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Abstract: In this paper, we first propose a novel fully-decoupled, linear and second-order time
accurate scheme to solve the phase-field model of non-Newtonian two-phase flows; the developed
scheme is based on a stabilized Scalar Auxiliary Variable (SAV) approach. We strictly prove the
unconditional energy stability of the scheme and conduct a numerical simulation to show the accuracy
and stability of the proposed scheme. Moreover, we can observe that the parameter r in non-Newtonian
fluids can affect spatial patterns during phase transitions, which directly enables us to design and
perform optimal control experiments in engineering processes.
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1. Introduction

In this paper, we focus on the numerical methods for a non-Newtonian fluid dynamical system
coupled to the Cahn-Hilliard equation [1], which is governed by the following:

ϕt + ∇ · (uϕ) − ∇ · (M∇µ) = 0 in Ω × (0,T ),

µ + ∆ϕ − f (ϕ) = 0 in Ω,

ut + (u · ∇)u − ∇ · σ(u) + ∇p + ϕ∇µ = 0 in Ω × (0,T ),

∇ · u = 0 in Ω,

(1.1)
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where T > 0, Ω ⊂ R2 is a bounded domain, f (ϕ) = F′(ϕ) = ϕ3 − ϕ, u represents the velocity, p is
the pressure, µ denotes the chemical potential of the binary mixture depending on the phase function
ϕ, and M > 0 is the mobility. Here, we consider the extra-stress tensor σ(u) that obeys the following
Carreau’s law [2]:

σ(u) = {ν1 + ν2(1 + κ|D(u)|2)
r−2

2 }D(u), (1.2)

where D(u) = (∇u + ∇uT )/2 represents the strain and the parameters ν1 > 0, ν2 > 0, and κ > 0. The
fluids are characterized to have a shear-thinning behavior for 1 < r < 2 and a shear-thickening behavior
for r > 2.

Throughout the paper, we close the aforementioned system (1.1) with the following initial and
boundary conditions:  ϕ(x, 0) = ϕ0,u(x, 0) = u0,

u · n|∂Ω = 0, ∇ϕ · n|∂Ω = 0, M∇µ · n|∂Ω = 0,
(1.3)

where x ∈ Ω is the spatial variables, and n denotes the unit outward normal to the boundary ∂Ω.
Phase-field models have been widely studied by many authors. Bian-Zhang [3] established the weak
solutions for a degenerate phase-field model via a Galerkin approximation. In view of a physical point,
the background of the phase-field model is well studied, see [4, 5].

For the case r = 2 (or κ = 0) in (1.2), the system (1.1) is reduced to the phase-field models
related to the Newtonian-fluid flows. As far as the author knows, for the classical phase field model of
two-phase flows the only available energy-stable fully-decoupled scheme was developed in [6–8], in
which a full decoupling structure was achieved by adding a stabilization term to the explicit advection
velocity term. However, this decoupling type scheme is only first-order accurate in time and it requires
more calculations at each time step. A second-order fully-decoupled scheme was developed in [9,
10], in which the advection and surface tension terms were discretized through explicit and implicit
combination methods, which can inevitably lead to either expensive nonlinear fully-coupled schemes
or relatively fast linear fully-coupled schemes. Therefore, the focus of this paper to develop a scheme
for the given system that maintains an unconditionally energy stable scheme and a second-order time
accuracy, while also achieving full decoupling calculations. The scalar auxiliary variable V(t) is used
to develop a stabilized Scalar Auxiliary Variable (SAV) approach, which has been studied by many
authors in many equations such as the Allen-Cahn equation, the phase field crystal equation, and the
magneto-hydrodynamic equations, see [11–13]. The reason why V(t) can be used as a stabilizer is
that we use the explicit format to deal with (u, ϕ), thus producing an error. In order to overcome this
disadvantage, the auxiliary variable is introduced, see Lemma 2.2 for the details. Previous studies have
considered a fully decoupled scheme with a stabilization term, which was essential for the phase-field
model of non-Newtonian two-phase flows [14, 15]. The numerical approaches to solve the phase-field
model of non-Newtonian two-phase flows contain the classical finite difference, and the finite element
method, and we will provide the concrete scheme. Inspired by the works of SAV methods [16, 17]
and the invariant energy quadratization (IEQ) methods [18–20], we develop a novel stabilized-SAV
method to solve the coupled system (1.1). The introduction of the new auxiliary variable can provide
a sufficient skill to eliminate all the troublesome nonlinear terms, which can be independently solved
to achieve the fully-decoupled structure.

The rest of the paper is organized as follows. In the next section, we derive an equivalent system
of the phase-field model of non-Newtonian two-phase flows with the SAV approach. In Section 3, we
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propose an efficient, fully-decoupled and second-order time-accurate scheme to solve the given system.
In Section 4, a numerical simulation is performed to confirm the effectiveness of the proposed method.

2. Equivalent system with the SAV approach

To begin with, in order to study the interaction of the phase-fluid interface problem, the total energy
of the dynamic system is defined as a sum of the kinetic energy Ekin(u) and the interfacial free energy
E f (ϕ):

Etot[u, ϕ] := Ekin(u) + E f (ϕ) =
∫
Ω

1
2
|u|2dx +

∫
Ω

(
1
2
|∇ϕ|2 + F(ϕ))dx. (2.1)

Then, the system of phase-field models within the context of non-Newtonian fluids satisfies the
following basic energy law. We say (ϕ, µ,u, p) is a solution of system (1.1)–(1.3) if (ϕ, µ,u, p) satisfies
(1.1)–(1.3) in a weak sense.

Lemma 2.1. Let (ϕ, µ,u, p) be the solution to the system (1.1)–(1.3). Then, the following energy
law holds:

d
dt

Etot[u, ϕ] +
∫
Ω

{ν1|D(u)|2 + ν2(1 + κ|D(u)|2)
r−2

2 |D(u)|2 + |
√

M∇µ|2}dx = 0. (2.2)

Moreover, suppose that the initial values u0 and ϕ0 satisfy Etot(u0, ϕ0) < ∞; then, we have the following
energy dissipation law:

Etot(u(t), ϕ(t)) ≤ Etot(u0, ϕ0). (2.3)

Proof. From (1.1)–(1.3), making use of integration by parts and using the fact that ∇ · u = 0, then
we have the following:

d
dt

Etot[u, ϕ] =
∫
Ω

(
δEtot

δu
·
∂u
∂t
+
δEtot

δϕ
·
∂ϕ

∂t
)dx

=

∫
Ω

u · {−(u · ∇)u + ∇ · (ν1D(u)) + ∇ · (ν2(1 + κ|D(u)|2)
r−2

2 D(u)) − ∇p − ϕ∇µ}dx

+

∫
Ω

µ · {−∇ · (uϕ) + ∇ · (M∇µ)}dx

= −

∫
Ω

(ν1|D(u)|2 + ν2(1 + κ|D(u)|2)
r−2

2 |D(u)|2 + |
√

M∇µ|2)dx, (2.4)

where δEtot/δϕ denotes the variational derivative. Therefore, the proof of the desired energy law (2.2)
is completed. Besides, the estimate (2.3) can be easily obtained by integrating (2.2) from 0 to t.

Remark 2.1. When deriving (2.2), it is worth noting that three nonlinear terms do not present any
difficulties because they are all canceled out. More precisely, we have the following two identities:∫

Ω

(∇ · (uϕ)µ + ϕ∇µ · u)dx = 0,
∫
Ω

(u · ∇)u · udx = 0, (2.5)

where the first one is due to integration by parts, the second one is due to the divergence-free condition
of u. The two identities mean that the nonlinear terms do not contribute either to the total free energy
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or the energy diffusion rate. In the next section, when developing a decoupling type scheme, we will
take advantage of this often-overlooked feature of “zero-energy-contribution”.

Now, we develop a stabilized-SAV approach to design a linear scheme as follows. A scalar auxiliary
variable is defined by

V(t) =
√

E(t), (2.6)

with an energy function

E(t) =
1
2

∫
Ω

|u|2dx +
∫
Ω

(F(ϕ) −
β

2
ϕ2)dx +C0, (2.7)

where β is an appropriate stabilized parameter and C0 > 0 is a constant to guarantee that the radicand
is positive. It is easy to check that

δV
δu
=

1
2
√

E(t)
δE
δu
=

u
2V(t)

,
δV
δϕ
=

1
2
√

E(t)
δE
δϕ
=

H(ϕ)
2V(t)

, (2.8)

where we denote H(ϕ) = δE
δϕ

. Therefore, we can rewrite the energy of (2.1) as the following
formulation:

Etot(u, ϕ; V) =
∫
Ω

(
1
2
|∇ϕ|2 +

β

2
ϕ2)dx + (|V(t)|2 −C0). (2.9)

Based on (2.4), (2.5), and (2.6), due to ∇ · u = 0, then the system (1.1) can be reformulated as follows:

ϕt +
V(t)
√

E(t)
∇ · (uϕ) − ∇ · (M∇µ) = 0,

µ + ∆ϕ − βϕ − H(ϕ) = 0,

ut +
V(t)
√

E(t)
(u · ∇)u − ∇ · σ(u) + ∇p + V(t)

√
E(t)
ϕ∇µ = 0,

∇ · u = 0,

dV(t)
dt =

1
2V(t) {
∫
Ω

(u · ut + H(ϕ)ϕt)dx
+

V(t)
√

E(t)

∫
Ω

(∇ · (uϕ)µ + ϕ∇µ · u + (u · ∇)u · u)dx},

(2.10)

with the following initial conditions

ϕ(x, 0) = ϕ0, u(x, 0) = u0, V(0) =
√

E(0).

The boundary conditions in (1.3) still hold due to the new variable V , which is independent of the
spatial variable.

Remark 2.2. We emphasize that the newly transformed SAV system (2.1) is exactly equivalent to
the original system (2.3), since (2.6) can be easily obtained by integrating (2.10)5 with respect to time.
Thus, the new energy law (2.9) for the transformed system is the same as the energy law (2.1) for the
original system. We state it as the following lemma.
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Lemma 2.2. Let (ϕ, µ,u, p) be the solution to the system (2.10). Then, the solution satisfies the
following energy dissipation law:

d
dt

Etot(u, ϕ; V) = −
∫
Ω

{ν1|D(u)|2 + ν2(1 + κ|D(u)|2)
r−2

2 |D(u)|2 + |
√

M∇µ|2}dx ≤ 0, (2.11)

namely,

Etot(u, ϕ; V) ≤ Etot(u0, ϕ0; V(0)). (2.12)

Proof. Taking the L2 inner product of (2.10)1 with µ, (2.10)2 with −ϕt, (2.10)3 with u, (2.10)4 with
p, multiplying (2.10)5 by 2V(t), and adding the resulting equations together, we directly obtain (2.11)
and (2.12).

The next proposed scheme is required to formally obey the new energy dissipation law (2.9) in the
discrete sense.

3. Numerical scheme

In this section, we provide a numerical scheme. The method used here has been widely studied,
see [21–24] for the details. We assume a uniform partition of the time interval [0,T ] as tk = k∆t, k =
0, 1, · · · ,K with a time step ∆t = T/K. For a smooth function φ, the approximation of φ at time tk is
denoted as φk = φ(tk). Moreover, for convenience, the following notations will be used in the sequence:

ϕk+ 1
2 =

1
2

(ϕk+1 + ϕk), ϕ̂∗ =
3
2
ϕk −

1
2
ϕk−1, ũk+ 1

2 =
1
2

(̃uk+1
+ uk), û∗ =

3
2

uk −
1
2

uk−1.

Now, it is ready to build up a numerical scheme to discretize the new system (2.8) by using the
second-order Crank-Nicolson (CN) scheme. It reads as follows.

Step 1: Find (ϕk+1, µk+1, ũk+1) such that

ϕk+1 − ϕk

∆t
+

Vk

√
Ek
∇ · (û∗ϕ̂∗) − ∇ · (M∇µk+ 1

2 ) = 0, (3.1)

µk+ 1
2 + ∆ϕk+ 1

2 − βϕk − H(ϕ̂∗) = 0, (3.2)

ũk+1
− uk

∆t
+

Vk

√
Ek

(û∗ · ∇)û∗ + ∇pk +
Vk

√
Ek
ϕ̂∗∇µ̂∗ − ∇ · (ν1D(̃uk+ 1

2 ))

− ∇ · (ν2(1 + κ|D(û∗)|2)
r−2

2 D(̃uk+ 1
2 )) = 0. (3.3)

Step 2: Find (uk+1, pk+1) such that

uk+1 − ũk+1

∆t
+

1
2
∇(pk+1 − pk) = 0, (3.4)

∇ · uk+1 = 0. (3.5)
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Step 3: Update Vk+1 as follows

Vk+1 − Vk

∆t
=

1

2Vk+ 1
2

{

∫
Ω

(̃uk+ 1
2 ·

uk+1 − uk

δt
+ H(ϕ̂∗)

ϕk+1 − ϕk

∆t
)dx

+
Vk

√
Ek

∫
Ω

(∇ · (û∗ϕ̂∗)µk+ 1
2 + ϕ̂∗∇µ̂∗ · ũk+ 1

2 + (û∗ · ∇)û∗ · ũk+ 1
2 )dx}. (3.6)

The boundary conditions of the schemes (3.1)–(3.6) are given by the following:

ũk+1
|∂Ω = uk+1 · n|∂Ω = 0, ∇ϕk+1 · n|∂Ω = 0, M∇µk+1 · n|∂Ω = 0. (3.7)

Now, the energy stability of the developed schemes (3.1)–(3.6) is shown as follows.
Theorem 3.1. The scheme (3.1)–(3.6) is unconditionally energy stable, that is, the following

discrete energy law holds:

Ek+1 − Ek = −∆t∥
√

M∇µk+ 1
2 ∥2 − ν1∆t

∫
Ω

|D(̃uk+ 1
2 )|2dx

− ν2∆t
∫
Ω

(1 + κ|D(û∗)|2)
r−2

2 |D(̃uk+ 1
2 )|2dx ≤ 0, (3.8)

where Ek+1 is the discrete version of the total energy given by the following:

Ek+1 =
1
2
∥∇ϕk+1∥2 +

β

2
∥ϕk+1∥2 +

∆t2

8
∥∇pk+1∥2 + (|Vk+1|2 −C0).

Proof. We take the L2-inner product of (3.1) and (3.2) with ∆tµk+1/2 and −(ϕk+1 − ϕk); respectively,
by exploiting integration of parts and the boundary conditions (3.7) and adding the resulting equations
together, we obtain the following:

1
2

(∥∇ϕk+1∥2 − ∥∇ϕk∥2) +
β

2
(∥ϕk+1∥2 − ∥ϕk∥2) + ∆t∥

√
M∇µk+ 1

2 ∥2

+
∆tVk

√
Ek

∫
Ω

∇ · (û∗ϕ̂∗)µk+ 1
2 dx +

∫
Ω

H(ϕ̂∗)(ϕk+1 − ϕk)dx = 0. (3.9)

By taking the L2-inner product of (3.3) and (3.4) with ∆tũk+ 1
2 , respectively, adding the desired results

and using (3.5), one arrives at the following:∫
Ω

(uk+1 − uk) · ũk+ 1
2 dx + ν1∆t

∫
Ω

|D(̃uk+ 1
2 )|2dx + ν2∆t

∫
Ω

(1 + κ|D(û∗)|2)
r−2

2 |D(̃uk+ 1
2 )|2dx

−
∆t
4

(pk+1 + pk,∇ · ũk+1) +
∆tVk

√
Ek

∫
Ω

(û∗ · ∇)û∗ · ũk+ 1
2 dx

+
∆tVk

√
Ek

∫
Ω

ϕ̂∗∇µ̂∗ · ũk+ 1
2 dx = 0. (3.10)

By taking the inner product of (3.4) with ∆t2
4 ∇(pk+1 + pk) in the L2 space and using (3.5) again, we

have

∆t
4

(∇ · ũk+1
, pk+1 + pk) +

∆t2

8
(∥∇pk+1∥2 − ∥∇pk∥2) = 0. (3.11)
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We multiply (3.6) with 2δtVk+1/2 to obtain the following:

|Vk+1|2 − |Vk|2 =

∫
Ω

(̃uk+ 1
2 · (uk+1 − uk)dx +

∫
Ω

H(ϕ̂∗)(ϕk+1 − ϕk)dx

+
∆tVk

√
Ek

∫
Ω

(∇ · (û∗ϕ̂∗)µk+ 1
2 + ϕ̂∗∇µ̂∗ · ũk+ 1

2 + (û∗ · ∇)û∗ · ũk+ 1
2 )dx. (3.12)

Summing the above equations (3.9)–(3.12) together leads to the proof of the desired result (3.8). The
proof is completely finished.

4. Numerical result

In this section, we aim to investigate the performance of our proposed method for the non-
Newtonian two-phase flow. The solution of the systems (1.1)–(1.3) shall be a sought subject to the
following initial conditions:

ϕ0 = tanh(

√
(x − 0.55)2 + (y − 0.35)2

√
2ε

), u0 = 0,

where tanh(x) = (ex − e−x)/(ex + e−x) and ε = 0.02. The boundary conditions are ϕ|∂Ω = u∂Ω = 0.

We set the computational domain Ω = [0, 2]2 and use the finite element method to discretize the
space variables (using P2 for ϕ and P2 − P1 for (u, p)); the parameters are given as M = 1, ν1 =

0.03, ν2 = 0.01, and κ = 1. Figure 1 shows the L2 errors of the phase-field variable, the fluid velocity,
the pressure between the numerical solution, and the “exact solution” (which is computed by a very
small time step δt = 1/214) at time t = 0.8 with a different r. We can see that the obtained temporal
convergence rate is O(∆t2).

In the next simulation, we take the temporal step as ∆t = 0.01 in the computations. In Figure 2(a),
the evolution of the total energy curves with different parameters r is plotted, from which it is easy to
see that the energy is decreasing in time, which is in a good agreement with the theoretical results (see
Theorem 3.1). Figure 2(b) exhibits the pressure profile at a cross section y = 1.0 along the x-axis at
time t = 0.20. Moreover, one can clearly see that the parameters r can affect the profile of the pressure,
which gives rise to different patterns of the phase field. Figure 3 displays the snapshots of the phase
field variable ϕ and the flow velocity vector u at the same time nodes, where the different patterns are
observed under different values of r, that is, the parameter r in non-Newtonian fluids can affect the
spatial shapes of a substance during a surface phase transition. Subsequently, this gives us a means to
design and perform optimal control experiments for the geometric shapes of materials in engineering
practice.
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Figure 1. The L2 errors of the phase-field variable ϕ, fluid velocity u and pressure p with
different r.
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Figure 2. (a) Total energy over time for the non-Newtonian flow scenario with different
parameters r. (b) Pressure profile at a cross section y = 1.0 along the x-axis and at time
t = 0.20.
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(b)(a) (c)

Figure 3. Snapshots of the computed phase function ϕ (dark circle denotes ϕ) and the flow
velocity vector u (blue arrows denote the vector u) at time t = 0.01, 0.08, 0.14, 0.20. For the
cases with (a) r = 1.5, (b) r = 2.0, (c) r = 3.0, the graphs are arranged column-wise.

5. Conclusions

In this paper, a novel fully-decoupled, linear and second-order time accurate scheme to solve the
phase-field model of non-Newtonian two-phase flows was introduced. The developed scheme was
based on a stabilized SAV approach.

For the classical phase-field model of two-phase flows, the only available energy-stable fully-
decoupled scheme was developed and a fully-decoupled structure was achieved by adding a
stabilization term to the explicit advection velocity term. However, this decoupling type scheme was
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only first-order accurate in time and it required more calculations at each time step. For the second-
order fully-decoupled scheme, the advection and surface tension terms were discretized through
explicit and implicit combination method, which can inevitably lead to either expensive nonlinear fully-
coupled schemes or relatively fast linear fully-coupled schemes. Therefore, the focus of this paper was
developing a scheme for the given system that maintained a unconditionally energy stable scheme and
a second-order time accuracy, while also achieving fully-decoupled calculations. We strictly proved
the unconditional energy stability of the scheme and conducted numerical simulations to show the
accuracy and stability of the proposed scheme. Moreover, we observed that the parameter r in non-
Newtonian fluids could affect spatial patterns during phase transitions, which directly enabled us to
design and perform optimal control experiments in engineering processes.
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