In this paper, we first propose a novel fully-decoupled, linear and second-order time accurate scheme to solve the phase-field model of non-Newtonian two-phase flows; the developed scheme is based on a stabilized Scalar Auxiliary Variable (SAV) approach. We strictly prove the unconditional energy stability of the scheme and conduct a numerical simulation to show the accuracy and stability of the proposed scheme. Moreover, we can observe that the parameter $ r $ in non-Newtonian fluids can affect spatial patterns during phase transitions, which directly enables us to design and perform optimal control experiments in engineering processes.
Citation: Wei Li, Guangying Lv. A fully-decoupled energy stable scheme for the phase-field model of non-Newtonian two-phase flows[J]. AIMS Mathematics, 2024, 9(7): 19385-19396. doi: 10.3934/math.2024944
In this paper, we first propose a novel fully-decoupled, linear and second-order time accurate scheme to solve the phase-field model of non-Newtonian two-phase flows; the developed scheme is based on a stabilized Scalar Auxiliary Variable (SAV) approach. We strictly prove the unconditional energy stability of the scheme and conduct a numerical simulation to show the accuracy and stability of the proposed scheme. Moreover, we can observe that the parameter $ r $ in non-Newtonian fluids can affect spatial patterns during phase transitions, which directly enables us to design and perform optimal control experiments in engineering processes.
[1] | H. Abels, L. Diening, Y. Terasawa, Existence of weak solutions for a diffuse interface model of non-Newtonian two-phase flows, Nonlinear Anal. Real World Appl., 15 (2014) 149–157. http://dx.DOI10.1016/j.nonrwa.2013.07.001 |
[2] | J. B. Barrett, W. B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math., 68 (1994), 437–456. https://doi.org/10.1007/s002110050071 doi: 10.1007/s002110050071 |
[3] | X. Bian, L. Zhao, Weak solutions for a degenerate phase-field model via Galerkin approximation, Math. Methods Appl. Sci., 47 (2024), 5441–5460. https://doi.10.1002/mma.9872 doi: 10.1002/mma.9872 |
[4] | J. Schr$\ddot{o}$der, M. Pise, D. Brands, G. Gebuhr, S. Anders, Phase-field modeling of fracture in high performance concrete during low-cycle fatigue: Numerical calibration and experimental validation, Comput. Method. Appl. M., 398 (2022), 115181. https://doi.10.1016/j.cma.2022.115181 doi: 10.1016/j.cma.2022.115181 |
[5] | M. Pise, G. Gebuhr, D. Brands, J. Schr$\ddot{o}$der, S. Anders, Phase-field modeling for failure behavior of reinforced ultra-high performance concrete at low cycle fatigue, Proceed. Appl. Math. Mech., 23 (2023), e202300233. https://doi.10.1002/pamm.202300233 doi: 10.1002/pamm.202300233 |
[6] | J. Shen, X. Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscositites, SIAM J. Sci. Comput., 32 (2010), 1159–1179. https://doi.org/10.1137/09075860X doi: 10.1137/09075860X |
[7] | J. Shen, X. Yang, Decoupled energy stable schemes for phase field models of two phase complex fluids, SIAM J. Sci. Comput., 36 (2014), 122–145. https://doi.org/10.1137/13092159 doi: 10.1137/13092159 |
[8] | S. Minjeaud, An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model, Numer. Meth. Part. D. E., 29 (2013), 584–618. https://doi.org/10.1002/num.21721 doi: 10.1002/num.21721 |
[9] | D. Han, X. Wang, A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation, J. Comput. Phys., 290 (2015), 139–156. https://doi.org/10.1016/j.jcp.2015.02.046 doi: 10.1016/j.jcp.2015.02.046 |
[10] | X. Yang, H. Yu, Efficient second order unconditionally stable schemes for a phase field moving contact line model using an invariant energy quadratization approach, SIAM J. Sci. Comput., 40 (2018), B889–B914. https://doi.org/10.1137/17M1125005 doi: 10.1137/17M1125005 |
[11] | Y. Tang, The stabilized exponential-SAV approach for the Allen-Cahn equation with a general mobility, Appl. Math. Lett., 152 (2024), Paper No. 109037, 6. https://doi.org/10.1016/j.aml.2024.109037 doi: 10.1016/j.aml.2024.109037 |
[12] | F. Zhang, H. Sun, S. Tao, Efficient and unconditionally energy stable exponential-SAV schemes for the phase field crystal equation, Appl. Math. Comput., 470 (2024), Paper No. 128592, 20. https://doi.org/10.1016/j.amc.2024.128592 doi: 10.1016/j.amc.2024.128592 |
[13] | X. Li, W. Wang, J. Shen, Stability and error analysis of IMEX SAV schemes for the magneto-hydrodynamic equations, SIAM J. Numer. Anal., 60 (2022), 1026-1054. https://doi.org/10.1137/21M1430376 doi: 10.1137/21M1430376 |
[14] | Y. Tang, G. Zou, J. Li, Unconditionally energy-stable finite element scheme for the chemotaxis-fluid system, J. Sci. Comput., 95 (2023), Paper No. 1, 34. https://doi.org/10.1007/s10915-023-02118-4 doi: 10.1007/s10915-023-02118-4 |
[15] | X. Li, J. Shen, On fully decoupled MSAV schemes for the Cahn-Hilliard-Navier-Stokes model of two-phase incompressible flows. Math. Models Methods Appl. Sci., 32 (2022), 457–495. https://doi.org/10.1142/S0218202522500117 |
[16] | X. Li, J. Shen, Error analysis of the SAV-MAC scheme for the Navier-Stokes equations, SIAM J. Numer. Anal., 58 (2020), 2465–2491. https://doi.org/10.1137/19M1288267 doi: 10.1137/19M1288267 |
[17] | J. Shen, J. Xu, Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows, SIAM J. Numer. Anal., 56 (2018), 2895–2912. https://doi.org/10.1137/17M1159968 doi: 10.1137/17M1159968 |
[18] | X. Yang, A new efficient fully-decoupled and second-order time-accurate scheme for Cahn-Hilliard phase-field model of three-phase incompressible flow, Comput. Methods Appl. Mech. Engrg., 376 (2021), 113589. https://doi.org/10.1016/j.cma.2020.113589 doi: 10.1016/j.cma.2020.113589 |
[19] | X. Yang, A novel fully-decoupled, second-order and energy stable numerical scheme of the conserved Allen-Cahn type flow-coupled binary surfactant model, Comput. Method. Appl. M., 373 (2021), 113502. https://doi.org/10.1016/j.cma.2020.113502 doi: 10.1016/j.cma.2020.113502 |
[20] | X. Yang, Efficient and energy stable scheme for the hydrodynamically coupled three components Cahn-Hilliard phase-field model using the stabilized-Invariant Energy Quadratization (S-IEQ) Approach, J. Comput. Phys., 438 (2021), 110342. https://doi.org/10.1016/j.jcp.2021.110342 doi: 10.1016/j.jcp.2021.110342 |
[21] | J. Shen, X. Yang, Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows, Chinese Ann. Math. Ser. B, 31 (2010), 743–758. https://doi.org/10.1007/s11401-010-0599-y doi: 10.1007/s11401-010-0599-y |
[22] | J. Shen, X. Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32 (2010), 1159–1179. https://doi.org/10.1137/09075860 doi: 10.1137/09075860 |
[23] | Y. Cai, H. Choi, J. Shen, Error estimates for time discretizations of Cahn-Hilliard and Allen-Cahn phase-field models for two-phase incompressible flows, Numer. Math., 137 (2017), 417–449. https://doi.org/10.1007/s00211-017-0875-9 doi: 10.1007/s00211-017-0875-9 |
[24] | Y. Cai, J. Shen, Error estimates for a fully discretized scheme to a Cahn-Hilliard phase-field model for two-phase incompressible flows, Math. Comp., 87 (2018), 2057–2090. https://doi.org/10.1090/mcom/3280 doi: 10.1090/mcom/3280 |