Research article

A robust family of exponential attractors for a time semi-discretization of the Ginzburg-Landau equation

  • Received: 26 September 2021 Accepted: 18 October 2021 Published: 25 October 2021
  • MSC : 35Gxx, 65Kxx

  • We consider a time semidiscretization of the Ginzburg-Landau equation by the backward Euler scheme. For each time step $ \tau $, we build an exponential attractor of the dynamical system associated to the scheme. We prove that, as $ \tau $ tends to $ 0 $, this attractor converges for the symmetric Hausdorff distance to an exponential attractor of the dynamical system associated to the Allen-Cahn equation. We also prove that the fractal dimension of the exponential attractor and of the global attractor is bounded by a constant independent of $ \tau $.

    Citation: Narcisse Batangouna. A robust family of exponential attractors for a time semi-discretization of the Ginzburg-Landau equation[J]. AIMS Mathematics, 2022, 7(1): 1399-1415. doi: 10.3934/math.2022082

    Related Papers:

  • We consider a time semidiscretization of the Ginzburg-Landau equation by the backward Euler scheme. For each time step $ \tau $, we build an exponential attractor of the dynamical system associated to the scheme. We prove that, as $ \tau $ tends to $ 0 $, this attractor converges for the symmetric Hausdorff distance to an exponential attractor of the dynamical system associated to the Allen-Cahn equation. We also prove that the fractal dimension of the exponential attractor and of the global attractor is bounded by a constant independent of $ \tau $.



    加载中


    [1] S. Allen, J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsing, Acta Metall., 27 (1979), 1085–1095. doi: 10.1016/0001-6160(79)90196-2. doi: 10.1016/0001-6160(79)90196-2
    [2] A. V. Babin, M. I. Vishik, Attractors of evolution equations, vol. 25 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1992. doi: 10.1016/s0168-2024(08)x7020-1.
    [3] N. Batangouna, M. Pierre, Convergence of exponential attractors for a time splitting approximation of the {C}aginalp phase-field system, Commun. Pure Appl. Anal., 17 (2018), 1–19. doi: 10.3934/cpaa.2018001. doi: 10.3934/cpaa.2018001
    [4] C. Cavaterra, E. Rocca, H. Wu, Optimal boundary control of a simplified Ericksen-Leslie system for nematic liquid crystal flows in 2D, Arch. Ration. Mech. Anal., 224 (2017), 1037–1086. doi: 10.1007/s00205-017-1095-2. doi: 10.1007/s00205-017-1095-2
    [5] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, vol. 49 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, 2002. doi: 10.1090/coll/049.
    [6] A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential attractors for dissipative evolution equations, vol. 37 of RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.
    [7] M. Efendiev, A. Miranville, S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11–31. doi: 10.1002/mana.200310186. doi: 10.1002/mana.200310186
    [8] P. Fabrie, C. Galusinski, A. Miranville, Uniform inertial sets for damped wave equations, Discrete Contin. Dynam. Systems, 6 (2000), 393–418. doi: 10.3934/dcds.2000.6.393. doi: 10.3934/dcds.2000.6.393
    [9] C. Foias, G. R. Sell, R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations, 73 (1988), 309–353. doi: 10.1016/0022-0396(88)90110-6. doi: 10.1016/0022-0396(88)90110-6
    [10] C. Galusinski, Perturbations singulières de problèmes dissipatifs : étude dynamique via l'existence et la continuité d'attracteurs exponentiels, PhD thesis, Université de Bordeaux, 1996.
    [11] F. Guillén-González, M. Samsidy Goudiaby, Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 32 (2012), 4229–4246. doi: 10.3934/dcds.2012.32.4229. doi: 10.3934/dcds.2012.32.4229
    [12] G. J. Lord, Attractors and inertial manifolds for finite-difference approximations of the complex Ginzburg-Landau equation, SIAM J. Numer. Anal., 34 (1997), 1483–1512. doi: 10.1137/S003614299528554X. doi: 10.1137/S003614299528554X
    [13] A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of differential equations: evolutionary equations. {V}ol. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 4 (2008), 103–200. doi: 10.1016/S1874-5717(08)00003-0.
    [14] M. Pierre, Convergence of exponential attractors for a time semi-discrete reaction-diffusion equation, Numer. Math., 139 (2018), 121–153. doi: 10.1007/s00211-017-0937-z. doi: 10.1007/s00211-017-0937-z
    [15] M. Pierre, Convergence of exponential attractors for a finite element approximation of the Allen-Cahn equation, Numer. Funct. Anal. Optim., 39 (2018), 1755–1784. doi: 10.1080/01630563.2018.1497651. doi: 10.1080/01630563.2018.1497651
    [16] J. Shen, Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal., 38 (1990), 201–229. doi: 10.1080/00036819008839963. doi: 10.1080/00036819008839963
    [17] A. M. Stuart, A. R. Humphries, Dynamical systems and numerical analysis, vol. 2 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 1996.
    [18] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, vol. 68 of Applied Mathematical Sciences, Springer-Verlag, New York, second ed., 1997. doi: 10.1007/978-1-4612-0645-3.
    [19] X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: time discretization, Math. Comp., 79 (2010), 259–280. doi: 10.1090/S0025-5718-09-02256-X. doi: 10.1090/S0025-5718-09-02256-X
    [20] X. Wang, Numerical algorithms for stationary statistical properties of dissipative dynamical systems, Discrete Contin. Dyn. Syst., 36 (2016), 4599–4618. doi: 10.3934/dcds.2016.36.4599. doi: 10.3934/dcds.2016.36.4599
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1726) PDF downloads(58) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog