In this paper, the dynamical behavior of the nonclassical diffusion equation is investigated. First, using the asymptotic regularity of the solution, we prove that the semigroup $ \{S(t)\}_{t\geq 0} $ corresponding to this equation satisfies the global exponentially $ \kappa- $dissipative. And then we estimate the upper bound of fractal dimension for the global attractors $ \mathscr{A} $ for this equation and $ \mathscr{A}\subset H^1_0(\Omega)\cap H^2(\Omega) $. Finally, we confirm the existence of exponential attractors $ \mathscr{M} $ by validated differentiability of the semigroup $ \{S(t)\}_{t\geq 0} $. It is worth mentioning that the nonlinearity $ f $ satisfies the polynomial growth of arbitrary order.
Citation: Jianbo Yuan, Shixuan Zhang, Yongqin Xie, Jiangwei Zhang. Exponential attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity[J]. AIMS Mathematics, 2021, 6(11): 11778-11795. doi: 10.3934/math.2021684
In this paper, the dynamical behavior of the nonclassical diffusion equation is investigated. First, using the asymptotic regularity of the solution, we prove that the semigroup $ \{S(t)\}_{t\geq 0} $ corresponding to this equation satisfies the global exponentially $ \kappa- $dissipative. And then we estimate the upper bound of fractal dimension for the global attractors $ \mathscr{A} $ for this equation and $ \mathscr{A}\subset H^1_0(\Omega)\cap H^2(\Omega) $. Finally, we confirm the existence of exponential attractors $ \mathscr{M} $ by validated differentiability of the semigroup $ \{S(t)\}_{t\geq 0} $. It is worth mentioning that the nonlinearity $ f $ satisfies the polynomial growth of arbitrary order.
[1] | E. C. Aifantis, On the problem of diffusion in solids, Acta. Mech., 37 (1980), 265–296. doi: 10.1007/BF01202949 |
[2] | G. Barenblatt, I. P. Zheltov, I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286–1303. doi: 10.1016/0021-8928(60)90107-6 |
[3] | P. J. Chen, M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614–627. doi: 10.1007/BF01594969 |
[4] | D. Colton, Pseudo-parabolic equations in one space variable, J. Diff. Eqs., 12 (1972), 559–565. doi: 10.1016/0022-0396(72)90025-3 |
[5] | C. T. Anh, N. D. Toan, Nonclassical diffusion equations on $\mathbb{R^N}$ with singularly oscillating external forces, Appl. Math. Lett., 38 (2014), 20–26. doi: 10.1016/j.aml.2014.06.008 |
[6] | Y. Wang, Z. Zhu, P. Li, Regularity of pullback attractors for nonautonomous nonclassical diffusion equations, J. Math. Anal. Appl., 459 (2018), 16–31. doi: 10.1016/j.jmaa.2017.10.075 |
[7] | Y. Wang, P. Li, Y. Qin, Upper semicontinuity of uniform attractors for nonclassical diffusion equations, Bound. Value. Probl., 2017 (2017), 84. doi: 10.1186/s13661-017-0816-7 |
[8] | M. Conti, E. M. Marchini, A remark on nonclassical diffusion equations with memory, Appl. Math. Optim., 73 (2016), 1–21. doi: 10.1007/s00245-015-9290-8 |
[9] | S. Wang, D. Li, C. Zhong, On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl., 317 (2006), 565–582. doi: 10.1016/j.jmaa.2005.06.094 |
[10] | Y. Xiao, Attractors for a nonclassical diffusion equation, Acta Math. Appl. Sin., English Ser., 18 (2002), 273–276. |
[11] | J. Zhang, Y. Xie, Asymptotic behavior for a class of viscoelastic equations with memory lacking instantaneous damping, AIMS Math., 6 (2021), 9491–9509. doi: 10.3934/math.2021552 |
[12] | M. H. Heydari, Z. Avazzadeh, Orthonormal Bernstein polynomials for solving nonlinear variable-order time fractional fourth-order diffusion-wave equation with nonsingular fractional derivative, Math. Method Appl. Sci., 44 (2021), 3098–3110. doi: 10.1002/mma.6483 |
[13] | M. H. Heydari, Z. Avazzadeh, M. F. Haromi, A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation, Appl. Math. Comput., 341 (2019), 215–228. |
[14] | K. Zhu, Y. Xie, F. Zhou, Attractors for the nonclassical reaction-diffusion equations on time-dependent spaces, Bound. Value. Probl., 2020 (2020), 95. doi: 10.1186/s13661-020-01392-7 |
[15] | Y. Xie, J. Li, K. Zhu, Upper semicontinuity of attractors for nonclassical diffusion equations with arbitrary polynomial growth, Adv. Differ. Equ., 2021 (2021), 75. doi: 10.1186/s13662-020-03146-2 |
[16] | C. Sun, M. Yang, Dynamics of the nonclassical diffusion equations, Asympt. Anal., 59 (2008), 51–81. |
[17] | J. Zhang, Y. Xie, Q. Luo, Z. Tang, Asymptotic behavior for the semilinear reaction-diffusion equations with memory, Adv. Differ. Equ., 2019 (2019), 510. doi: 10.1186/s13662-019-2399-3 |
[18] | A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential attractors for dissipative evolution equations, Am. Math. Mon., 37 (1995), 825–825. |
[19] | J. C. Robinson, Infinite-dimensional dynamical systems, Cambridge: Cambridge University Press, 2001. |
[20] | R. Temam, Infinite-dimensional Systems in Mechanics and Physics, New York: Springer-Verlag, 1997. |
[21] | Y. S. Zhong, C. K. Zhong, Exponential attractors for semigroups in Banach spaces, Nonlinear Anal. TMA., 75(2012), 1799–1809. doi: 10.1016/j.na.2011.09.020 |
[22] | C. T. Anh, N. D. Toan, Global attractors for nonclassical diffusion equations with hereditary memory and a new class of nonlinearities, Ann. Pol. Math., 119 (2017), 1–21. doi: 10.4064/ap4015-2-2017 |
[23] | Y. Xie, Q. Li, K. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal. RWA., 31 (2016), 23–37. doi: 10.1016/j.nonrwa.2016.01.004 |
[24] | Y. Xie, Y. Li, Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Func. Spac., 2016 (2016), 1–11. |
[25] | Y. Shang, B. Guo, Exponential attractor for a class nonclassical diffusion equations, J. Partial Diff. Eqs., 16 (2003), 289–298. |
[26] | L. Pan, F. Zhang, Asymptotic regularity and exponential attractors for nonclassical diffusion equations with critical exponent, Prog. Appl. Math., 7 (2014), 36–47. |
[27] | J. Zhang, E. Kloeden, M. Yang, C. Zhong, Global exponential $\kappa-$dissipative semigroup and exponential attraction, Discrete Contin. Dyn. Syst., 37 (2017), 3487–3502. doi: 10.3934/dcds.2017148 |
[28] | J. K. Hale, Asymptatic behavior of dissipative systems, American Mathematical Society, 1988. |
[29] | Q. Ma, S. Wang, C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, J. Indiana Univ. Math. J., 51 (2002), 1541–1559. doi: 10.1512/iumj.2002.51.2255 |
[30] | K. Deimling, Nonlinear Functional Analysis, World Publishing Corporation, 1980. |
[31] | M. Efendiev, A. Miranville, S. Zelik, Exponential attractors a nonlinear reaction diffusion system in $\mathbb{R}^3$, Acad. Sci., 330 (2000), 713–718. |
[32] | X. Wang, C. Zhong, Attractors for the non-autonomous nonclassical diffusion equations with fading memory, Nonlinear Anal. TMA., 71 (2009), 5733–5746. doi: 10.1016/j.na.2009.05.001 |