 and 6, we consider several initial conditions where all corresponding
solutions converge to the same periodic solution for both cases of the R0 values. Therefore, Figures 5
and 6 confirm the global stability of E0(t) = (X̄h

s (t), 0, 0, X̄v
s(t), 0) and the persistence of the disease for

the cases R0 ≤ 1 and R0 > 1, respectively.

7.3. Full periodic system

The numerical examples given in this subsection deal with the full seasonal environment where all
the parameters of the system are periodic functions.



Ẋh
s (t) = mh(t)Λh(t) − βh(t) fh(Xv

i (t))Xh
s (t) − mh(t)Xh

s (t),
Ẋh

i (t) = βh(t) fh(Xv
i (t))Xh

s (t) − (rh(t) + u(t) + mh(t))Xh
i (t),

Ẋh
r (t) = (rh(t) + u(t))Xh

i (t) − mh(t)Xh
r (t),

Ẋv
s(t) = mv(t)Λv(t) − βv(t) fv(Xh

i (t))Xv
s(t) − mv(t)Xv

s(t),
Ẋv

i (t) = βv(t) fv(Xh
i (t))Xv

s(t) − mv(t)Xv
i (t).

(7.4)

with (Xh
s (0), Xh

i (0), Xh
r (0), Xv

s(0), Xv
i (0)) ∈ R5

+. We calculated R0 using the time-averaged dynamics
as in [26, 27]. In Figure 7, the solutions of the system (7.4) converge to a periodic orbit reflecting
the persistence of disease when R0 > 1 (left), however, it converges asymptotically to the periodic
solution E0(t) = (X̄h

s (t), 0, 0, X̄v
s(t), 0) for the case where R0 ≤ 1 (right). In Figures 8 and 9, we consider

several initial conditions where all corresponding solutions converge to the same periodic solution
for both cases of the R0 values. Therefore, Figures 8 and 9 confirm the global stability of E0(t) =
(X̄h

s (t), 0, 0, X̄v
s(t), 0) and the persistence of the disease for the cases R0 ≤ 1 and R0 > 1, respectively.

AIMS Mathematics Volume 9, Issue 7, 19361–19384.



19379

Figure 4. Trajectories of the system (7.3) for β0
h = 15 and β0

v = 12 then R0 ≈ 2.68 >

1(left) and for β0
h = 3 and β0

v = 2.5 then R0 ≈ 0.55 < 1 (right). Note that the solution of
the considered model in a seasonal contact between human and mosquito shows a periodic
behavior with an average close to the solution of the model in a fixed environment.

Figure 5. Trajectories of the system (7.3) for β0
h = 15 and β0

v = 12 then R0 ≈ 2.68 > 1.

Figure 6. Trajectories of the system (7.3) for β0
h = 3 and β0

v = 2.5 then R0 ≈ 0.55 < 1.
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Figure 7. Trajectories of the system (7.4) for β0
h = 15 and β0

v = 12 then R0 ≈ 2.68 > 1
(left) and for β0

h = 3 and β0
v = 2.5 then R0 ≈ 0.55 < 1 (right). Note that the solution of the

considered model in a full environment shows a periodic behavior with an average close to
the solution of the model in a fixed environment.

Figure 8. Trajectories of the system (7.4) for β0
h = 15 and β0

v = 12 then R0 ≈ 2.68 > 1.

Figure 9. Trajectories of the system (7.4) for β0
h = 3 and β0

v = 2.5 then R0 ≈ 0.55 < 1.
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8. Conclusions

In this research, we devised a reliable Zika virus model considering the impact of seasonality
observed in real life. The qualitative analysis of this model is presented in both cases, fixed and
seasonal environments. We calculated the basic reproduction number using two different methods,
the next generation matrix method in the case of the fixed environment and through a linear integral
operator in the case of the seasonal environment. Therefore, we investigated the local and global
stability for both cases. It is deduced that if R0 ≤ 1, trajectories of the system approach a disease-free
periodic solution and then the disease goes extinct; however, if R0 > 1, the disease persists and the
trajectories of the system converge to a limit cycle. In our case, the solution of the considered model in
a seasonal case shows a periodic behavior with an average close to the solution of the model in a fixed
environment. This means that the main difference between the autonomous system and the periodic
environment case is qualitative.
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