Research article

The modified Kies-Fréchet distribution: Properties, inference and application

  • Received: 09 December 2020 Accepted: 02 February 2021 Published: 24 February 2021
  • MSC : 60E05, 62F10

  • The present article introduces a new distribution called the modified Kies-Fréchet (MKF) distribution that extends the Fréchet distribution and provides two new sub-models called modified Kies inverse-exponential and modified Kies inverse-Rayleigh distributions. The MKF model can provide left-skewed, symmetrical, right-skewed, J-shaped, and reversed-J shaped densities. The MKF density was expressed as a linear combination of Fréchet densities. We derive some basic mathematical properties of the MKF model. The MKF parameters are estimated using some classical estimation methods called, the maximum likelihood, Anderson-Darling, least-squares, Cramér-von Mises, and weighted least squares. The performances of these estimators were explored by a detailed simulation study. Finally, the flexibility of the MKF model is checked using a real data set, showing that it can provide close fit as compared with other competing models.

    Citation: Mashail M. Al Sobhi. The modified Kies-Fréchet distribution: Properties, inference and application[J]. AIMS Mathematics, 2021, 6(5): 4691-4714. doi: 10.3934/math.2021276

    Related Papers:

  • The present article introduces a new distribution called the modified Kies-Fréchet (MKF) distribution that extends the Fréchet distribution and provides two new sub-models called modified Kies inverse-exponential and modified Kies inverse-Rayleigh distributions. The MKF model can provide left-skewed, symmetrical, right-skewed, J-shaped, and reversed-J shaped densities. The MKF density was expressed as a linear combination of Fréchet densities. We derive some basic mathematical properties of the MKF model. The MKF parameters are estimated using some classical estimation methods called, the maximum likelihood, Anderson-Darling, least-squares, Cramér-von Mises, and weighted least squares. The performances of these estimators were explored by a detailed simulation study. Finally, the flexibility of the MKF model is checked using a real data set, showing that it can provide close fit as compared with other competing models.



    加载中


    [1] S. Kotz, S. Nadarajah, Extreme value distributions: Theory and applications, Imperial College Press, London, 2000.
    [2] D. G. Harlow, Applications of the Fréchet distribution function, Int. J. Mater. Prod. Technol., 17 (2002), 482–495. doi: 10.1504/IJMPT.2002.005472
    [3] S. Nadarajah, S. Kotz, Sociological models based on Fréchet random variables, Qual. Quant., 42 (2008), 89–95. doi: 10.1007/s11135-006-9039-1
    [4] A. Zaharim, S. K. Najid, A. M. Razali, K. Sopian, Analysing Malaysian wind speed data using statistical distribution, Proceedings of the 4th IASME/WSEAS International conference on energy and environment, Cambridge, UK, 2009.
    [5] S. Nadarajah, S. Kotz, The exponentiated Fréchet distribution, Interstat Electronic J., 14 (2003), 1–7.
    [6] W. M. Barreto-Souza, G. M. Cordeiro, A. B. Simas, Some results for beta Fréchet distribution, Commun. Stat. Theory Methods, 40 (2011), 798–811. doi: 10.1080/03610920903366149
    [7] M. R. Mahmoud, R. M. Mandouh, On the transmuted Fréchet distribution, J. Appl. Sci. Res., 9 (2013), 5553–5561.
    [8] E. Krishna, K. K. Jose, T. Alice, M. M. Ristic, The Marshall-Olkin Fréchet distribution, Commun. Stat. Theory Methods, 42 (2013), 4091–4107. doi: 10.1080/03610926.2011.648785
    [9] R. V. D. da Silva, T. A. de Andrade, D. Maciel, R. P. Campos, G. M. Cordeiro, A new lifetime model: The gamma extended Fré chet distribution, J. Stat. Theory Appl., 12 (2013), 39–54.
    [10] I. Elbatal, G. Asha, V. Raja, Transmuted exponentiated Fréchet distribution: Properties and applications, J. Stat. Appl. Probab., 3 (2014), 379–394.
    [11] M. E. Mead, A. R. Abd-Eltawab, A note on Kumaraswamy-Fréchet distribution, Aust. J. Basic Appl. Sci., 8 (2014), 294–300.
    [12] A. Z. Afify, G. G. Hamedani, I. Ghosh, M. E. Mead, The transmuted Marshall-Olkin Fréchet distribution: Properties and applications, Int. J. Stat. Probab., 4 (2015), 132–184. doi: 10.5539/ijsp.v4n4p132
    [13] A. Z. Afify, H. M. Yousof, G. M. Cordeiro, E. M. M. Ortega, Z. M. Nofal, The Weibull Fréchet distribution and its applications, J. Appl. Stat., 43 (2016), 2608–2626. doi: 10.1080/02664763.2016.1142945
    [14] M. E. Mead, A. Z. Afify, G. G. Hamedani, I. Ghosh, The beta exponential Fréchet distribution with applications, Austrian J. Stat., 46 (2017), 41–63. doi: 10.17713/ajs.v46i1.144
    [15] M. M. Mansour, G. Aryal, A. Z. Afify, M. Ahmad, The Kummaraswamy exponentiated Fréchet distribution, Pak. J. Stat., 34 (2018), 177–193.
    [16] M. M. Mansour, E. M. Abd Elrazik, E. Altun, A. Z. Afify, Z. Iqbal, A new three-parameter Fréchet distribution: Properties and applications, Pak. J. Stat., 34 (2018), 441–458.
    [17] T. H. M. Abouelmagd, M. S. Hamed, A. Z. Afify, H. Al-Mofleh, Z. Iqbal, The Burr X Fréchet distribution with its properties and applications, J. Appl. Probab. Stat., 13 (2018), 23–51.
    [18] M. S. Hamed, F. Aldossary, A. Z. Afify, The four-parameter Fréchet distribution: Properties and applications, Pakistan J. Stat. Oper. Res., 16 (2020), 249–264.
    [19] A. A. Al-Babtain, M. K. Shakhatreh, M. Nassar, A. Z. Afify, A new modified Kies family: Properties, estimation under complete and type-II censored samples, and engineering applications, Mathematics, 8 (2020), 1345. doi: 10.3390/math8101793
    [20] H. Al-Mofleh, A. Z. Afify, N. A. Ibrahim, A new extended two-parameter distribution: Properties, estimation methods, and applications in medicine and geology, Mathematics, 8 (2020), 1578. doi: 10.3390/math8091578
    [21] A. Z. Afify, O. A. Mohamed, A new three-parameter exponential distribution with variable shapes for the hazard rate: Estimation and applications, Mathematics, 8 (2020), 135. doi: 10.3390/math8101793
    [22] M. A. Aldahlan, A. Z. Afify, The odd exponentiated half-logistic exponential distribution: Estimation methods and application to engineering data, Mathematics, 8 (2020), 1684. doi: 10.3390/math8101684
    [23] A. Z. Afify, A. M. Gemeay, N. A. Ibrahim, The heavy-tailed exponential distribution: Risk measures, estimation, and application to actuarial data, Mathematics, 8 (2020), 1276. doi: 10.3390/math8101793
    [24] P. Feigl, M. Zelen, Estimation of exponential survival probabilities with concomitant information, Biometrics, 21 (1965), 826–838. doi: 10.2307/2528247
    [25] M. Nassar, A. Z. Afify, S. Dey, D. Kumar, A new extension of Weibull distribution: Properties and different methods of estimation, J. Comput. Appl. Math., 336 (2018), 439–457. doi: 10.1016/j.cam.2017.12.001
    [26] S. Sen, A. Z. Afify, H. Al-Mofleh, M. Ahsanullah, The quasi xgamma-geometric distribution with application in medicine, Filomat, 33 (2019), 5291–5330. doi: 10.2298/FIL1916291S
    [27] A. Z. Afify, H. M. Yousof, G. M. Cordeiro, Z. M. Nofal, A. N. Ahmed, The Kumaraswamy Marshall-Olkin Fréchet distribution with applications, J. ISOSS, 2 (2016), 41–58.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2397) PDF downloads(212) Cited by(5)

Article outline

Figures and Tables

Figures(8)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog