Processing math: 87%
Research article

An efficient iterative algorithm for common solutions of three G-nonexpansive mappings in Banach spaces involving a graph with applications to signal and image restoration problems

  • Received: 26 May 2021 Accepted: 20 October 2021 Published: 25 October 2021
  • MSC : 47E10, 47H09, 47H10, 54H25

  • In this paper, three G-nonexpansive mappings are implemented and analyzed using an efficient modified three-step iteration algorithm. Assuming coordinate-convexity in a uniformly convex Banach space endowed with a directed graph, conditions for the weak and strong convergence of the scheme are determined. We give numerical comparisons to back up our main theorem, and compare our algorithm's convergence behavior to that of the three-step Noor iteration and SP-iteration. We use our proposed algorithm to solve image deblurring problems as an application. In addition, we discuss a novel approach to signal recovery in situations where the type of noise is unknown.

    Citation: Damrongsak Yambangwai, Tanakit Thianwan. An efficient iterative algorithm for common solutions of three G-nonexpansive mappings in Banach spaces involving a graph with applications to signal and image restoration problems[J]. AIMS Mathematics, 2022, 7(1): 1366-1398. doi: 10.3934/math.2022081

    Related Papers:

    [1] Hanan Haj Ahmad, Ehab M. Almetwally, Dina A. Ramadan . A comparative inference on reliability estimation for a multi-component stress-strength model under power Lomax distribution with applications. AIMS Mathematics, 2022, 7(10): 18050-18079. doi: 10.3934/math.2022994
    [2] Samah M. Ahmed, Abdelfattah Mustafa . Estimation of the coefficients of variation for inverse power Lomax distribution. AIMS Mathematics, 2024, 9(12): 33423-33441. doi: 10.3934/math.20241595
    [3] Abdulhakim A. Al-Babtain, Rehan A. K. Sherwani, Ahmed Z. Afify, Khaoula Aidi, M. Arslan Nasir, Farrukh Jamal, Abdus Saboor . The extended Burr-R class: properties, applications and modified test for censored data. AIMS Mathematics, 2021, 6(3): 2912-2931. doi: 10.3934/math.2021176
    [4] Mohamed S. Eliwa, Essam A. Ahmed . Reliability analysis of constant partially accelerated life tests under progressive first failure type-II censored data from Lomax model: EM and MCMC algorithms. AIMS Mathematics, 2023, 8(1): 29-60. doi: 10.3934/math.2023002
    [5] Magdy Nagy, Khalaf S. Sultan, Mahmoud H. Abu-Moussa . Analysis of the generalized progressive hybrid censoring from Burr Type-Ⅻ lifetime model. AIMS Mathematics, 2021, 6(9): 9675-9704. doi: 10.3934/math.2021564
    [6] Essam A. Ahmed, Laila A. Al-Essa . Inference of stress-strength reliability based on adaptive progressive type-Ⅱ censing from Chen distribution with application to carbon fiber data. AIMS Mathematics, 2024, 9(8): 20482-20515. doi: 10.3934/math.2024996
    [7] Tahani A. Abushal, Alaa H. Abdel-Hamid . Inference on a new distribution under progressive-stress accelerated life tests and progressive type-II censoring based on a series-parallel system. AIMS Mathematics, 2022, 7(1): 425-454. doi: 10.3934/math.2022028
    [8] Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Ahmed Elshahhat . Analysis of Weibull progressively first-failure censored data with beta-binomial removals. AIMS Mathematics, 2024, 9(9): 24109-24142. doi: 10.3934/math.20241172
    [9] Ammar M. Sarhan, Rabab S. Gomaa, Alia M. Magar, Najwan Alsadat . Bivariate exponentiated generalized inverted exponential distribution with applications on dependent competing risks data. AIMS Mathematics, 2024, 9(10): 29439-29473. doi: 10.3934/math.20241427
    [10] Abdulhakim A. Al-Babtain, Ibrahim Elbatal, Christophe Chesneau, Mohammed Elgarhy . On a new modeling strategy: The logarithmically-exponential class of distributions. AIMS Mathematics, 2021, 6(7): 7845-7871. doi: 10.3934/math.2021456
  • In this paper, three G-nonexpansive mappings are implemented and analyzed using an efficient modified three-step iteration algorithm. Assuming coordinate-convexity in a uniformly convex Banach space endowed with a directed graph, conditions for the weak and strong convergence of the scheme are determined. We give numerical comparisons to back up our main theorem, and compare our algorithm's convergence behavior to that of the three-step Noor iteration and SP-iteration. We use our proposed algorithm to solve image deblurring problems as an application. In addition, we discuss a novel approach to signal recovery in situations where the type of noise is unknown.



    Studies on lifetime testing focused on the specific causes of failure. However, recent lifetime measurement models have been built upon the concept of multiple competing factors leading to the failure of lifetime testing units. These contemporary models for estimating lifetimes consider various competing causes of failure that challenge the durability of lifetime testing units.

    Competing risks (CR) analysis is commonly used in medical research, reliability engineering, and econometric sciences to investigate outcomes in which numerous alternative events may affect the path to the primary event. For example, in a lifetime experiment conducted by Boag [1], the cause of death was recorded as either breast cancer or another cancer type, demonstrating that multiple factors can contribute to a subject's death or failure. In the current context, individuals infected with COVID-19 may also face other health complications, potentially resulting in death due to one of these underlying conditions. These models are referred to as CR models. For a more comprehensive understanding of CR, refer to Pintilie[2] and Chen et al. [3].

    In reliability engineering, the failure times of components with numerous possible failure modes are analyzed (for example, a machine that can fail owing to wear, electrical problems, or other factors). In another application, using the brake system, Liu et al.[4] where found the brake system of a racing car consists of a pedal, a balance lever, a main cylinder, and a brake which is considered as CR.

    In econometrics or social sciences, let us say that you are researching how long people work in a certain industry. Some conflicting hazards in this situation could end the employment period, including voluntary resignation, such as when someone leaves to look for work elsewhere, retirement, illness, or disability, meaning that situation can be treated using CR.

    CR models are statistical tools designed to analyze scenarios where multiple events can occur concurrently or sequentially, potentially influencing each other's probabilities. These models find widespread application in fields, like medicine, engineering, and economics, where various factors can contribute to an outcome. CR models and uncertainty are closely intertwined. While CR models focus on the simultaneous or sequential occurrence of multiple events, uncertainty refers to the lack of complete knowledge about future events. Uncertainty can significantly impact CR models, arising from factors such as insufficient or biased data, model assumptions that may not accurately reflect reality, and unforeseen events that disrupt expected patterns. For further details, please refer to [5,6,7].

    In various industries and businesses, lifetime tests are commonly employed. Because these tests can be costly and time-consuming, statisticians devised alternative procedures known as censored samples, which allow experimenters to stop work before all units fail. As a result, things are often checked using various censoring systems, with types I and II being the most popular. In such cases, removing live units from the testing process is not an option, resulting in the design of a more adaptable and progressive type-II censoring scheme (PTIICS), which marks a significant advancement in the practice of censorship and practical application. To understand the PTIICS approach and implementation comprehensively, it has been examined by Balakrishnan [8], and Ng and Chan [9].

    This subsection shows one type of censoring scheme called the generalized progressive hybrid censoring scheme (GPHCS), introduced by Cho et al. [10] to overcome the problems with type-I progressive hybrid censoring schemes. It has also been proposed by Kundu and Joarder[11], a mixture of type-I HCS and PTIICS since HCS combines type-I and type-II censoring schemes.

    This technique would prefer to allow the experiment to continue after a predetermined time if very few failures have been noticed up to that time. So we assumed a predetermined minimum of k failures, and the experimenter would ideally like to observe m failures but is willing to accept a bare minimum of k(k<m) failures.

    The GPHCS can be depicted as follows: If nN identical items X1,X2,...,Xn are placed on a test and τ(0,) is a predetermined time, with integers k and m being predetermined such that k is the minimum number of failing items allowed since k,m{1,2,...,n} and (R1,R2,...,Rm) are predetermined integers such that

    mi=1Ri+m=n,

    then at the time of each failure Xi:m:n, Ri, i=1,2,,m, the remaining units are randomly removed. This process continues until the termination time

    T=max(Xk:m:n,min(Xm:m:n,τ))

    when all remaining units are removed from the experiment. Under this setup, the experimenter would ideally like to observe m failures but would be willing to accept a minimum of k failures. The number of observed failures until time τ is denoted by d. We noted the observed data and survival items removed in the GPHCS categories, which have one of the three possible types:

    X_={{(X1:m:n,R1),(X2:m:n,R2),,(Xk:m:n,Rk)},ifτ<Xk:m:n<Xm:m:n,{(X1:m:n,R1),(X2:m:n,R2),,(Xd:m:n,Rd)},ifXk:m:n<τ<Xm:m:n,{(X1:m:n,R1),(X2:m:n,R2),,(Xm:m:n,Rm)},ifXk:m:n<Xm:m:n<τ. (1.1)

    From Eq (1.1), we make one of the following observations:

    For Case I, Xd:m:n<τ<Xd+1:m:n<...<Xk:m:n, Rd+1=...=Rk1=0 and

    Rk=nkdi=1Ri.

    For Case II, Xd:m:n<τ<Xd+1:m:n<...<Xm:m:n and Xd+1:m:n,...,Xm;m:n are not observed and are at time τ, which observed some survival items Rτ since

    Rτ=nddi=1Ri.

    For Case III,

    Rm=nmm1i=1Ri

    is the number of remaining units left at time Xm:m:n.

    Figure 1 shows a graphical description of the GPHCS.

    Figure 1.  Schematic representation of GPHCS.

    A survey of the literature on lifetime distributions with CR under various censorship schemes is suggested in this subsection. As shown in Table 1, some researchers considered the estimation problem based on CR under censoring data.

    Table 1.  Related works.
    Authors Related works
    Liao and Gui [12] Discussed the inference for Rayleigh distribution in the presence of CR under PTIICS.
    Wang et al. [13] Examined the inference for the Weibull CR model with partially observed failure causes under GPHCS.
    Almarashi et al. [14] Investigated the statistical analysis of Nadarajaha-Haghighi distribution's CR lifetime under type-II censoring.
    Mahmoud et al. [15] Studied the progressive of the type-I censoring scheme under CR, focusing specifically on the case where the lifetimes of the subjects follow a generalized inverted exponential distribution.
    El-Raheem et al. [16] Discussed the point and interval statistical inference of the extension of the exponential distribution's parameters under CR data with PTIICS.
    Abushal et al. [17] Studied the inference of Lomax CR model with partially observed failure causes under the type-II
    generalized hybrid censoring scheme.
    Qin and Gui [18] Analyzed CR from Lomax distribution based on adaptive progressive type-II hybrid censored.
    Hassan et al. [19] Evaluated CR from the analysis of the inverted Topp-Leone distribution under PTIICS.
    Ahmed and Nassar[20] Examined electrode data analysis within the framework of the Weibull lifetime CR model in the context of improved adaptive progressive censoring.
    Hassen et al.[21] Studied the Bayesian statistical inference of the generalized inverted exponential distribution through the CR model under GPHCS.
    Tian et al.[22] Examined the implications of the inverted exponential Rayleigh distribution using the CR model when
    employing optimal PTIICS.
    Lv et al.[23] Explored the process of inferring statistics through the CR sample when subjects' lifetimes follow the
    Gompertz distribution in the context of general PTIICS.
    Salem et al.[24] Obtained the maximum likelihood estimates (MLEs) and Bayesian estimates (BEs) from the Weibull distribution based on the censored Generalized Progressive Hybrid type-II in the presence of the CR model.

     | Show Table
    DownLoad: CSV

    This study aims to analyze the generalized Lomax distribution (GLD) under the GPHCS scheme in the context of the CR model. The GPHCS method is increasingly popular due to its potential to reduce time and cost in life-testing experiments significantly. Moreover, the GLD's versatility has led to its wide application across various fields. Figure 2 presents a visual breakdown of the methodological framework employed in this study. The core objectives of this study are:

    Figure 2.  Illustration of the methodology of the model's application.

    (1) Analyze the GLD's parameters through CR based on the GPHCS by using maximum likelihood (ML) and Bayesian approaches.

    (2) Acquire the asymptotic two-sided confidence intervals (CIs) and two bootstrap CIs for GLD parameters.

    (3) Explain the Bayesian estimation of the GLD's parameters using an independent gamma prior distribution under three loss functions.

    (4) Use the Markov chain Monte Carlo (MCMC) algorithm, to generate the Bayesian credible intervals (BCIs) and the highest posterior density (HPD) intervals.

    (5) Evaluate the performance of the suggested estimators with different GPHC schemes through a simulation study and real data.

    The remaining sections of this article are arranged as follows: Section 2 formulates the model. In Section 3, the maximum likelihood estimates (MLEs) for the parameters, the reliability characteristics, and the relative risks are obtained. Additionally, the Bayesian estimates (BEs) based on the linear exponential (LINEX), generalized entropy (GE), and squared error loss functions are presented. The MCMC technique is used to create the BCI and HPD intervals. Asymptotic CIs (ACIs), Bootstrap CIs, and other significant functions of the model parameters are given in Section 4. Section 5 shows the performance of the suggested estimates by comparison through mean squared error (MSE). Section 6 describes a practical application. The study's conclusion and future research are offered in Section 7. Finally, two algorithms used and tables of numerical work results in the present article are included in Appendixes A and B, respectively.

    Suppose that nN identical components X1,X2,...,Xn are put on a GPHC life test in the presence of CR. Each component is exposed to two risks. We have

    Xi=min(X1i,X2i);  i=1,2,...,n,

    where X1i and X2i are the latent failure times and the pairs (X1i,X2i) are assumed to be distributed independently and identically (i.i.d). Now, the consequential data in the presence of CR under the GPHC experiment is shown:

    X_={{(X1:m:n,δ1,R1),(X2:m:n,δ2,R2),...,(Xk:m:n,δk,Rk)},ifτ<Xk:m:n<Xm:m:n,{(X1:m:n,δ1,R1),(X2:m:n,δ2,R2),...,(Xd:m:n,δd,Rd)},ifXk:m:n<τ<Xm:m:n,(X1:m:n,δ1,R1),(X2:m:n,δ2,R2),...,(Xm:m:n,δm,Rm), ifXk:m:n<Xm:m:n<τ, (2.1)

    where δi=1 when X1i<X2i (failure from Cause 1) or δi=2 when X1i>X2i (failure from Cause 2); i=1,2,...,n.

    The GLD, a widely used power-type heavy-tailed model, has been employed in numerous applied problems. Specifically, it was utilized to analyze business failure data. The GLD is a Lomax generalization proposed by Maurya et al. [25]. Researchers have employed various generalizations of the Lomax distribution in studies for modeling business records to reliability and lifetime testing, as shown in Hassan et al.[26] (for more details about the study of GLD, see Alghamdi[27]).

    The GLD is derived by using the power transformation method of Box and Cox [28]. This distribution has three parameters: only one shape parameter αj;j=1,2, and the common other parameters β,γ>0 are scale and shape, respectively. The following are the probability density function (PDF) and the cumulative distribution function (CDF) for the GLD:

    f(x;αj,β,γ)=αjβγxγ1(1+βxγ)(αj+1)andF(x;αj,β,γ)=1(1+βxγ)αj, (2.2)

    respectively. The GLD's PDF is denoted by GLD(αj,β,γ), where j=1,2 and if γ is less than or more than 1, the PDFs may exhibit a decrease in value or a unimodal form. For β=1 and γ=1, it leads to Burr XII and Lomax distributions, respectively. In numerous cases, the GLD often proves to be more appropriate than the Burr XII, transmuted Burr III, and Burr III distributions, as shown by Maurya et al. [25].

    Remark 1. If the latent failure times X1i and X2i are i.i.d random variables following GLD(α1,β,γ) and GLD(α2,β,γ), respectively, then the random variable

    Xi=min(X1i,X2i)

    follows GLD(α1+α2,β,γ), where β,γ are the scale and shape parameters and (α1+α2) is the shape parameter.

    Applying Remark 1, the reliability and hazard function of the random variable Xi, referred to as (t) and (t), respectively, are provided by

    (t)=P(Xi>t)=P(X1i>t)P(X2i>t)=(1+βtγ)(α1+α2), (2.3)
    (t)=(α1+α2)γβtγ1(1+βtγ)1. (2.4)

    Remark 2. The relative risks due to Causes 1 and 2 are determined using the independence of the latent failure times, and they are as follows:

    πj=P(Xji<X(3j)i)=0αjβγxγ1(1+βxγ)(αj+α(3j)+1)dx=αjαj+α3j, (2.5)

    where j=1,2.

    Now, based on the observed sample in Eq (2.1), the likelihood function formula for three different cases is defined in a unified expression:

    LΠWi=1[S(xi;α1,β,γ)S(xi;α2,β,γ)]Ri([S(τ;α1,β,γ)S(τ;α2,β,γ)]nWWi=1Ri)D×Πj1i=1[f(xi;α1,β,γ)S(xi;α2,β,γ)]Πj2i=1[f(xi;α2,β,γ)S(xi;α1,β,γ)], (2.6)

    where

    xi=xi:m:n

    for simplicity of notation,

    S(xi;αj,β,γ)=1F(xi;αj,β,γ);  i=1,2,...,n, j=1,2

    is the survival function and j1 and j2 are the numbers of the observed failure times due to reasons 1 and 2. The total number of failures observed at experiment terminated time is denoted by W; i.e.,

    W=j1+j2.

    Also, W=k for Case I, or W=d for Case II, W=m for Case III. The indicator function is denoted D; i.e., D=1 when W=d; otherwise, D=0.

    In this section, we propose the two methods of point estimation for the CR model using the GPHCS data from the GLD.

    In the presence of CR data, the GPHC schemes are used to acquire the ML estimators of the unknown parameters α1, α2, and β, the reliability characteristics (t) and (t), and the relative risks πj,j=1,2. Assuming that γ is known, without any generality, γ=γ0.

    From Eqs (2.2) and (2.6), the likelihood function can be written as follows:

    L(x_|α1,α2,β)αj11αj22βWγW0(ΠWi=1xγ01i:m:n)ΠWi=1[1+βxγ0i:m:n](Ri+1)(α1+α2)1×[1+βτγ0]D(α1+α2)(nWWi=1Ri). (3.1)

    Therefore, taking the logarithms of likelihood function (3.1), say, l, then

    lj1ln(α1)+j2ln(α2)+Wln(β)+Wln(γ0)Wi=1ln(1+βxγ0i:m:n)+(γ01)Wi=1ln(xi:m:n)(α1+α2)[Wi=1(Ri+1)ln(1+βxγ0i:m:n)+D(nWWi=1Ri)ln(1+βτγ0)]. (3.2)

    Now, by differentiating l with respect to α1, α2, and β, then

    lα1=j1α1[Wi=1(Ri+1)ln(1+βxγ0i:m:n)+D(nWWi=1Ri)ln(1+βτγ0)], (3.3)
    lα2=j2α2[Wi=1(Ri+1)ln(1+βxγ0i:m:n)+D(nWWi=1Ri)ln(1+βτγ0)] (3.4)

    and

    lβ=(α1+α2)[Wi=1(Ri+1)(xγ0i:m:n1+βxγ0i:m:n)+D(nWWi=1Ri)τγ01+βτγ0]+WβWi=1xγ0i:m:n1+βxγ0i:m:n. (3.5)

    Equating (3.3) and (3.4) with zero, then

    ˆα1ML=j1ϕ(x_,τ,ˆβML,γ0)andˆα2ML=j2ϕ(x_,τ,ˆβML,γ0), (3.6)

    where

    ϕ(x_,τ,ˆβML,γ0)=Wi=1(Ri+1)ln(1+ˆβMLxγ0i:m:n)+D(nWWi=1Ri)ln(1+ˆβMLτγ0).

    To solve Eq (3.6), we need to get the ML estimator of β say ˆβML. There is no closed-form solution for β, so by setting Eq (3.5) with zero and solving numerically, the ˆβML is produced. Now, by substituting (3.6) into (3.5), we get the following:

    g(ˆβML)=W[1ˆβMLϕ(x_,τ,ˆβML,γ0)ϕ(x_,τ,ˆβML,γ0)]Wi=1xγ0i:m:n1+βxγ0i:m:n=0. (3.7)

    In this situation, one can utilize numerical methods such as the Newton-Raphson method to solve for β and then use this value to determine ˆα1ML and ˆα2ML, respectively. In the real data example, we used profile plots of the log-likelihood function of parameter β, as shown in Figure 3. These findings suggest that the required ML estimators may exist uniquely; see Section 7.

    Figure 3.  Plots of the profile log-likelihood for β under each case when m=40.

    Using the invariance property, the ML estimator of the reliability characteristics ˆ(t) and ˆ(t), at the various time t, can be acquired from (2.3) and (2.4) by replacing the original values α1, α2, and β by their ML estimators ˆα1ML,ˆα2ML, and ˆβML, respectively.

    ˆ(t)=(1+ˆβMLtγ0)W/ϕ(t_,τ,ˆβML,γ0)andˆ(t)=Wγ0ˆβMLtγ01ϕ(t_,τ,ˆβML,γ0)(1+ˆβMLtγ0).

    In the same way, the ML estimator of the relative risk resulting from Causes 1 and 2 may be determined from Eq (2.5) as follows:

    ˆπ1ML=ˆα1MLˆα1ML+ˆα2ML=j1Wandˆπ2ML=1j1W=j2W.

    In this subsection, we discuss Bayesian estimators for the unknown parameters α1,α2, and β of the GLD based on the CR model under GPHCS. We assumed independent gamma with hyper-parameters al>0 and bl>0, l=1,2,3. The following forms can be acquired from the combined prior distribution of these parameters:

    π(α1,α2,β)αa111αa212βa31e(b1α1+b2α2+b3β);α1,α2 and β>0. (3.8)

    The joint posterior distribution of unknown parameters α1, α2, and β is determined by utilizing the likelihood function (3.1) and the joint prior distributions (3.8) as follows:

    π(α1,α2,β|x_)αa1+j111eα1[b1+ϕ(x_,τ,β,γ0)]αa2+j212eα2[b2+ϕ(x_,τ,β,γ0)]γw0×βa31+We[b3β+Wi=1ln(1+βxγ0i:m:n)(γ01)Wi=1ln(xi:m:n))], (3.9)

    where

    ϕ(x_,τ,β,γ0)=Wi=1(Ri+1)ln(1+βxγ0i:m:n)+D(nWWi=1Ri)ln(1+βτγ0).

    In Bayesian analysis, a loss function must be specified to estimate an unknown parameter. There are no hard-and-fast guidelines for choosing the best loss function; it depends on the particular issue. The two main categories of loss functions are symmetric and asymmetric. The Bayesian estimator for the function u(α1,α2,β) under symmetric (SE) and asymmetric (LINEX and GE) loss functions are driven. A common symmetric loss that penalizes overestimation and underestimating equally is the SE. Because of its convexity, which guarantees a unique minimum and makes optimization easier, it is frequently utilized in regression situations (Varde[29]). The posterior mean is the Bayesian estimator for a function u(α1,α2,β) under the SE loss function and is computed by

    ˜u(α1,α2,β)BS=E(u(α1,α2,β)|x_)=000u(α1,α2,β)π(α1,α2,β|x_)dα1dα2dβ. (3.10)

    In machine learning, the LINEX is a commonly used statistic, especially for classification issues. It calculates how much the target variable's actual distribution differs from the predicated probability distribution (Varian[30]). Although it provides flexibility in estimating location parameters, the LINEX loss function might not be the best option for estimating scale parameters (Basu and Ibrahimi[31]. Based on the LINEX loss function, the Bayesian estimator for a function u(α1,α2,β) is given by

    ˜u(α1,α2,β)BL=1hln[E(ehu(α1,α2,β)|x_)]=1hln[000ehu(α1,α2,β)π(α1,α2,β|x_)dα1dα2dβ]. (3.11)

    A good alternative for the modified LINEX loss function is the GE, which Calabria and Pulcini [32] suggested. The GE loss function is a useful tool in information theory and machine learning. The Bayesian estimator for function u(α1,α2,β) under the GE loss function is described below:

    ˜u(α1,α2,β)BG=[E((u(α1,α2,β))c|x_)]1c=[000(u(α1,α2,β))cπ(α1,α2,β|x_)dα1dα2dβ]1c. (3.12)

    Moreover, from Eq (3.9), we can obtain the Bayesian estimators of the reliability characteristics at operation time t and relative risks, respectively, as follows:

    ˜(t)=βα2α1(t,α1,α2,β)π(α1,α2,β|x_)dα1dα2dβ, (3.13)
    ˜(t)=βα2α1(t,α1,α2,β)π(α1,α2,β|x_)dα1dα2dβ, (3.14)
    ˜πj=βα2α1πj(α1,α2)π(α1,α2,β|x_)dα1dα2dβ;j=1,2. (3.15)

    Since it is extremely difficult to solve the integrals from (3.10) to (3.15) analytically, we shall use the MCMC approach. The lower and upper limits of the BCI and HPD intervals for the unknown parameters, reliability characteristics, and relative risks will also be calculated using the MCMC approach's sample data. Therefore, the conditional posterior probability for α1 given α2,β, and x_, and α2 given α1,β, and x_ are, respectively, expressed as follows:

    π1(α1|α2,β,x_)αa1+j111eα1[b1+ϕ(x_,τ,β,γ0)]Gamma(a1+j1,b1+ϕ(x_,τ,β,γ0)), (3.16)
    π2(α2|α1,β,x_)αa1+j112eα2[b2+ϕ(x_,τ,β,γ0)]Gamma(a2+j2,b2+ϕ(x_,τ,β,γ0)). (3.17)

    Also, the conditional posterior probability for β given α1,α2, and x_ is given by:

    π3(β|α1,α2,x_)βa3+W1e(α1+α2)ϕ(x_,τ,β,γ0)eb3β+Wi=1ln(1+βxγ0i:m:n). (3.18)

    Because the conditional probability distribution in Eq (3.18) is not well-known, we will apply the Metropolis-Hastings sampler to obtain the values of β that follow the distribution in (3.18). Using the Metropolis-Hastings technique, we can produce random samples from the normal proposal distribution; see Metropolis et al.[33]. The conditional posterior distributions α1, α2, and β are generated using Algorithm A.2, as shown in Appendix A.

    The Bayesian estimators based on the three loss functions and the generated values φ(z)g; g=1,2,...,7; and

    z=NB+1,NB+2,...,M,

    respectively, are obtained as follows:

    ˜φgBS=Mz=NB+1φ(z)MNB,  ˜φgBL=1hln[Mz=NB+1ehφ(z)MNB]and˜φgBG=[Mz=NB+1[φ(z)]cMNB]1/c.

    If the values of the hyper-parameters tend to be zero, then the Bayesian estimator for vector φg can be computed using the same approach as before. In this case, the prior is a uniform prior.

    This section discusses two methods of constructing CIs for α1, α2, β, reliability characteristics and relative risks. The first method uses the asymptotic distributions of the estimators to obtain CIs of the different parameters of interest. The second method is the parametric bootstrap CIs, constructed using the percentile bootstrap (Boot-p) and the bootstrap-t (Boot-t) methods.

    This subsection presents the ACIs of the unknown parameters, reliability characteristics and relative risks. The ACIs can be acquired by inverting the Fisher information matrix (FIM) with the negative elements of expected values of the second-order derivatives of logarithms of the likelihood functions. Cohen [34] replaced expected values with their ML estimators to obtain the approximation variance-covariance matrix. Let

    Θ_=(α1,α2,β)T

    be the vector of unknown parameters, where Θ1=α1,Θ2=α2, and Θ3=β. Let I1(Θ_) denote the inverse of FIM of the parameters,

    I1(ˆα1MLˆα2MLˆβML)=[2lα212lα1α22lα1β2lα2α12lα222lα2β2lβα12lβα22lβ2]1(α1=ˆα1ML,α2=ˆα2ML,β=ˆβML).

    From Eqs (3.3)–(3.5), the second derivatives of l with respect to α1,α2 and β are

    2lα21=j1α21,2lα22=j2α22,2lβ2=Wβ2(α1+α2)ϕ(x_,τ,β,γ0)+Wi=1(xγ0i:m:n1+βxi:m:n)2,2lα1β=2lα2β=2lβα1=2lβα2=ϕ(x_,τ,β,γ0),  2lα1α2=2lα2α1=0,

    where

    ϕ(x_,τ,ˆβ,γ0)=Wi=1(Ri+1)ln(1+ˆβxγ0i:m:n)+D(nWWi=1Ri)ln(1+ˆβτγ0),ϕ(x_,τ,β,γ0)=[Wi=1(Ri+1)(xγ0i:m:n1+βxγ0i:m:n)+D(nWWi=1Ri)τγ01+βτγ0],ϕ(x_,τ,β,γ0)=[Wi=1(Ri+1)(xγ0i:m:n1+βxγ0i:m:n)2+D(nWWi=1Ri)(τγ01+βτγ0)2].

    Therefore, we obtain the ACIs of the unknown parameters α1,α2 and β for j1,j2>0. Depending upon the asymptotic distribution of the ML estimators of the parameters, it is considered as the following:

    ˆΘ_Θ_N3(0,I1(ˆΘ_)).

    Now, the two-sided 100(1δ)%, 0<δ<1, ACIs for the vector of unknown parameters can be obtained as follows:

    ˆΘl±Zδ/2Var(ˆΘl),l=1,2,3,

    where Zδ/2 is the percentile of the standard normal distribution with right-tail probability δ/2, and Var(ˆΘl) is the element of the main diagonal of I1(ˆΘl) for l=1,2,3.

    The obtained ACIs may occasionally have negative lower bounds. To overcome this issue, the logarithmic transformation and delta techniques can be used to construct the asymptotic normality distribution of lnˆΘl as

    lnˆΘllnΘlVar(lnˆΘl)N(0,1);   l=1,2,3.

    As a result, the formula for a 100(1δ)%, 0<δ<1, ACI of Θl obtained in this way is

    (ˆΘlexp(Zδ/2^Var(lnˆΘl)),ˆΘlexp(Zδ/2^Var(lnˆΘl))),

    where

    ^Var(lnˆΘl)=^Var(ˆΘl)/ˆΘl.

    Furthermore, based on the ML estimators' asymptotic normality, it is recognized that ˆ(t)N((t), ˆσ2),ˆ(t)N((t),ˆσ2), and ˆπjN(πj,ˆσ2πj);j=1,2. It is possible to create the ACIs for (t),(t), and πj by employing the corresponding normality. Therefore, Greene's [35] delta approach must be used to approximate and represent the variances of the estimators of (t),(t), and πj. The three partial derivative vectors for (t),(t), and πj with respect to unknown parameters are known as ,, and πj;j=1,2, respectively, which are described as follows:

    =((t)α1,(t)α2,(t)β),=((t)α1,(t)α2,(t)β),πj=(πjα1,πjα2,πjβ),

    where

    (t)αj=ln(1+βtγ0)(1+βtγ0)(α1+α2),(t)β=(α1+α2)tγ0(1+βtγ0)(α1+α2+1),πjβ=0,πjαj=α3j(αj+α3j)2,πjα3j=αj(αj+α3j)2, (t)αj=βγ0tγ011+βtγ0,   (t)β=(α1+α2)γ0tγ01(βtγ0+1)2;j=1,2.

    Consequently, it is possible to acquire the approximate variances of (t),(t), πj;j=1,2 as follows:

    ˆσ2=[ I1(Θ_) T]|Θ_=ˆΘ_,ˆσ2=[ I1(Θ_) T]|Θ_=ˆΘ_,  ˆσ2πj=[πj I1(Θ_) Tπj]|Θ_=ˆΘ_.

    Now, the two-sided 100(1δ)%, 0<δ<1, ACIs for (t),(t), and πj can be obtained as follows:

    ˆ(t)±zδ/2ˆσ2, ˆ(t)±zδ/2ˆσ2,^πj±zδ/2ˆσ2πj;j=1,2.

    This subsection constructs two parametric Boot-p CIs for unknown parameters, reliability characteristics, and relative risks of the GLD in the presence of two CR based on GPHC schemes, which are known as the Boot-p (Efron[36]) and the Boot-t (Hall[37]) methods.

    Let

    φ_=(α1,α2,β,(t),(t),π1,π2)

    be a vector of the unknown parameters, reliability characteristics, and relative risks, where

    φ1=α1,φ2=α2,φ3=β,φ4=(t),φ5=(t),φ6=π1andφ7=π2.

    By following Kundu et al.[38] and Kundu and Joarder[11], we generate Boot-p CIs by using Algorithm 1, as shown in Appendix A.

    A Monte Carlo analysis is used in this section to compare the performance of the MLEs and the BEs for gamma distribution under different GPHC schemes. In addition, the BEs using the gamma prior distribution are compared. We generated GPHC data for each failure sample. In addition, we identified the cause of failure as 1 or 2 with a probability of α1α1+α2 and α2α1+α2, according to an algorithm proposed by Balakrishnan and Sandhu[39]. With the following assumptions, one can generate 10,000 GPHC samples, 11,000 MCMC samples with 1000 nburn, and 1000 Boot-p samples in the presence of CR from the GLD.

    (1) Under the prefixed time τ=1.2, assume the sample sizes for each cause of failure, and the number of failed units with the various minimum number of failure units are

    (n,m,k)=(60,40,25),(60,40,30),(60,50,25),(60,50,30).

    (2) Assume that the following censoring schemes will be used to remove the remaining units:

    Scheme 1: R1=nm; otherwise, Ri=0.

    Scheme 2: Ri=1 if i=1,2,...,nm; otherwise, Ri=0.

    Scheme 3: Rm=nm and Ri=0 if i otherwise.

    (3) In this study, we assumed fixed parameters γ0=3 and γ0=1 to use for choosing the GLD parameters

    Θtrue=(α1,α2,β)=(0.5,0.75,1) and(0.8,1.5,2).

    It is important to mention that in both states 1 and 2, Xi=min(X1i,X2i) follows the Burr type XII(β=1) and Lomax(γ0=1) distributions, as special states of GLD, respectively.

    (4) From BE, the three loss functions, SE, LINEX (h=1.5 and 1.5), and GE (c=0.5 and 0.5), are used. The hyper-parameters of gamma prior to BE are obtained in these states:

    (a) State 1: (al,bl)=(5.00,10.00),(11.25,15.00),(20.00,20.00);l=1,2,3, when γ0=3.

    (b) State 2: (al,bl)=(12.8,16),(45.0,30.0),(80.0,40.0);l=1,2,3, when γ0=1.

    Let the mean of the marginal prior distribution be Θtrue and its variance be 0.05 for each prior see El-Din et al.[40].

    We used MSE, absolute bias (AB), and average estimate (AE) to compare each estimate. The values of AB and MSE of MLEs and BEs for the parameters α1, α2 and β depending on gamma priors are presented in Tables B.1B.6. In addition, for the values of the AE of the MLE and BEs for the reliability characteristics (t) and (t) at different times see Tables B.7B.10). From these tables, we noted that

    ● The BEs under the LINEX loss function (BL) with h=1.5 have the highest MSE values among all BEs for the various estimates.

    ● The BEs under BL with h=1.5 for ˆα1BL and ˆα2BL exhibit the lowest MSE values, as shown in Figure 4a, b.

    Figure 4.  MSE for different estimates of α1, α2, and β with various n,m,k and γ0=1.

    ● The BEs under the SE loss function (BS) for ˆβBS had the lowest MSE values when γ0=1; see Figure 4c.

    ● When γ0=3, the MSE values of BEs exhibit similar behavior for different schemes, but the MSE values of MLEs decrease.

    ● For a fixed m, the MSE values of various estimates of α1 and β decrease for different schemes as k increases (see Figure 5a, c), whereas the MSE values of α2 increase and vice versa.

    Figure 5.  MSE for different estimates of α1, α2, and β at γ0=1 under various schemes.

    ● The MSE values of α2 and β estimates increase and vice versa for α1, for fixed k and change m, as shown in Figure 5.

    Tables B.3B.5 show that the MSE values of all estimates decrease for different schemes when m increases with constant k in most cases.

    ● The MSE values for different estimates of (t) increase as time t increases, and vice versa for (t), as shown in Figure 6 under γ0=1.

    Figure 6.  MSE for different estimates of (t), and (t) at γ0=1 under schemes 1, 2 and times t=0.1 and t=0.5.

    ● When γ0=3, the MSE values of (t) and (t) increased with time t.

    ● The BEs of (t) under BL with h=1.5 have the minimum MSE values at t=0.1, whereas the MSE values of BE under BL (with h=1.5) are the smallest at t=0.5, as shown in Figure 6a.

    ● The BEs exhibit the lowest MSE values for (t) at time t=0.1 when the loss function is the BS; see Figure 6b.

    ● The MSE values are the highest under BL (with h=1.5) at various times t.

    ● Scheme 3 has the lowest MSE values under the ML method, as shown in Figures 4a, b and 7 concerning both (t) and (t).

    Figure 7.  MSE for different estimates of (t) and (t) with various n,m,k,t, and γ0=3.

    ● In most instances, the MSE values of (t) and (t) are approximately equal to those of the BEs; see Figure 7.

    ● At the time t=0.5 and γ0=3, the BEs for (t) under BL with h=1.5 had the smallest MSE, as shown in Figure 7a, b.

    ● For γ0=3 and at time t=0.1, the BEs for (t) under the GE loss function (BG) with c=0.5 had the smallest MSE; however, at time t=0.5, the BEs for (t) under the BL with h=1.5 had the smallest MSE; see Figure 7c, d.

    Furthermore, Tables B.11B.14 illustrate the average width (AW) and coverage probability (CP) for the 95% ACI, BCIs, and HPDs, respectively, using the MCMC-generated values of the parameters and reliability characteristics. According to the tables, we noted that

    (1) The ACIs of all parameters have the largest CP; therefore, the AWs of these parameters are also the highest.

    (2) Boot-t has the smallest CP for α1 and α2, whereas the opposite is true for β. Furthermore, Boot-p has a smaller AW than Boot-t for all the parameters.

    (3) The HPDs had smaller AWs than BCI, which had a higher CP than the HPDs.

    (4) When k=30 and m increase, the CP for (t) increases over time in most cases and vice versa for k=25.

    (5) For fixed k, the CP for (t) increases over time in most cases as m increases.

    (6) At γ0=3 and for fixed k and m, the AW for (t) increases over time, similar to that for (t).

    (7) For fixed k, m and at γ0=1, the AW for (t) increases over time in most cases and vice versa for (t), except in case ACI.

    This section examines the adaptability and validity of GLD using real-time data analysis. It also demonstrated the practical use of the proposed CR model based on the GPHCS. We display the original dataset from the jute fiber breaking strength experiment conducted (see Xia et al. [41]). In this experiment, the breaking strength failure data of the jute fiber was affected by two different gauge lengths: 5 mm and 10 mm. The following data is displayed using the transformation Y=X/200:

    Time of failure due to Cause 1: 0.6454, 0.83935, 0.841, 0.89125, 0.9271, 0.9384, 1.0943, 1.13265, 1.27145, 1.30485, 1.341, 1.35395, 1.5242, 1.53495, 1.57665, 1.804, 1.8385, 1.8501, 2.20935, 2.47755, 2.4814, 2.5824, 2.68725, 2.73055, 2.77305, 2.83155, 2.91985, 3.09285, 4.04615, 4.11515.

    Time of failure due to Cause 2: 0.21965, 0.2508, 0.50575, 0.5447, 0.6153, 0.7069, 0.7574, 0.817, 0.88625, 0.9158, 1.06065, 1.2872, 1.3145, 1.45635, 1.5195, 1.61915, 1.7662, 1.8821, 1.91715, 2.11055, 2.533, 2.65275, 2.9524, 3.1883, 3.35745, 3.46865, 3.5037, 3.5233, 3.63615, 3.89085.

    We conducted the Kolmogorov-Smirnov (KS) test to evaluate whether the data conformed to the GLD, and the P-values obtained from the KS test for Causes 1 and 2 were 0.560938 and 0.651419, respectively. The GLD provided a reasonable fit for the data, see Figure 8. Subsequently, we employ a censored dataset and various values that differ from the original data (both big and small).

    Figure 8.  Empirical CDF with the fitted CDFs plots for all models under appliances data.

    In this subsection, we create a PTIIC sample of m=40 out of n=60. The PTIIC sample is presented in Table 2. This table displays the failure lifetime yi:m:n, cause of failure δi, and censoring scheme R used to remove the remaining units. Three alternative GPHCS were produced when the known parameter γ0=3 was selected, assuming a value of k=25 and various values of τ.

    Table 2.  The PTIIC sample of size m=40 from the original data.
    yi:m:n 0.50575 0.5447 0.7069 0.7574 0.817 0.83935 0.841 0.88625 0.89125 0.9271
    δi 2 2 2 2 2 1 1 2 1 1
    R 2 0 0 2 0 0 2 0 0 1
    yi:m:n 0.9384 1.06065 1.0943 1.13265 1.27145 1.341 1.35395 1.45635 1.5242 1.53495
    δi 1 2 1 1 1 1 1 2 1 1
    R 0 0 0 1 0 2 0 1 0 1
    yi:m:n 1.57665 1.61915 1.7662 1.8821 1.91715 2.20935 2.47755 2.533 2.5824 2.65275
    δi 1 2 2 2 2 1 1 2 1 2
    R 0 0 0 0 0 1 0 1 0 1
    yi:m:n 2.77305 2.83155 2.9524 3.09285 3.1883 3.5037 3.5233 3.63615 4.04615 4.11515
    δi 1 1 2 1 2 2 2 2 1 1
    R 0 0 0 0 0 1 0 0 1 3

     | Show Table
    DownLoad: CSV

    1) Case 1: Suppose τ=1.88259, since τ<Y25:40:60, then the experiment would have terminated at y25:40:60, with J1=10, J2=15, R=(2,0,0,2,0,0,2,0,0,1,0,0,0,1,0,2,0,1,0,1,0,0,0,0,23), Rk=23; and we would have the following data: 0.50575, 0.5447, 0.7069, 0.7574, 0.817, 0.83935, 0.841, 0.88625, 0.89125, 0.9271, 0.9384, 1.06065, 1.0943, 1.13265, 1.27145, 1.341, 1.35395, 1.45635, 1.5242, 1.53495, 1.57665, 1.61915, 1.7662, 1.8821, 1.91715.

    2) Case 2: Suppose τ=2.7, since Y25:40:60<τ<Y40:40:60, then the experiment would have terminated at τ=2.7, with J1=12,J2=18,R=(,0,0,2,0,0,2,0,0,1,0,0,0,1,0,2,0,1,0,1,0,0,0,0,0,1,0,1,0,1), Rτ=15; and we would have the following data: 0.50575, 0.5447, 0.7069, 0.7574, 0.817, 0.83935, 0.841, 0.88625, 0.89125, 0.9271, 0.9384, 1.06065, 1.0943, 1.13265, 1.27145, 1.341, 1.35395, 1.45635, 1.5242, 1.53495, 1.57665, 1.61915, 1.7662, 1.8821, 1.91715, 2.20935, 2.47755, 2.533, 2.5824, 2.65275.

    3) Case 3: Suppose τ=4.5, since Y40:40:60<τ, then the experiment would have terminated at Y40:40:60=4.11515, with J1=15, J2=25, R=R, Rm=0; and we would have the following data: 0.50575, 0.5447, 0.7069, 0.7574, 0.817, 0.83935, 0.841, 0.88625, 0.89125, 0.9271, 0.9384, 1.06065, 1.0943, 1.13265, 1.27145, 1.341, 1.35395, 1.45635, 1.5242, 1.53495, 1.57665, 1.61915, 1.7662, 1.8821, 1.91715, 2.20935, 2.47755, 2.533, 2.5824, 2.65275, 2.77305, 2.83155, 2.9524, 3.09285, 3.1883, 3.5037, 3.5233, 3.63615, 4.04615, 4.11515.

    Next, the estimate for parameter β can be obtained numerically by setting g(β)=0 and graphically by plotting the graph of g(β) in Eq (3.7) and finding the point of intersection with the β-axis. Figure 9 illustrates the behavior of g(β) for cases 1–3. Additionally, Figure 3 confirms that the MLE of β is unique since it is the only one that maximizes the log-likelihood for each scheme. As a result, the MLEs for the parameters α1,α2, and β are unique and exist. Consequently, we can calculate the reliability characteristics (t) and (t) at different times and relative risks due to Causes 1 and 2. Therefore, we utilized ML and Bayesian approaches to estimate parameter values. Since we have no prior knowledge of the unknown parameters, we compute BEs with a non-informative (uniform) prior, as seen in Kundu and Pradhan [42].

    Figure 9.  The graph of g(β) for each case when m=40.

    This subsection details the creation of a PTIIC sample consisting of m=25 items from a total of n=60. Table 3 presents the PTIIC sample, showing the failure lifetime yi:m:n, failure cause δi, and the censoring scheme R employed to eliminate the remaining units. Using a known parameter value of γ0=3 and setting k=15, three different GPHCS were generated with varying values of τ.

    Table 3.  The PTIIC sample from the original data when m=25.
    yi:m:n 0.21965 0.50575 0.6153 0.6454 0.817 0.83935 0.841 0.9271 1.13265
    δi 2 2 2 1 1 1 1 1 1
    R 3 0 3 0 3 0 3 0 3
    yi:m:n 1.30485 1.5242 1.57665 1.8385 1.8501 1.91715 2.20935 2.47755 2.68725
    δi 1 2 1 1 1 2 1 1 1
    R 0 3 0 3 0 3 0 3 0
    yi:m:n 2.77305 2.83155 2.9524 3.09285 3.5233 3.89085 4.11515
    δi 1 1 2 1 2 2 1
    R 3 0 3 0 2 0 0

     | Show Table
    DownLoad: CSV

    1) Case 1*: Suppose τ=1.88432, since τ<Y15:25:60, then the experiment would have terminated at y15:25:60, with J1=6, J2=9, R=(,0,3,0,3,0,3,0,3,0,3,0,3,0,24), Rk=24; and we would have the following data: 0.21965, 0.50575, 0.6153, 0.6454, 0.817, 0.83935, 0.841, 0.9271, 1.13265, 1.30485, 1.5242, 1.57665, 1.8385, 1.8501, 1.91715.

    2) Case 2*: Suppose τ=2.5, since Y15:25:60<τ<Y25:25:60, then the experiment would have terminated at τ=2.7, with J1=8,J2=9,R=(,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3), Rτ=16; and we would have the following data: 0.21965, 0.50575, 0.6153, 0.6454, 0.817, 0.83935, 0.841, 0.9271, 1.13265, 1.30485, 1.5242, 1.57665, 1.8385, 1.8501, 1.91715, 2.20935, 2.47755.

    3) Case 3*: Suppose τ=4.5, since Y25:25:60<τ, then the experiment would have terminated at Y25:25:60=4.11515, with J1=11, J2=14,R=R,Rm=0; and we would have the following data: 0.21965, 0.50575, 0.6153, 0.6454, 0.817, 0.83935, 0.841, 0.9271, 1.13265, 1.30485, 1.5242, 1.57665, 1.8385, 1.8501, 1.91715, 2.20935, 2.47755, 2.68725, 2.77305, 2.83155, 2.9524, 3.09285, 3.5233, 3.89085, 4.11515.

    The parameter β can be estimated numerically by solving g(β)=0 and visually by identifying where the graph of g(β) in Eq (3.7) crosses the β-axis. The behavior of g(β) for cases 1*–3* is depicted in Figure 10. Furthermore, Figure 11 demonstrates that the MLE of β is unique, as it is the sole value that optimizes the log-likelihood for each scenario.

    Figure 10.  The graph of g(β) for each case when m=25.
    Figure 11.  Plots of the profile log-likelihood for β under each case when m=25.

    Tables B.15 and B.18 display the standard error (SER), which is the root mean square error for the MLEs and BEs of the uniform prior distribution. Tables B.15 and B.18 show the result of real data when (n,m,k)=(60,40,25) and (n,m,k)=(60,25,15), respectively. From these tables, the SER for MLE was the smallest concerning most estimates. Moreover, the reliability characteristic (t) exhibits a decline from t=0.5 to t=1.5, whereas the opposite trend is observed for (t). Concurrently, the SER for both reliability characteristics exhibited an upward trend over time. Across all scenarios, the relative risk associated with Cause 1 was consistently lower than that of Cause 2.

    Tables B.16 and B.17 show the lower and upper limits for the AWs of each parameter scheme for ACI, Boot-t, Boot-p, and BCI. It is evident from this table that the AWs of the HPD for all schemes were smaller than those of the BCI. The AWs for estimates of α1, α2, and β of Boot-t were found to be smaller than those of Boot-p, whereas the reliability characteristic (t) and (t) at different times t and relative risks due to Causes 1 and 2 showed the opposite trend. As time t increased, the AWs for (t) and (t) also increased. It is worth noting that BCI generally had the largest AWs in Table B.16, whereas in Table B.17, the AWs of ACI were the largest in most cases.

    This study aimed to investigate the application of CR models for GLD in the context of GPHC. Within the CR model that incorporated the two failure mechanisms, it was postulated that the GLD independently determined the lifetime.

    The GLD introduces a new parameter to the traditional Lomax distribution, making it more flexible for applications in diverse fields such as agriculture, finance, and actuarial sciences. This increased flexibility is particularly beneficial in lifetime studies and reliability analysis. For instance, the GLD can be effectively applied to analyze datasets like the failure times of Kevlar 373/epoxy under constant pressure. By incorporating CR and the GPHCS, we can extend this analysis to more complex scenarios.

    In this paper, the point and interval estimators for the unknown parameters, reliability characteristics, and relative risks due to two causes were derived using both ML and Bayesian methods. Moreover, two Boot-p CIs based on MLEs were obtained. The BEs and their associated BCI and HPD intervals were calculated using the MCMC technique, which utilized three loss functions and gamma priors. A simulation analysis was conducted to assess the accuracy of the estimators. The results show the BEs of α1 and α2 under (h=1.5), whereas the BEs of β based on the BS loss function have the lowest MSE values when γ=1. BEs for the gamma prior outperformed the MLEs based on MSE values. The simulation study also revealed that as time t increased and γ0=1, the MSE values of the (t) estimates decreased, while the MSE values of the (t) estimates increased. When γ0=3, the MSE values of (t) and (t) increased with time t as shown in real data which the performance of the proposed estimators was evaluated using a real dataset, suggesting that the required MLEs may exist uniquely.

    Future research directions include investigating lifetime distribution in the presence of CR and can be considered in the following scenarios as follows:

    1) Exploring scenarios with dependent competing risks.

    2) Employing alternative estimation techniques such as E-Bayesian method.

    3) Examining various censoring schemes, including those with random removals.

    Amal Hassan: conceptualization, validation and review; Sudhansu Maiti: visualization and validation; Rana Mousa: writing, editing and methodology.; Najwan Alsadat: conceptualization, methodology, funding acquisition and review; Mahmoued Abu-Moussa: methodology, software, and editing. All authors have read and agreed to the published version of the manuscript.

    This research is supported by researchers supporting project number (RSPD2024R548), King Saud University, Riyadh, Saudi Arabia.

    The authors declare no conflicts of interest.

    First, Appendix A consists of two algorithms used.

    Algorithm A.1 Boot-p method.
    Step 1: From the analysis in Section 3, we can estimate the vector φ_, say ˆφ_.
    Step 2: Generate a Boot-p sample using ˆφ_, R1,R2,...,Rm. Obtain the Boot-p estimate of φl, say ^φl(b);l=1,2,...,7.
    Step 3: Compute the t-statistic Tl=(ˆφblˆφl)/Var(ˆφbl) where Var(ˆφbl) is the asymptotic variance of ˆφbl;l=1,2,3 and it can be obtained using the inverse of FIM, also Var(ˆφbl),l=4,5,6,7 can be acquired by the delta method.
    Step 4: Repeat Steps 1–3 BT times, and obtain { ˆφb(1)l,ˆφb(2)l,...,ˆφb(BT)l}  and {T(1)l,T(2)l,...,T(BT)l} .
    Step 5: Arrange { ˆφb(1)l,ˆφb(2)l,...,ˆφb(BT)l}  and { T(1)l,T(2)l,...,T(BT)l}  in ascending order as { ˆφb[1]l,ˆφb[2]l,...,ˆφb[BT]l}  and { T[1]l,T[2]l,...,T[BT]l} .
    Step 6: A two-sided 100(1δ)%, 0<δ<1, boot-p and boot-t CIs for the vector φl are, respectively, expressed as follows: [ˆφb[BT(δ/2)]l,ˆφb[BT(1δ/2)]l], [ˆφl+T[BT(δ/2)]lVar(ˆφl),ˆφl+T[BT(1δ/2)]lVar(ˆφl)].

    Algorithm A.2 MCMC method.
    Step 1: Start with
                    (α01,α02,β0)=(ˆα1ML,ˆα2ML,ˆβML),   M=MCMC
    with NB=n-burn.
    Step 2: Set z=1
    Step 3: From (3.18), we can generate β from normal distribution with mean β(z1), and variance Var(β(z1)) is the third element of the main diagonal of I1(ˆΘ).
    Step 4: Calculate the acceptance probabilities
                    ξβ=min[1,π3(β|α(z1)1,α(z1)2,x_)π3(β(z1)|α(z1)1,α(z1)2,x_)].
    Step 5: Generate U following a Uniform(0, 1) distribution.
    Step 6: If Uξβ, set
                            β(z)=β,
    otherwise set
                            β(z)=β(z1).
    Step 7: Generate α1 and α2 from (3.16) and (3.17), respectively.
    Step 8: Acquire (z)(T) and (z)(T) at particular time T>0 and πj;j=1,2, by substituting α1,α2, and β with their α(z)1,α(z)2, and β(z), respectively.
    Step 9: Set z=z+1.
    Step 10: Repeat Steps 3–8 M times and obtain φ(z)g,g=1,2,...,7, and z=1,2,...,M; i.e.,

                    φ1=α1,   φ2=α2,   φ3=β,   φ4=,   φ5=,   φ6=π1,  and  φ7=π2.
    Step 11: To compute the credible intervals for φg,g=1,2,...,7, based on the generated values, remove the first NB values for φ(z)g, which is the burn-in period, then sort the (MNB) remaining values for φ(NB+1)g,φ(NB+2)g,...,φ(M)g ascending to be φ[1]g,φ[2]g,...,φ[MNB]g;g=1,2,...,7.
    Step 12: A two-sided 100(1δ)%, 0<δ<1 BCI for the unknown parameter φg is obtained as follows: [˜φ[(MNB)δ/2]g,˜φ[(MNB)(1δ/2)]g];g=1,2,...,7, and the lengths of the credible intervals are the absolute difference between the lower and the upper bounds.
    Step 13: Furthermore, the HPD interval can be formed using the quantile of corresponding random samples, which means that the number of samples covered by the interval is (1δ)(MNB) and the interval length is the minimum of all the 100(1δ)% intervals, i.e.,

                    ˜φ[z+(MNB)(1δ)]g˜φ[z]g=min(MNB)δz=1[˜φ[z+(MNB)(1δ)]g˜φ[z]g],
    where g=1,2,...,7 and z is set in this previous way (see Chen and Shao[43]).

    Next, all tables of numerical work results and real data outcomes are included in Appendix B.

    Table B.1.  The values of AB and MSE of MLEs and BEs for α1 when γ0=3 and τ=1.2 under different censoring schemes.
    n m k Scheme ˆα1ML ˆα1BS ˆα1BL ˆα1BL ˆα1BG ˆα1BG
    (h=1.5) (h=1.5) (c=0.5) (c=0.5)
    60 40 25 1 AB 0.0061 0.0027 0.0102 0.0167 0.0234 0.0060
    MSE 0.0136 0.0093 0.0088 0.0102 0.0096 0.0092
    2 AB 0.0093 0.0045 0.0083 0.0184 0.0211 0.0040
    MSE 0.0123 0.0090 0.0085 0.0099 0.0092 0.0089
    3 AB 0.0079 0.0058 0.0054 0.0178 0.0163 0.0016
    MSE 0.0094 0.0084 0.0079 0.0092 0.0083 0.0083
    30 1 AB 0.0077 0.0056 0.0070 0.0192 0.0196 0.0028
    MSE 0.0124 0.0092 0.0087 0.0102 0.0093 0.0091
    2 AB 0.0067 0.0060 0.0067 0.0197 0.0192 0.0024
    MSE 0.0123 0.0092 0.0086 0.0102 0.0093 0.0091
    3 AB 0.0062 0.0054 0.0057 0.0174 0.0167 0.0020
    MSE 0.0094 0.0084 0.0079 0.0093 0.0084 0.0083
    50 25 1 AB 0.0095 0.0034 0.0082 0.0158 0.0198 0.0044
    MSE 0.0106 0.0085 0.0081 0.0093 0.0087 0.0085
    2 AB 0.0094 0.0027 0.0088 0.0151 0.0203 0.0050
    MSE 0.0108 0.0086 0.0082 0.0094 0.0089 0.0086
    3 AB 0.0082 0.0043 0.0062 0.0155 0.0166 0.0027
    MSE 0.0090 0.0078 0.0074 0.0085 0.0079 0.0078
    30 1 AB 0.0069 0.0033 0.0082 0.0157 0.0198 0.0044
    MSE 0.0106 0.0087 0.0083 0.0094 0.0089 0.0086
    2 AB 0.0082 0.0041 0.0074 0.0165 0.0189 0.0036
    MSE 0.0106 0.0085 0.0080 0.0093 0.0086 0.0084
    3 AB 0.0070 0.0026 0.0079 0.0137 0.0183 0.0044
    MSE 0.0090 0.0077 0.0074 0.0083 0.0079 0.0077

     | Show Table
    DownLoad: CSV
    Table B.2.  The values of AB and MSE of MLEs and BEs for α2 when γ0=3 and τ=1.2 under different censoring schemes.
    n m k Scheme ˆα2ML ˆα2BS ˆα2BL ˆα2BL ˆα2BG ˆα2BG
    (h=1.5) (h=1.5) (c=0.5) (c=0.5)
    60 40 25 1 AB 0.0151 0.0016 0.0157 0.0203 0.0219 0.0062
    MSE 0.0142 0.0091 0.0088 0.0100 0.0094 0.0091
    2 AB 0.0121 0.0023 0.0150 0.0208 0.0211 0.0055
    MSE 0.0129 0.0086 0.0084 0.0096 0.0089 0.0086
    3 AB 0.0097 0.0061 0.0096 0.0229 0.0149 0.0009
    MSE 0.0098 0.0080 0.0076 0.0090 0.0080 0.0079
    30 1 AB 0.0088 0.0046 0.0124 0.0227 0.0182 0.0031
    MSE 0.0131 0.0088 0.0084 0.0099 0.0089 0.0087
    2 AB 0.0120 0.0044 0.0127 0.0228 0.0186 0.0033
    MSE 0.0127 0.0087 0.0083 0.0097 0.0088 0.0086
    3 AB 0.0107 0.0058 0.0098 0.0226 0.0151 0.0012
    MSE 0.0099 0.0084 0.0080 0.0095 0.0084 0.0083
    50 25 1 AB 0.0110 0.0025 0.0135 0.0196 0.0190 0.0047
    MSE 0.0112 0.0085 0.0082 0.0093 0.0087 0.0084
    2 AB 0.0110 0.0022 0.0137 0.0193 0.0193 0.0050
    MSE 0.0112 0.0085 0.0082 0.0093 0.0087 0.0085
    3 AB 0.0113 0.0031 0.0117 0.0190 0.0168 0.0035
    MSE 0.0094 0.0080 0.0077 0.0088 0.0082 0.0079
    30 1 AB 0.0126 0.0034 0.0126 0.0205 0.0181 0.0038
    MSE 0.0111 0.0087 0.0084 0.0096 0.0089 0.0087
    2 AB 0.0121 0.0041 0.0074 0.0165 0.0189 0.0036
    MSE 0.0112 0.0085 0.0080 0.0092 0.0086 0.0084
    3 AB 0.0132 0.0032 0.0115 0.0192 0.0167 0.0034
    MSE 0.0095 0.0079 0.0077 0.0087 0.0081 0.0079

     | Show Table
    DownLoad: CSV
    Table B.3.  The values of AB and MSE of MLEs and BEs for α1 when γ0=1 and τ=1.2 under different censoring schemes.
    n m k Scheme ˆα1ML ˆα1BS ˆα1BL ˆα1BL ˆα1BG ˆα1BG
    (h=1.5) (h=1.5) (c=0.5) (c=0.5)
    60 40 25 1 AB 0.0063 0.0029 0.0160 0.0231 0.0212 0.0051
    MSE 0.0316 0.0116 0.0112 0.0129 0.0119 0.0116
    2 AB 0.0093 0.0026 0.0163 0.0227 0.0215 0.0054
    MSE 0.0315 0.0117 0.0113 0.0130 0.0120 0.0117
    3 AB 0.0065 0.0029 0.0157 0.0227 0.0207 0.0050
    MSE 0.0295 0.0117 0.0113 0.0130 0.0120 0.0117
    30 1 AB 0.0063 0.0023 0.0165 0.0225 0.0218 0.0057
    MSE 0.0322 0.0114 0.0110 0.0126 0.0117 0.0114
    2 AB 0.0077 0.0011 0.0177 0.0212 0.0230 0.0069
    MSE 0.0321 0.0118 0.0114 0.0130 0.0121 0.0117
    3 AB 0.0051 0.0033 0.0152 0.0232 0.0203 0.0045
    MSE 0.0303 0.0117 0.0113 0.0130 0.0119 0.0117
    50 25 1 AB 0.0062 0.0043 0.0127 0.0225 0.0174 0.0029
    MSE 0.0262 0.0114 0.0109 0.0125 0.0115 0.0113
    2 AB 0.0069 0.0028 0.0142 0.0209 0.0188 0.0044
    MSE 0.0247 0.0113 0.01090 0.0124 0.0115 0.0113
    3 AB 0.0033 0.0044 0.0123 0.0221 0.0167 0.0027
    MSE 0.0247 0.0114 0.0109 0.0125 0.0114 0.0113
    30 1 AB 0.0061 0.0011 0.0159 0.0192 0.0205 0.0061
    MSE 0.0266 0.0112 0.0109 0.0122 0.0115 0.0112
    2 AB 0.0083 0.0052 0.0119 0.0234 0.0164 0.0020
    MSE 0.0258 0.0115 0.0110 0.0127 0.0116 0.0114
    3 AB 0.0041 0.0045 0.0122 0.0222 0.0166 0.0026
    MSE 0.0247 0.0112 0.0108 0.0124 0.0113 0.0112

     | Show Table
    DownLoad: CSV
    Table B.4.  The values of AB and MSE of MLEs and BEs for α2 when γ0=1 and τ=1.2 under different censoring schemes.
    n m k Scheme ˆα2ML ˆα2BS ˆα2BL ˆα2BL ˆα2BG ˆα2BG
    (h=1.5) (h=1.5) (c=0.5) (c=0.5)
    60 40 25 1 AB 0.0130 0.0025 0.0225 0.0287 0.0145 0.0032
    MSE 0.0337 0.0092 0.0093 0.0105 0.0093 0.0092
    2 AB 0.0120 0.0005 0.0245 0.0267 0.0165 0.0052
    MSE 0.0335 0.0090 0.0092 0.0102 0.0092 0.0090
    3 AB 0.0105 0.0038 0.0212 0.0299 0.0131 0.0019
    MSE 0.0300 0.0089 0.0089 0.0102 0.0089 0.0088
    30 1 AB 0.0137 0.0013 0.0237 0.0275 0.0156 0.0043
    MSE 0.0342 0.0093 0.0095 0.0106 0.0095 0.0093
    2 AB 0.0131 0.0031 0.0220 0.0293 0.0139 0.0026
    MSE 0.0345 0.0092 0.0092 0.0105 0.0093 0.0092
    3 AB 0.0115 0.0042 0.0207 0.0304 0.0127 0.0014
    MSE 0.0310 0.0090 0.0090 0.0104 0.0091 0.0090
    50 25 1 AB 0.0115 0.0037 0.0198 0.0283 0.0122 0.0016
    MSE 0.0281 0.0099 0.0098 0.0111 0.0099 0.0098
    2 AB 0.0100 0.0005 0.0230 0.0250 0.0154 0.0048
    MSE 0.0269 0.0096 0.0097 0.0107 0.0098 0.0096
    3 AB 0.0118 0.0034 0.0198 0.0277 0.0123 0.0019
    MSE 0.0258 0.0095 0.0094 0.0107 0.0095 0.0094
    30 1 AB 0.0114 0.0012 0.0223 0.0257 0.0147 0.0041
    MSE 0.0285 0.0097 0.0097 0.0108 0.0098 0.0096
    2 AB 0.0096 0.0009 0.0225 0.0254 0.0150 0.0044
    MSE 0.0277 0.0093 0.0094 0.0104 0.0094 0.0093
    3 AB 0.0106 0.0029 0.0203 0.0272 0.0128 0.0024
    MSE 0.0257 0.0095 0.0095 0.0107 0.0096 0.0095

     | Show Table
    DownLoad: CSV
    Table B.5.  The values of AB and MSE of MLEs and BEs for β when γ0=1, and sample size n=60 and τ=1.2 under different censoring schemes.
    n m k Scheme ˆβML ˆβBS ˆβBL ˆβBL ˆβBG ˆβBG
    (h=1.5) (h=1.5) (c=0.5) (c=0.5)
    60 40 25 1 AB 0.0790 0.0116 0.0200 0.0447 0.0045 0.0062
    MSE 0.2168 0.0041 0.0042 0.0061 0.0040 0.0040
    2 AB 0.0750 0.0108 0.0205 0.0435 0.0051 0.0055
    MSE 0.2000 0.0042 0.0044 0.0062 0.0042 0.0042
    3 AB 0.0774 0.0106 0.0201 0.0427 0.0050 0.0054
    MSE 0.1685 0.0043 0.0045 0.0062 0.0042 0.0042
    30 1 AB 0.0851 0.0106 0.0210 0.0437 0.0054 0.0053
    MSE 0.2232 0.0040 0.0042 0.0059 0.0039 0.0039
    2 AB 0.0781 0.0116 0.0197 0.0444 0.0042 0.0063
    MSE 0.1966 0.0043 0.0044 0.0063 0.0041 0.0042
    3 AB 0.0716 0.0110 0.0196 0.0430 0.0045 0.0058
    MSE 0.1690 0.0044 0.0045 0.0063 0.0043 0.0043
    50 25 1 AB 0.0729 0.0115 0.0194 0.0439 0.0042 0.0063
    MSE 0.1736 0.0043 0.0044 0.0063 0.0042 0.0042
    2 AB 0.0735 0.0089 0.0219 0.0412 0.0068 0.0037
    MSE 0.1701 0.0042 0.0045 0.0059 0.0041 0.0041
    3 AB 0.0669 0.0106 0.0198 0.0424 0.0049 0.0054
    MSE 0.1502 0.0043 0.0044 0.0061 0.0042 0.0042
    30 1 AB 0.0765 0.0093 0.0217 0.0417 0.0064 0.0040
    MSE 0.1721 0.0042 0.0044 0.0060 0.0041 0.0041
    2 AB 0.0697 0.0101 0.0208 0.0424 0.0056 0.0049
    MSE 0.1724 00042 0.0044 0.0060 0.0041 0.0041
    3 AB 0.0670 0.0103 0.0202 0.0421 0.0052 0.0051
    MSE 0.1477 0.0042 0.0044 0.0060 0.0041 0.0041

     | Show Table
    DownLoad: CSV
    Table B.6.  The values of AB and MSE of MLEs and BEs for β when γ0=3 and τ=1.2 under different censoring schemes.
    n m k Scheme ˆβML ˆβBS ˆβBL ˆβ1BL ˆβBG ˆβBG
    (h=1.5) (h=1.5) (c=0.5) (c=0.5)
    60 40 25 1 AB 0.0551 0.0221 0.0064 0.0533 0.0066 0.0125
    MSE 0.0799 0.0045 0.0039 0.0072 0.0041 0.0042
    2 AB 0.0592 0.0232 0.0047 0.0537 0.0049 0.0139
    MSE 0.0729 0.0046 0.0039 0.0073 0.0041 0.0043
    3 AB 0.0468 0.0212 0.0061 0.0511 0.0063 0.0120
    MSE 0.0556 0.0043 0.0037 0.0067 0.0039 0.0040
    30 1 AB 0.0635 0.0219 0.0065 0.0529 0.0068 0.0123
    MSE 0.0792 0.0046 0.0039 0.0072 0.0041 0.0042
    2 AB 0.0647 0.0232 0.0046 0.0537 0.0048 0.0139
    MSE 0.0708 0.0047 0.0040 0.0074 0.0042 0.0044
    3 AB 0.0487 0.0219 0.0054 0.0517 0.0056 0.0127
    MSE 0.0546 0.0042 0.0036 0.0067 0.0038 0.0039
    50 25 1 AB 0.0521 0.0230 0.0048 0.0534 0.0050 0.0137
    MSE 0.0644 0.0045 0.0037 0.0071 0.0040 0.0042
    2 AB 0.0511 0.0223 0.0054 0.0525 0.0056 0.0130
    MSE 0.0637 0.0046 0.0039 0.0071 0.0041 0.0042
    3 AB 0.0475 0.0208 0.0064 0.0506 0.0066 0.0117
    MSE 0.0543 0.0044 0.0038 0.0068 0.0040 0.0042
    30 1 AB 0.0565 0.0229 0.0050 0.0533 0.0052 0.0135
    MSE 0.0646 0.0045 0.0038 0.0071 0.0040 0.0042
    2 AB 0.0536 0.0230 0.0047 0.0533 0.0049 0.0137
    MSE 0.0638 0.0046 0.0038 0.0072 0.0040 0.0042
    3 AB 0.0462 0.0216 0.0057 0.0513 0.0059 0.0124
    MSE 0.0535 0.0044 0.0037 0.0068 0.0039 0.0040

     | Show Table
    DownLoad: CSV
    Table B.7.  The values of AB and MSE of MLEs and BEs for (t) based on the different censoring schemes and τ=1.2, γ0=3.
    n t m k Scheme ˆML ˆBS ˆBL ˆBL ˆBG ˆBG
    (h=1.5) (h=1.5) (c=0.5) (c=0.5)
    60 0.1 40 25 1 AE 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987
    MSE 1.2437*107 3.6402*108 3.6408*108 3.6396*108 3.6408*108 3.6404*108
    2 AE 0.99870 0.9987 0.9987 0.9987 0.9987 0.9987
    MSE 1.0923*107 3.5807*108 3.5812*108 3.5818*108 3.5812*108 3.5809*108
    3 AE 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987
    MSE 8.5362*108 3.2401*108 3.2406*108 3.2397*108 3.2406*108 3.2403*108
    30 1 AE 0.9988 0.9987 0.9987 0.9987 0.9987 0.9987
    MSE 1.226*107 3.567*108 3.567*108 3.566*108 3.567*108 3.566*108
    2 AE 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987
    MSE 10.36*108 34.04*109 34.04*109 34.06*109 34.04*109 34.04*109
    3 AE 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987
    MSE 8.526*108 3.2184*108 3.2188*108 3.2180*108 3.2188*108 3.2185*108
    50 25 1 AE 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987
    MSE 9.770*108 3.3138*108 3.3134*108 3.3134*108 3.3143*108 3.3140*108
    2 AE 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987
    MSE 9.3246*108 3.2173*108 3.2178*108 3.2169*108 3.2178*108 3.2175*108
    3 AE 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987
    MSE 8.0102*108 2.9671*108 2.9674*108 2.9668*108 2.9674*108 2.9672*108
    30 1 AE 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987
    MSE 9.900*108 3.3295*108 3.3300*108 3.3291*108 3.330*108 3.3297*108
    2 AE 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987
    MSE 9.445*108 3.2535*108 3.2539*108 3.2530*108 3.2539*108 3.2536*108
    3 AE 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987
    MSE 7.702*108 2.8550*108 2.8554*108 2.8547*108 2.8554*108 2.8552*108
    0.5 40 25 1 AE 0.8587 0.8616 0.8613 0.8621 0.8612 0.8615
    MSE 0.0011 34.93*105 35.34*105 34.53*105 35.46*105 35.10*105
    2 AE 0.8597 0.8621 0.8617 0.8624 0.8616 0.8619
    MSE 9.393*104 34.41*105 34.78*105 34.07*105 34.88*105 34.56*105
    3 AE 0.8600 0.8619 0.8616 0.8622 0.8616 0.8618
    MSE 7.479*104 31.24*105 31.55*105 30.96*105 31.63*105 31.37*105
    30 1 AE 0.8583 0.8615 0.8611 0.8618 0.8610 0.8613
    MSE 10.44*104 34.12*105 34.57*105 33.71*105 34.68*105 34.30*105
    2 AE 0.8587 0.8615 0.8611 0.8618 0.6810 0.8613
    MSE 8.931*104 32.58*105 32.99*105 32.21*105 33.10*105 32.75*105
    3 AE 0.8598 0.8618 0.8615 0.8621 0.8614 0.8617
    MSE 7.448*104 30.98*105 31.30*105 30.69*105 31.38*105 31.11*105
    50 25 1 AE 0.8600 0.8621 0.8618 0.8624 0.8617 0.8620
    MSE 8.528*104 32.01*105 32.30*105 31.73*105 32.39*105 32.13*105
    2 AE 0.8601 0.8622 0.8618 0.8625 0.8618 0.8620
    MSE 8.140*104 31.06*105 31.35*105 30.80*105 31.43*105 31.18*105
    3 AE 0.8609 0.8626 0.8623 0.8629 0.8622 0.8624
    MSE 7.049*104 28.76*105 28.97*105 28.56*105 29.03*105 28.85*105
    30 1 AE 0.8597 0.8620 0.8617 0.8623 0.8616 0.8619
    MSE 8.597*104 32.09*105 32.40*105 31.81*105 32.49*105 32.22*105
    2 AE 0.8600 0.8622 0.8619 0.8625 0.8618 0.8620
    MSE 8.218*104 31.37*105 31.67*105 31.11*105 31.75*105 31.50*105
    3 AE 0.8605 0.8623 0.8620 0.8626 0.8619 0.8622
    MSE 6.793*104 27.68*105 27.89*105 27.47*105 27.96*105 27.76*105

     | Show Table
    DownLoad: CSV
    Table B.8.  The values of AB and MSE of MLEs and BEs for (t) based on the different censoring schemes and τ=1.2, γ0=3.
    n t m k Scheme ˆML ˆBS ˆBL ˆBL ˆBG ˆBG
    (h=1.5) (h=1.5) (c=0.5) (c=0.5)
    60 0.1 40 25 1 AE 0.03922 0.03814 0.038102 0.03818 0.03718 0.03782
    MSE 1.11*104 3.28*105 3.26*105 3.30*105 3.133*105 3.21*105
    2 AE 0.0389 0.03801 0.03797 0.03804 0.03710 0.03771
    MSE 9.836*105 3.227*105 3.213*105 3.241*105 3.097*105 3.165*105
    3 AE 0.03870 0.03802 0.03799 0.3805 0.03727 0.03777
    MSE 7.687*105 2.920*105 2.908*105 2.931*105 2.799*105 2.867*105
    30 1 AE 0.0393 0.03820 0.03816 0.03823 0.03725 0.03788
    MSE 1.104*104 3.214*105 3.198*105 3.231*105 3.041*105 3.136*105
    2 AE 0.03916 0.03818 0.03184 0.03821 0.03728 0.03788
    MSE 9.333*105 3.067*105 3.052*105 3.083*105 2.905*105 2.995*105
    3 AE 0.03876 0.03806 0.03803 0.03809 0.03705 0.037809
    MSE 7.677*105 2.900*105 2.889*105 2.912*105 2.77*105 2.845*105
    50 25 1 AE 0.03875 0.03797 0.037938 0.03800 0.03714 0.03769
    MSE 8.798*105 2.986*105 2.975*105 2.998*105 2.887*105 2.938*105
    2 AE 0.03872 0.03496 0.03793 0.03799 0.03714 0.03769
    MSE 8.397*105 2.899*105 2.888*105 2.911*105 2.802*105 2.852*105
    3 AE 0.03841 0.03782 0.03779 0.03785 0.03709 0.03758
    MSE 7.213*105 2.674*105 2.665*105 2.682*105 2.609*105 2.640*105
    30 1 AE 0.03883 0.03802 0.03798 0.03805 0.03719 0.03774
    MSE 8.915*105 3.00*105 2.988*105 3.012*105 2.893*105 2.949*105
    2 AE 0.03873 0.03796 0.03793 0.03799 0.03714 0.03377
    MSE 8.505*105 2.932*105 2.920*105 2.943*105 2.833*105 2.884*105
    3 AE 0.03853 0.03790 0.037874 0.037931 0.03717 0.03766
    MSE 6.936*105 2.573*105 2.564*105 2.582*105 2.499*105 2.536*105
    0.5 40 25 1 AE 0.8603 0.8440 0.8284 0.8606 0.8253 0.8378
    MSE 0.0408 0.0146 0.0137 0.0162 0.0142 0.0144
    2 AE 0.8541 0.8413 0.8266 0.8568 0.8237 0.8354
    MSE 0.0361 0.0144 0.0135 0.0158 0.0140 0.0142
    3 AE 0.8522 0.8421 0.8298 0.8548 0.8275 0.8372
    MSE 0.0287 0.0131 0.0123 0.0142 0.0127 0.0129
    30 1 AE 0.8628 0.8454 0.8300 0.8616 0.8271 0.8393
    MSE 0.0401 0.0143 0 0133 0.0160 0.0137 0.0140
    2 AE 0.8604 0.8451 0.8305 0.8605 0.8277 0.8393
    MSE 0.0343 0.0136 0.0127 0.0151 0.0131 0.0134
    3 AE 0.8534 0.8428 0.8306 0.8557 0.8283 0.8380
    MSE 0.0286 0.0130 0.0122 0.0141 0.0125 0.0128
    50 25 1 AE 0.8524 0.8406 0.8273 0.8546 0.8247 0.8353
    MSE 0.0328 0.0133 0.0127 0.0145 0.0131 0.0132
    2 AE 0.8519 0.8405 0.8273 0.8543 0.8247 0.8352
    MSE 0.0313 0.0130 0.0123 0.0141 0.0127 0.0128
    3 AE 0.8466 0.8377 0.8261 0.8499 0.8568 0.8331
    MSE 0.0271 0.0120 0.0115 0.0128 0.0118 0.0119
    30 1 AE 0.8539 0.8417 0.8283 0.8557 0.8257 0.8363
    MSE 0.0330 0.0134 0.0127 0.0146 0.0131 0.0133
    2 AE 0.8522 0.8405 0.8274 0.8544 0.8247 0.8353
    MSE 0.0316 0.0131 0.0124 0.0142 0.0128 0.0129
    3 AE 0.8491 0.8350 0.8278 0.8516 0.8255 0.8348
    MSE 0.0261 0.0115 0.0110 0.0124 0.0113 0.0114

     | Show Table
    DownLoad: CSV
    Table B.9.  The values of AB and MSE of MLEs and BEs for (t) based on the different censoring schemes and τ=1.2, γ0=1.
    t (n,m,k) Scheme ˆML ˆBS ˆBL ˆBL ˆBG ˆBG
    (h=1.5) (h=1.5) (c=0.5) (c=0.5)
    0.1 (60, 40, 25) 1 AE 0.6471 0.6573 0.6565 0.6581 0.6560 0.6587
    MSE 0.0032 536*106 541*106 533*106 546*106 539*106
    2 AE 0.6493 0.6577 0.6569 0.6585 0.6564 0.6573
    MSE 0.0029 538*106 542*106 535*106 547*106 540*106
    3 AE 0.6510 0.6573 0.6565 0.6581 0.6561 0.6569
    MSE 0.0023 530*106 535*106 527*106 540*106 533*106
    (60, 40, 30) 1 AE 0.6479 0.6576 0.6568 0.6585 0.6563 0.6572
    MSE 0.0031 524*106 528*106 521*106 532*106 526*106
    2 AE 0.6485 0.6575 0.6566 0.6583 0.6562 0.6570
    MSE 0.0029 531*106 535*106 528*106 541*106 534*106
    3 AE 0.6507 0.6571 0.6563 0.6579 0.6559 0.6567
    MSE 0.0023 538*106 543*106 534*106 548*106 541*106
    (60, 50, 25) 1 AE 0.6473 0.6570 0.6562 0.6577 0.6558 0.6566
    MSE 0.0027 544*106 549*106 541*106 554*106 547*106
    2 AE 0.6495 0.6579 0.6571 0.6586 0.6567 0.6575
    MSE 0.0025 532*106 535*106 530*106 539*106 534*106
    3 AE 0.6496 0.6571 0.6564 0.6579 0.6560 0.6568
    MSE 0.0022 533*106 537*106 530*106 542*106 536*106
    (60, 50, 30) 1 AE 0.6494 0.6580 0.6572 0.6587 0.6568 0.6576
    MSE 0.0026 532*106 535*106 530*106 539*106 534*106
    2 AE 0.6485 0.6574 0.6566 0.6581 0.6562 0.6570
    MSE 0.0025 524*106 528*106 522*106 533*106 527*106
    3 AE 0.6498 0.6572 0.6565 0.6580 0.6561 0.6569
    MSE 0.0022 527*106 531*106 523*106 535*106 529*106
    0.5 (60, 40, 25) 1 ES 0.2057 0.2069 0.2059 0.2079 0.2020 0.2052
    MSE 0.0026 658*106 647*106 671*106 651*106 650*106
    2 AE 0.2072 0.2073 0.2063 0.2082 0.2024 0.2056
    MSE 0.0024 662*106 651*106 676*106 652*106 654*106
    3 AE 0.2077 0.2066 0.2057 0.2076 0.2020 0.2051
    MSE 0.0019 642*106 632*106 654*106 639*106 636*106
    (60, 40, 30) 1 AE 0.2063 0.2072 0.2062 0.2082 0.2022 0.2056
    MSE 0.0025 648*106 636*106 662*106 638*106 639*106
    2 AE 0.2065 0.2070 0.2060 0.2080 0.2021 0.2054
    MSE 0.0023 650*106 639*106 663*106 642*106 642*106
    3 AE 0.2074 0.2065 0.2055 0.2074 0.2019 0.2050
    MSE 0.0019 645*106 636*106 657*106 644*106 640*106
    (60, 50, 25) 1 AE 0.2047 0.2062 0.2053 0.2071 0.2019 0.2048
    MSE 0.0021 659*106 651*106 671*106 657*106 654*106
    2 AE 0.2065 0.2072 0.2063 0.2081 0.2028 0.2057
    MSE 0.0021 656*106 645*106 668*106 645*106 648*106
    3 AE 0.2059 0.2062 0.2054 0.2071 0.2021 0.2049
    MSE 0.0017 641*106 632*106 651*106 638*106 636*106
    (60, 50, 30) 1 AE 0.2065 0.2073 0.2064 0.2082 0.2029 0.2058
    MSE 0.0021 655*106 644*106 667*106 642*106 646*106
    2 AE 0.2055 0.2066 0.2057 0.2075 0.2023 0.2052
    MSE 0.0020 640*106 631*106 652*106 634*106 634*106
    3 AE 0.2061 0.2063 0.2055 0.2072 0.2022 0.2049
    MSE 0.0017 632*106 624*106 642*106 629*106 627*106

     | Show Table
    DownLoad: CSV
    Table B.10.  The values of AE and MSE of MLEs and BEs for (t) based on the different censoring schemes and τ=1.2, γ0=1.
    t (n,m,k) Scheme ˆML ˆBS ˆBL ˆBL ˆBG ˆBG
    (h=1.5) (h=1.5) (c=0.5) (c=0.5)
    0.1 (60, 40, 25) 1 AE 3.9493 3.8496 3.7028 4.0153 3.8095 3.8362
    MSE 0.5200 0.0999 0.1028 0.1507 0.09823 0.09896
    2 AE 3.9209 3.8441 3.6997 4.0068 3.8048 3.8310
    MSE 0.4718 0.0998 0.1036 0.1477 0.0985 0.0990
    3 AE 3.894 3.8490 3.7112 4.0029 3.8116 3.8365
    MSE 0.3638 0.0985 0.0994 0.1446 0.0966 0.0975
    (60, 40, 30) 1 AE 3.9388 3.8450 3.6985 4.0103 3.8050 3.8316
    MSE 0.5054 0.0972 0.1018 0.1458 0.0960 0.0964
    2 AE 3.9294 3.8472 3.7026 4.0101 3.8078 3.8341
    MSE 0.4694 0.0987 0.1019 0.1475 0.0972 0.0978
    3 AE 3.8991 3.8513 3.7134 4.0054 3.8139 3.8388
    MSE 0.3717 0.1001 0.1001 0.1473 0.0981 0.0991
    (60, 50, 25) 1 AE 3.9448 3.8529 3.7210 3.9997 3.8172 3.8410
    MSE 0.4297 0.1014 0.01011 0.1444 0.0996 0.1005
    2 AE 3.9165 3.8407 3.7099 3.9861 3.8051 3.8288
    MSE 0.4039 0.0985 0.1015 0.1370 0.0976 0.0978
    3 AE 3.9131 3.8502 3.7248 3.9889 3.8166 3.8389
    MSE 0.3468 0.0993 0.0984 0.1387 0.0975 0.0984
    (60, 50, 30) 1 AE 3.9179 3.8396 3.7085 3.9855 3.8040 3.8277
    MSE 0.4118 0.0985 0.1019 0.1370 0.0977 0.0980
    2 AE 3.9284 3.8472 3.7161 3.9931 3.8117 3.8354
    MSE 0.4006 0.0974 0.0989 0.1379 0.0961 0.0967
    3 AE 3.9102 3.8490 3.7237 3.9875 3.8151 3.8377
    MSE 0.3435 0.0980 0.0976 0.1369 0.0964 0.0972
    0.5 (60, 40, 25) 1 AE 2.4150 2.3035 2.2597 2.3499 2.2841 2.2971
    MSE 0.0613 0.02778 0.0274 0.0325 0.0276 0.0276
    2 AE 2.2319 2.3007 2.2573 2.3465 2.2814 2.2943
    MSE 0.0579 0.0276 0.0275 0.0320 0.0275 0.0275
    3 AE 2.2257 2.3039 2.2619 2.3482 2.2853 2.2977
    MSE 0.0452 0.0270 0.0264 0.0315 0.0267 0.0268
    (60, 40, 30) 1 AE 2.2385 2.3012 2.2574 2.3474 2.2818 2.2947
    MSE 0.0609 0.0271 0.0270 0.0315 0.0270 0.0270
    2 AE 2.2353 2.3022 2.2588 2.3481 2.2830 2.2958
    MSE 0.0569 0.0273 0.0270 0.03178 0.0271 0.0272
    3 AE 2.2273 2.3051 2.2630 2.3494 2.2865 2.2989
    MSE 0.0454 0.0273 0.0267 0.0320 0.0270 0.0271
    (60, 50, 25) 1 AE 2.2445 2.3059 2.2664 2.3472 2.2884 2.3001
    MSE 0.0514 0.0281 0.0275 0.0323 0.0279 0.0280
    2 AE 2.2357 2.2996 2.2604 2.3407 2.2822 2.2938
    MSE 0.0508 0.0274 0.0273 0.0310 0.02736 0.2733
    3 AE 2.2353 2.3048 2.2669 2.3446 2.2881 2.2993
    MSE 0.0424 0.0273 0.0266 0.0313 0.0270 0.0272
    (60, 50, 30) 1 AE 2.2352 2.2988 2.2596 2.3399 2.2814 2.2930
    MSE 0.0511 0.0274 0.0273 0.0391 0.0274 0.0273
    2 AE 2.240 2.3031 2.2638 2.3443 2.2857 2.293
    MSE 0.0490 0.0271 0.0267 0.0309 0.0269 0.0270
    3 AE 2.2344 2.3042 2.2663 2.3439 2.2875 2.2987
    MSE 0.0422 0.0270 0.0263 0.0309 0.0267 0.0269

     | Show Table
    DownLoad: CSV
    Table B.11.  The AW(CP) of α1, α2, and β at n=60, τ=1.2, and γ0=3 for the ACI, Boot-p, BCI, and HPD for gamma prior.
    m k Scheme ACI Boot-p Gamma prior
    Boot-p Boot-t BCI HPD
    40 25 1 α1 1.397(0.9959) 0.429(0.9300) 0.747(0.8784) 0.518(0.9912) 0.506(0.9858)
    α2 2.873(0.9995) 0.440(0.9322) 0.732(0.8796) 0.6022(0.9983) 0.593(0.9971)
    β 5.322(1.0000) 1.146(0.9446) 1.473(0.9846) 0.776(1.0000) 0.759(1.0000)
    2 α1 1.846(0.9980) 0.421(0.9371) 0.668(0.8726) 0.515(0.9930) 0.504(0.9885)
    α2 2.717(0.9999) 0.430(0.9375) 0.650(0.8786) 0.601(0.9990) 0.592(0.9978)
    β 4.891(0.9999) 1.081(0.9407) 1.270(0.9654) 0.768(1.0000) 0.752(1.0000)
    3 α1 1.857(0.9987) 0.369(0.9393) 0.579(0.8798) 0.480(0.9913) 0.470(0.9870)
    α2 2.760(0.9999) 0.376(0.9413) 0.570(0.8879) 0.572(0.9986) 0.563(0.9972)
    β 5.143(1.0000) 0.939(0.9389) 1.202(0.9511) 0.760(1.0000) 0.743(1.0000)
    30 1 α1 1.818(0.9962) 0.414(0.9328) 0.774(0.8922) 0.510(0.9914) 0.499(0.9860)
    α2 2.695(0.9996) 0.427(0.9365) 0.789(0.9088) 0.594(0.9978) 0.586(0.9963)
    β 5.145(0.9997) 1.1435(0.9446) 1.700(0.9626) 0.775(1.0000) 0.758(1.0000)
    2 α1 1.839(0.9968) 0.410(0.9291) 0.726(0.8944) 0.512(0.992) 0.500(0.9882)
    α2 2.688(0.9999) 0.421(0.9318) 0.729(0.9079) 0.597(0.9987) 0.588(0.9974)
    β 4.926(0.9999) 1.078(0.9460) 1.466(0.9733) 0.768(1.0000) 0.751(1.000)
    3 α1 1.892(0.9992) 0.370(0.9386) 0.588(0.8815) 0.480(0.9910) 0.470(0.9870)
    α2 2.793(1.0000) 0.376(0.9376) 0.578(0.8830) 0.571(0.9985) 0.563(0.9975)
    β 5.221(1.0000) 0.941(0.9409) 1.221(0.9536) 0.760(1.0000) 0.743(1.0000)
    50 25 1 α1 1.619(0.9981) 0.391(0.9363) 0.581(0.8675) 0.489(0.9890) 0.479(0.9856)
    α2 2.394(0.9995) 0.400(0.9385) 0.571(0.8754) 0.577(0.9983) 0.569(0.9973)
    β 4.464(1.0000) 1.020(0.9438) 1.185(0.9541) 0.767(1.0000) 0.751(1.0000)
    2 α1 1.628(0.9976) 0.389(0.9340) 0.582(0.8676) 0.488(0.9894) 0.478(0.856)
    α2 2.395(1.0000) 0.398(0.9361) 0.572(0.8740) 0.577(0.9978) 0.568(0.9955)
    β 4.424(1.0000) 1.007(0.9430) 1.171(0.9534) 0.765(1.0000) 0.749(1.0000)
    3 α1 1.449(0.9979) 0.358(0.9359) 0.505(0.8711) 0.466(0.9902) 0.456(0.9868)
    α2 2.144(1.0000) 0.367(0.9360) 0.501(0.8799) 0.557(0.9986) 0.549(0.9971)
    β 4.009(1.0000) 0.923(0.9399) 1.051(0.9533) 0.759(1.0000) 0.742(1.0000)
    30 1 α1 1.644(0.9982) 0.389(0.9387) 0.594(0.8773) 0.489(0.9920) 0.478(0.9866)
    α2 2.400(1.0000) 0.398(0.9385) 0.587(0.8849) 0.578(0.9977) 0.569(0.9967)
    β 4.544(1.0000) 1.020(0.9456) 1.220(0.9776) 0.768(1.0000) 0.751(1.0000)
    2 α1 1.612(0.9979) 0.387(0.9337) 0.583(0.8728) 0.489(0.9921) 0.479(0.9876)
    α2 2.384(0.9998) 0.397(0.9356) 0.576(0.8803) 0.577(0.9982) 0.569(0.9967)
    β 4.411(1.0000) 1.01(0.9437) 1.177(0.9727) 0.766(1.0000) 0.749(1.0000)
    3 α1 1.451(0.9984) 0.358(0.9365) 0.503(0.8755) 0.465(0.9908) 0.455(0.9860)
    α2 2.124(0.9998) 0.367(0.9390) 0.499(0.8738) 0.557(0.9986) 0.549(0.9970)
    β 3.983(1.0000) 0.922(0.9409) 1.042(0.9564) 0.759(1.0000) 0.743(1.0000)

     | Show Table
    DownLoad: CSV
    Table B.12.  The AW (CP) of π1, (t), and (t) at time t=0.1, t=0.5 for the ACI, Boot-p, BCI, and HPD for gamma prior when n=60, γ0=3.
    m k Scheme ACI Boot-p Gamma prior
    Boot-p Boot-t BCI HPD
    40 20 1 (0.1) 0.0022(0.9850) 0.0014(0.9532) 0.2626(1.0000) 0.00092(0.986) 0.00090(0.9846)
    (0.5) 0.1847(0.9822) 0.1266(0.9531) 0.2838(0.9999) 0.08888(0.9842) 0.08808(0.9824)
    (0.1) 0.0654(0.9850) 0.0419(0.9532) 0.0510(0.9274) 0.0275(0.9860) 0.0271(0.9846)
    (0.5) 1.0230(0.9758) 0.7854(0.9537) 0.9281(0.9389) 0.5683(0.9832) 0.5620(0.9804)
    2 (0.1) 0.00194(0.9815) 0.0013(0.9494) 0.2622(1.0000) 0.00088(0.9827) 0.00087(0.9808)
    (0.5) 0.1635(0.9760) 0.1198(0.9497) 0.2862(0.9999) 0.0861(0.9803) 0.0854(0.9787)
    (0.1) 0.0583(0.9815) 0.0395(0.9494) 0.0444(0.9246) 0.0266(0.9827) 0.0262(0.9806)
    (0.5) 0.8977(0.9641) 0.7428(0.9502) 0.8107(0.9355) 0.5504(0.9795) 0.5547(0.9774)
    3 (0.1) 0.0020(0.9836) 0.0012(0.9441) 0.2108(1.0000) 0.00081(0.9786) 0.00080(0.9758)
    (0.5) 0.1651(0.9810) 0.1058(0..9944) 0.2329(0.9998) 0.0786(0.9766) 0.07803(0.9727)
    (0.1) 0.0599(0.6836) 0.0345(0.9441) 0.0413(0.9086) 0.0243(0.9786) 0.0240(0.9757)
    (0.5) 0.8805(0.9692) 0.6555(0.9442) 0.7536(0.9231) 0.5012(0.9750) 0.4966(0.9700)
    30 1 (0.1) 0.00226(0.9776) 0.0014(0.9522) 0.2685(1.0000) 0.00091(0.9842) 0.00090(0.9813)
    (0.5) 0.1911(0.9745) 0.1273(0.9526) 0.2858(1.0000) 0.0881(0.9829) 0.0873(0.9793)
    (0.1) 0.0676(0.9776) 0.0422(0.9522) 0.0534(0.9334) 0.0272(0.9843) 0.0269(0.9814)
    (0.5) 1.0587(0.9674) 0.7911(0.9531) 0.9533(0.9390) 0.5629(0.9803) 0.5568(0.9770)
    2 (0.1) 0.0202(0.9816) 0.0013(0.9534) 0.2659(1.0000) 0.00088(0.9839) 0.00087(0.9825)
    (0.5) 0.1694(0.9787) 0.1200(0.9538) 0.2864(0.9999) 0.0859(0.9823) 0.0852(0.9807)
    (0.1) 0.0606(0.9816) 0.0396(0.9534) 0.0462(0.9452) 0.0265(0.9839) 0.0262(0.9824)
    (0.5) 0.9274(0.9711) 0.7448(0.9541) 0.8259(0.9475) 0.5494(0.9811) 0.5438(0.9784)
    3 (0.1) 0.0020(0.9821) 0.0012(0.9457) 0.2105(1.0000) 0.00081(0.9782) 0.00080(0.9762)
    (0.5) 0.1655(0.9783) 0.1060(0.9458) 0.2325(0.9998) 0.0787(0.9767) 0.0781(0.9749)
    (0.1) 0.0599(0.9821) 0.0346(0.9457) 0.0418(0.9099) 0.0243(0.9782) 0.0240(0.9760)
    (0.5) 0.8836(0.9688) 0.6567(0.9469) 0.7617(0.9259) 0.5015(0.9750) 0.4970(0.9728)
    50 20 1 (0.1) 0.00212(0.9834) 0.0012(0.9475) 0.2359(1.0000) 0.00085(0.9810) 0.00084(0.9802)
    (0.5) 0.1800(0.9786) 0.1145(0.9478) 0.2558(0.9999) 0.0822(0.9794) 0.0816(0.9773)
    (0.1) 0.00634(0.9833) 0.0374(0.9475) 0.0431(0.9198) 0.0254(0.9809) 0.0251(0.9802)
    (0.5) 0.9915(0.9713) 0.7097(0.9475) 0.8001(0.9300) 0.5242(0.9782) 0.5191(0.9764)
    2 (0.1) 0.00191(0.9841) 0.0012(0.9478) 0.2373(1.0000) 0.00084(0.9846) 0.00083(0.9810)
    (0.5) 0.1624(0.9807) 0.1130(0.9477) 0.2576(0.9998) 0.0818(0.9830) 0.0811(0.9797)
    (0.1) 0.0057(0.9841) 0.0369(0.9478) 0.0425(0.9176) 0.0253(0.9845) 0.0250(0.9809)
    (0.5) 0.8979(0.9705) 0.7006(0.9476) 0.7885(0.9296) 0.5213(0.9802) 0.5162(0.9770)
    3 (0.1) 0.00174(0.9833) 0.0011(0.9438) 0.2133(1.0000) 0.00079(0.9799) 0.00078(0.9770)
    (0.5) 0.1491(0.9792) 0.1046(0.9437) 0.2315(0.9996) 0.0769(0.9772) 0.0764(0.9743)
    (0.1) 0.00522(0.9833) 0.03 40(0.9437) 0.0383(0.9219) 0.0238(0.9800) 0.0235(0.9770)
    (0.5) 0.8271(0.9704) 0.6479(0.9442) 0.7176(0.9333) 0.4891(0.9748) 0.4847(0.9727)
    30 1 (0.1) 0.00194(0.9871) 0.0012(0.9500) 0.2326(1.0000) 0.00085(0.9824) 0.0008(0.9810)
    (0.5) 0.1647(0.9836) 0.1143(0.9503) 0.2523(1.0000) 0.0823(0.9809) 0.0816(0.9783)
    (0.1) 0.0058(0.9871) 0.0375(0.9500) 0.0435(0.9255) 0.0254(0.9825) 0.0251(0.9806)
    (0.5) 0.9127(0.9751) 0.7085(0.9504) 0.8013(0.9346) 0.5247(0.9793) 0.5195(0.9764)
    2 (0.1) 0.00188(0.9874) 0.0012(0.9488) 0.2342(1.0000) 0.00084(0.9823) 0.00083(0.9786)
    (0.5) 0.1598(0.9838) 0.1128(0.9490) 0.2543(0.9997) 0.0818(0.9799) 0.0811(0.9779)
    (0.1) 0.0056(0.9874) 0.0369(0.9488) 0.0419(0.9219) 0.0253(0.9822) 0.0250(0.9786)
    (0.5) 0.8855(0.9737) 0.6994(0.9490) 0.7768(0.9334) 0.5213(0.9789) 0.5161(0.9764)
    3 (0.1) 0.00176(0.9851) 0.0113(0.9472) 0.2129(1.0000) 0.00079(0.9820) 0.00078(0.9806)
    (0.5) 0.1506(0.9824) 0.1044(0.9473) 0.2312(0.9999) 0.0771(0.9800) 0.0765(0.9783)
    (0.1) 0.0528(0.9851) 0.0340(0.9472) 0.0380(0.9230) 0.0239(0.9820) 0.0236(0.9806)
    (0.5) 0.8350(0.9735) 0.6468(0.9472) 0.7132(0.9331) 0.4903(0.9785) 0.4857(0.9758)

     | Show Table
    DownLoad: CSV
    Table B.13.  The AW and CP of α1, α2, and β at n=60, τ=1.2, and γ0=1 for the ACI, Boot-p, BCI, and HPD for gamma prior.
    τ=1.2 ACI Boot-p Gamma prior
    Scheme Boot-p Boot-t BCI HPD
    (m,k) α1 α2 β α1 α2 β α1 α2 β α1 α2 β α1 α2 β
    (40, 25) 1 AW 2.686 4.883 8.725 0.684 0.709 1.861 1.050 1.032 2.323 0.627 0.722 0.812 0.620 0.718 0.799
    CP 0.9962 0.9998 1.0000 0.9374 0.9388 0.9452 0.8704 0.8798 0.9502 0.9968 0.9995 1.0000 0.9954 0.9995 1.0000
    2 AW 2.835 5.179 8.895 0.680 0.704 1.785 1.088 1.072 2.316 0.627 0.722 0.808 0.619 0.717 0.795
    CP 0.9968 1.0000 1.0000 0.9418 0.9438 0.9444 0.8802 0.8896 0.9488 0.9958 0.9998 1.0000 0.9938 0.9995 1.0000
    3 AW 5.360 10.057 16.591 0.658 0.663 1.618 1.111 1.026 2.192 0.622 0.721 0.800 0.614 0.716 0.783
    CP 0.9998 1.0000 1.0000 0.9416 0.9412 0.9422 0.8930 0.9104 0.9506 0.9951 0.9998 1.0000 0.9944 0.9998 1.0000
    (40, 30) 1 AW 2.657 4.871 8.665 0.684 0.708 1.860 1.046 1.026 2.307 0.627 0.722 0.812 0.619 0.717 0.799
    CP 0.9964 1.0000 1.0000 0.9330 0.9402 0.9438 0.8742 0.8860 0.9492 0.99665 0.9998 1.0000 0.9956 0.9995 1.0000
    2 AW 2.827 5.199 8.986 0.679 0.703 1.796 1.093 1.077 2.345 0.626 0.723 0.808 0.618 0.718 0.795
    CP 0.9976 1.0000 1.0000 0.9346 0.9406 0.9450 0.8732 0.8924 0.9588 0.9948 0.9999 1.0000 0.9947 0.9998 1.0000
    3 AW 5.408 10.001 16.559 0.659 0.664 1.621 1.113 1.031 2.190 0.622 0.721 0.799 0.614 0.716 0.783
    CP 0.9994 1.0000 1.0000 0.9388 0.9426 0.9400 0.8946 0.9132 0.9458 0.9956 0.9999 1.0000 0.9935 0.9999 1.0000
    (50, 25) 1 AW 2.182 3.971 8.703 0.616 0.639 1.642 0.933 0.932 2.101 0.596 0.700 0.804 0.589 0.695 0.791
    CP 0.9958 1.0000 1.000 0.9416 0.9374 0.9528 0.8904 0.8946 0.9564 0.9947 0.9994 1.0000 0.9929 0.9989 1.0000
    2 AW 2.209 4.016 8.640 0.615 0.638 1.627 0.870 0.866 1.934 0.595 0.698 0.802 0.588 0.694 0.790
    CP 0.9952 1.0000 1.0000 0.9404 0.9410 0.9488 0.8830 0.8932 0.9542 0.9953 0.9998 1.0000 0.9931 0.9996 1.0000
    3 AW 2.809 5.189 10.893 0.595 0.608 1.512 0.922 0.900 1.983 0.589 0.695 0.796 0.582 0.691 0.783
    CP 0.9976 1.0000 1.0000 0.9490 0.9468 0.9518 0.9042 0.9094 0.9538 0.9941 0.9996 1.0000 0.9919 0.9995 1.0000
    (50, 30) 1 AW 2.195 4.008 7.847 0.616 0.639 1.640 0.909 0.905 2.041 0.594 0.699 0.804 0.588 0.694 0.791
    CP 0.9957 1.000 1.000 0.938 0.939 0.956 0.884 0.888 0.952 0.9942 0.9994 1.0000 0.9923 0.9991 1.0000
    2 AW 2.196 3.957 8.589 0.616 0.638 1.633 0.894 0.891 2.009 0.596 0.699 0.803 0.589 0.694 0.790
    CP 0.9957 1.0000 1.0000 0.9478 0.9458 0.9440 0.8900 0.8928 0.9486 0.9952 1.0000 1.0000 0.9935 1.0000 1.0000
    3 AW 2.812 5.191 10.943 0.595 0.607 1.527 0.913 0.891 1.992 0.589 0.695 0.797 0.582 0.691 0.783
    CP 0.9979 1.0000 1.0000 0.9420 0.9446 0.9440 0.8946 0.9096 0.9546 0.9939 0.9996 1.0000 0.9909 0.9996 1.0000

     | Show Table
    DownLoad: CSV
    Table B.14.  The AW (CP) of (t), and (t) at time t=0.1, t=0.5 for the ACI, Boot-p, BCI, and HPD for gamma prior when n=60, γ0=1.
    n m k Scheme ACI Boot-p Gamma prior
    Boot-p Boot-t BCI HPD
    60 40 25 1 (0.1) 0.296(0.9735) 0.216(0.9516) 0.268(0.9806) 0.131(0.9956) 0.131(0.9945)
    (0.5) 0.215(0.9642) 0.198(0.9506) 0.284(0.9958) 0.143(0.9953) 0.142(0.9950)
    (0.1) 3.049(0.9569) 2.807(0.9518) 2.923(0.9356) 1.777(0.9954) 1.765(0.9936)
    (0.5) 3.083(0.9956) 0.994(0.9498) 1.304(0.8706) 0.957(0.9959) 0.952(0.9949)
    2 (0.1) 0.259(0.9682) 0.208(0.9498) 0.276(0.9840) 0.130(0.9929) 0.130(0.9916)
    (0.5) 0.223(0.9737) 0.190(0.9498) 0.267(0.9920) 0.142(0.9925) 0.141(0.9921)
    (0.1) 2.758(0.9559) 2.702(0.9494) 2.723(0.9384) 1.761(0.9925) 1.750(0.9912)
    (0.5) 3.141(0.9962) 0.959(0.9484) 1.325(0.8786) 0.952(0.9943) 0.947(0.9922)
    3 (0.1) 0.252(0.9771) 0.188(0.9456) 0.251(0.9838) 0.127(0.9941) 0.126(0.9932)
    (0.5) 0.356(0.9941) 0.169(0.947) 0.177(0.9446) 0.138(0.9942) 0.137(0.9934)
    (0.1) 2.618(0.9717) 2.436(0.9454) 2.267(0.9562) 1.716(0.9941) 1.706(0.9925)
    (0.5) 6.124(0.9997) 0.840(0.9470) 1.330(0.8970) 0.936(0.9955) 0.931(0.9943)
    30 1 (0.1) 0.286(0.9755) 0.216(0.9460) 0.267(0.9798) 0.131(0.9951) 0.131(0.9945)
    (0.5) 0.212(0.9683) 0.198(0.9468) 0.283(0.9932) 0.143(0.9947) 0.142(0.9946)
    (0.1) 3.008(0.9610) 2.806(0.9456) 2.913(0.9374) 1.775(0.9947) 1.763(0.9940)
    (0.5) 2.913(0.9956) 0.994(0.9480) 1.295(0.8764) 0.956(0.9956) 0.951(0.9942)
    2 (0.1) 0.260(0.9686) 0.208(0.9464) 0.275(0.9864) 0.130(0.9961) 0.130(0.9953)
    (0.5) 0.224(0.9770) 0.190(0.9470) 0.266(0.9936) 0.142(0.9959) 0.141(0.9955)
    (0.1) 2.764(0.9578) 2.713(0.9462) 2.732(0.9470) 1.762(0.9961) 1.751(0.9944)
    (0.5) 3.176(0.9975) 0.959(0.9480) 1.334(0.8810) 0.953(0.9966) 0.947(0.9955)
    3 (0.1) 0.252(0.9734) 0.188(0.9442) 0.252(0.9834) 0.127(0.9928) 0.126(0.9912)
    (0.5) 0.358(0.9935) 0.169(0.9478) 0.177(0.9432) 0.138(0.9928) 0.137(0.9918)
    (0.1) 2.629(0.9714) 2.440(0.9462) 2.263(0.9564) 1.717(0.9929) 1.706(0.9913)
    (0.5) 6.180(0.9999) 0.841(0.9500) 1.332(0.8970) 0.936(0.9946) 0.931(0.9929)
    50 25 1 (0.1) 0.258(0.9718) 0.194(0.9558) 0.238(0.9852) 0.124(0.9920) 0.124(0.9905)
    (0.5) 0.189(0.9611) 0.178(0.9568) 0.257(0.9962) 0.135(0.9909) 0.134(0.9897)
    (0.1) 2.705(0.9553) 2.515(0.9548) 2.661(0.9480) 1.679(0.9915) 1.669(0.9903)
    (0.5) 2.590(0.9947) 0.899(0.9580) 1.181(0.8898) 0.906(0.9924) 0.9015(0.9915)
    2 (0.1) 0.253(0.9745) 0.192(0.9532) 0.239(0.9826) 0.124(0.9930) 0.123(0.992)
    (0.5) 0.191(0.9660) 0.177(0.9522) 0.254(0.9962) 0.135(0.9923) 0.134(0.9915)
    (0.1) 2.661(0.9574) 2.494(0.9526) 2.556(0.9434) 1.671(0.9923) 1.661(0.9914)
    (0.5) 2.613(0.9965) 0.892(0.9520) 1.102(0.887) 0.903(0.9935) 0.898(0.9925)
    3 (0.1) 0.246(0.9780) 0.179(0.9532) 0.222(0.9814) 0.121(0.9897) 0.120(0.9891)
    (0.5) 0.212(0.9803) 0.163(0.9532) 0.213(0.9910) 0.131(0.9896) 0.130(0.9881)
    (0.1) 2.417(0.9634) 2.315(0.9532) 2.283(0.9572) 1.634(0.9896) 1.624(0.9892)
    (0.5) 3.486(0.9974) 0.817(0.9520) 1.206(0.8836) 0.888(0.9918) 0.884(0.9909)
    30 1 (0.1) 0.259(0.9744) 0.194(0.9530) 0.238(0.9836) 0.124(0.9925) 0.123(0.9913)
    (0.5) 0.190(0.9643) 0.178(0.9532) 0.257(0.9964) 0.135(0.9917) 0.134(0.9922)
    (0.1) 2.704(0.9590) 2.512(0.9526) 2.637(0.9448) 1.674(0.9918) 1.664(0.9898)
    (0.5) 2.593(0.9965) 0.899(0.9572) 1.154(0.8874) 0.904(0.9930) 0.899(0.9924)
    2 (0.1) 0.252(0.9729) 0.193(0.9462) 0.240(0.9790) 0.124(0.9929) 0.123(0.9918)
    (0.5) 0.190(0.9651) .176(0.9472) 0.254(0.9948) 0.134(0.9919) 0.134(0.9922)
    (0.1) 2.655(0.9590) 2.501(0.9464) 2.587(0.9402) 1.674(0.9919) 1.664(0.9908)
    (0.5) 2.600(0.9969) 0.893(0.9472) 1.134(0.8878) 0.904(0.9931) 0.900(0.9922)
    3 (0.1) 0.246(0.9771) 0.180(0.9474) 0.222(0.9790) 0.121(0.9924) 0.120(0.9917)
    (0.5) 0.213(0.9840) 0.162(0.9478) 0.213(0.9890) 0.131(0.9915) 0.130(0.9909)
    (0.1) 2.422(0.9651) 2.328(0.9478) 2.292(0.9580) 1.633(0.9918) 1.624(0.9909)
    (0.5) 3.503(0.9985) 0.817(0.9494) 1.198(0.8872) 0.888(0.9933) 0.883(0.9922)

     | Show Table
    DownLoad: CSV
    Table B.15.  The results concerning the real data and SER when γ0=3 and (n,m,k)=(60,40,25).
    Cases ML Bayesian(uniform prior)
    BS BL BL BG BG
    (h=1.5) (h=1.5) (c=0.5) (c=0.5)
    1 ˆα1 0.1795(0.1053) 0.2292(0.1774) 0.2106(0.1784) 0.2632(0.1806) 0.1718(0.1864) 0.2064(0.1788)
    ˆα2 0.2692(0.1500) 0.3459(0.2598) 0.3099(0.2623) 0.4364(0.2751) 0.2656(0.2719) 0.3138(0.2617)
    ˆβ 0.4985(0.4210) 0.6279(0.5469) 0.4872(0.5647) 1.2542(0.8314) 0.3796(0.6006) 0.5372(0.5543)
    ˆ(0.5) 0.9734(0.0102) 0.9721(0.0106) 0.9720(0.0106) 0.9722(0.0106) 0.9720(0.0106) 0.9721(0.0106)
    ˆ(1.5) 0.6436(0.0583) 0.6493(0.0566) 0.6469(0.0567) 0.6517(0.0567) 0.6455(0.0568) 0.6481(0.0567)
    ˆ(0.5) 0.1568(0.0575) 0.1627(0.0576) 0.1603(0.0577) 0.1653(0.0577) 0.1491(0.0592) 0.1581(0.0578)
    ˆ(1.5) 0.5613(0.1492) 0.5601(0.4213) 0.5458(0.1407) 0.5753(0.1409) 0.5339(0.1425) 0.5514(0.1403)
    ˆπ1 0.4(0.0980) 0.3990(0.0961) 0.3921(0.0964) 0.4060(0.0964) 0.3806(0.0979) 0.3931(0.0963)
    ˆπ2 0.6(0.0980) 0.6010(0.0961) 0.5940(0.0964) 0.6079(0.0964) 0.5887(0.0970) 0.5970(0.0962)
    2 ˆα1 0.1383(0.0553) 0.1445(0.0624) 0.1417(0.0625) 0.1476(0.0625) 0.1274(0.0647) 0.1385(0.0627)
    ˆα2 0.2075(0.0754) 0.2172(0.0856) 0.2120(0.0857) 0.2231(0.0858) 0.1960(0.0881) 0.2098(0.0859)
    ˆβ 0.7013(0.4397) 0.8856(0.6072) 0.7113(0.6317) 1.6297(0.9603) 0.6585(0.6482) 0.8034(0.6127)
    ˆ(0.5) 0.9714(0.0105) 0.9690(0.0117) 0.9689(0.0117) 0.9691(0.0117) 0.9689(0.0117) 0.9690(0.0117)
    ˆ(1.5) 0.6571(0.0558) 0.6602(0.0548) .6580(0.0548) 0.6625(0.0548) 0.6567(0.0549) 0.6591(0.0548)
    ˆ(0.5) 0.1673(0.0587) 0.1783(0.0625) 0.1755(0.0626) 0.1813(0.0626) 0.1632(0.0643) 0.1732(0.0627)
    ˆ(1.5) 0.4863(0.0990) 0.4757(0.3124) 0.4690(0.0959) 0.4827(0.0959) 0.4612(0.0967) 0.4709(0.0958)
    ˆπ1 0.4(0.0894) 0.3993(0.0879) 0.3935(0.0881) 0.4051(0.0881) 0.3841(0.0892) 0.3943(0.0881)
    ˆπ2 0.6(0.0894) 0.6007(0.0879) 0.5949(0.0881) 0.6065(0.0881) 0.5905(0.0885) 0.5974(0.0880)
    3 ˆα1 0.2099(0.0795) 0.2217(0.0914) 0.2158(0.0916) 0.2285(0.0917) 0.1982(0.0944) 0.2134(0.0918)
    ˆα2 0.3498(0.1196) 0.3699(0.1404) 0.3565(0.1411) 0.3866(0.1414) 0.3366(0.1443) 0.3582(0.1409)
    ˆβ 0.3291(0.2020) 0.4031(0.2896) 0.3579(0.2931) 0.5407(0.3206) 0.3001(0.3073) 0.3654(0.2920)
    ˆ(0.5) 0.9777(0.0079) 0.9762(0.0091) 0.9761(0.0091) 0.9762(0.0091) 0.9761(0.0091) =0.9761(0.0091)
    ˆ(1.5) 0.658262(0.0609) 0.6616(0.0591) 0.6589(0.0591) 0.6641(0.0591) 0.6575(0.0592) 0.6602(0.0591)
    ˆ(0.5) 0.1327(0.0464) 0.1408(0.0513) 0.1389(0.0514) 0.1429(0.05138) 0.1285(0.0528) 0.1366(0.05151)
    ˆ(1.5) 0.5891(0.0935) 0.5715(0.4406) 0.5651(0.0933) 0.5781(0.0934) 0.5601(0.0938) 0.5677(0.0932)
    ˆπ1 0.375(0.0765) 0.3751(0.0751) 0.3709(0.0752) 0.3794(0.0752) 0.3634(0.0760) 0.3713(0.0752)
    ˆπ2 0.625(0.0765) 0.6249(0.0751) 0.6206(0.0752) 0.6291(0.0752) 0.6178(0.0754) 0.6226(0.0751)

     | Show Table
    DownLoad: CSV
    Table B.16.  CIs and AWs for the estimates of the real data when γ0=3 and m=40.
    Cases ACI Boot-p Uniform prior
    Boot-p Boot-t BCI HPD
    α1 1 (0.1103, 0.2920) (0.1876, 0.3355) (0.1880, 0.2771) (0.0641, 0.6904) (0.0419, 0.5590)
    0.1817 0.1479 0.0891 0.6263 0.5171
    2 (0.0300, 0.2467) (0.1396, 0.2392) (0.1396, 0.2045) (0.0595, 0.2999) (0.0446, 0.2651)
    0.2167 0.0996 0.0649 0.2405 0.2205
    3 (0.0540, 0.3658) (0.2108, 0.3104) (0.2108, 0.2815) (0.0978, 0.4485) (0.0794, 0.3995)
    0.3112 0.0996 0.0707 0.3507 0.3201
    α2 1 (0.1528, 0.4744) (0.2745, 0.3190) (0.2749, 0.3165) (0.1071, 1.0452) (0.0689, 0.8282)
    0.3216 0.0445 0.0416 0.9381 0.7593
    2 (0.0598, 0.3552) (0.2080, 0.3312) (0.2080, 0.2932) (0.0999, 0.4382) (0.0798, 0.3859)
    0.2955 0.1232 0.0852 0.3383 0.3061
    3 (0.1154, 0.5843) (0.3508, 0.4483) (0.3509, 0.4240) (0.1181, 0.7192) (0.1545, 0.6508)
    0.4689 0.0975 0.0731 0.5383 0.4963
    β 1 (0.1531, 1.5992) (0.5314, 0.6447) (0.5340, 0.6197) (0.0794, 2.1151) (0.0382, 1.6710)
    1.4460 0.1133 0.0857 2.0357 1.6327
    2 (0.2506, 1.9626) (0.7107, 1.1594) (0.7111, 1.0276) (0.1973, 2.4641) (0.1180, 2.0447)
    1.7120 0.4487 0.3165 2.2668 1.9267
    3 (0.1651, 0.6563) (0.3317, 0.5494) (0.3317, 0.4834) (0.0912, 1.0850) (0.0535, 0.8972)
    0.7918 0.2177 0.1517 0.9937 0.8437
    (0.5) 1 (0.9535, 0.9933) (0.9564, 0.9675) (0.9560, 0.9648) (0.9458, 0.9866) (0.9515, 0.9892)
    0.0398 0.0111 0.0088 0.0408 0.0377
    2 (0.9507, 0.9920) (0.9457, 0.9686) (0.9438, 0.9683) (0.9406, 0.9857) (0.9454, 0.9879)
    0.4125 0.0229 0.0245 0.0451 0.0425
    3 (0.9621, 0.9933) (0.9601, 0.9766) (0.9542, 0.9765) (0.9550, 0.9888) (0.9588, 0.9903)
    0.0312 0.0165 0.0223 0.0339 0.0316
    (1.5) 1 (0.5293, 0.7580) (0.4986, 0.5916) (0.4986, 0.5899) (0.5355, 0.7552) (0.5384, 0.7575)
    0.2287 0.0930 0.0913 0.2197 0.2191
    2 (0.5478, 0.7664) (0.4970, 0.6376) (0.4959, 0.6393) (0.5481, 0.7634) (0.5538, 0.7676)
    0.2186 0.1406 0.1434 0.2154 0.2138
    3 (0.5388, 0.7777) (0.5183, 0.6458) (0.4863, 0.6464) (0.54438, 0.7733) (0.5465, 0.7752)
    0.2388 0.1275 0.1601 0.2290 0.2287
    (0.5) 1 (0.0441, 0.2696) (0.1917, 0.2586) (0.1872, 0.2171) (0.8009, 0.3026) (0.0655, 0.2749)
    0.2255 0.0669 0.0299 0.2225 0.2095
    2 (0.0521, 0.2824) (0.1829, 0.3173) (0.1826, 0.3055) (0.0850, 0.3272) (0.0727, 0.3033)
    0.2303 0.1344 0.1229 0.2422 0.2306
    3 (0.0417, 0.2237) (0.1392, 0.2381) (0.1389, 0.2498) (0.0669, 0.2616) (0.0580, 0.2401)
    0.1820 0.0989 0.1109 0.1947 0.1821
    (1.5) 1 (0.2689, 0.6740) (0.6344, 0.8545) (0.6088, 1.0570) (0.3206, 0.8656) (0.0762, 0.2904)
    0.4051 0.2201 0.4482 0.5450 0.2142
    2 (0.2922, 0.6014) (0.5138, 0.7627) (0.5268, 0.7798) (0.3047, 0.6761) (0.0806, 0.3160)
    0.3092 0.2489 0.2530 0.3714 0.2354
    3 (0.4059, 0.6801) (0.6104, 0.8599) (0.6074, 0.7769) (0.4019, 0.7659) (0.0658, 0.2558)
    0.2742 0.2495 0.1695 0.3640 0.1900
    π1 1 (0.2080, 0.5920) (0.3704, 0.5161) (0.3670, 0.5423) (0.2205, 0.5942) (0.2154, 0.5879)
    0.3841 0.1457 0.1753 0.2908 0.3725
    2 (0.2247, 0.5753) (0.3143, 0.5000) (0.2898, 0.5398) (0.2361, 0.5777) (0.2273, 0.5677)
    0.3506 0.1857 0.2500 0.3416 0.3404
    3 (0.2250, 0.5250) (0.3500, 0.4500) (0.3450, 0.4626) (0.2353, 0.5261) (0.2317, 0.5202)
    0.3001 0.1000 0.1176 0.3736 0.2884
    π2 1 (0.4080, 0.7920) (0.4839, 0.6296) (0.4577, 0.6330) (0.4058, 0.8794) (0.4121, 0.7846)
    0.3841 0.1457 0.1753 0.2908 0.3725
    2 (0.4247, 0.7754) (0.5000, 0.6857) (0.4602, 0.7102) (0.4219, 0.7639) (0.4323, 0.7727)
    0.3506 0.1857 0.2500 0.3420 0.3404
    3 (0.4750, 0.7750) (0.55, 0.65) (0.5374, 0.6550) (0.4739, 0.7647) (0.4798, 0.7683)
    0.3001 0.1000 0.1176 0.3736 0.2884

     | Show Table
    DownLoad: CSV
    Table B.17.  CIs and AWs for the estimates of the real data when γ0=3 and m=25.
    Cases ACI Boot-p Uniform prior
    Boot-p Boot-t BCI HPD
    α1 1 (0.0456, 0.0820) (0.0619, 0.1506) (0.0619, 0.1058) (0.0163, 0.3172) (0.0069, 0.2179)
    0.0364 0.0887 0.0439 0.3009 0.2110
    2 (0.0025, 0.1348) (0.0697, 0.1277) (0.0697, 0.1053) (0.0245, 0.1804) (0.0167, 0.1520)
    0.1323 0.058 0.0356 0.1560 0.1353
    3 (0.1101, 0.6418) (0.2677, 0.5379) (0.2681, 0.4074) (0.0755, 2.1628) (0.0336, 1.6337)
    0.5316 0.2702 0.1393 2.0873 1.6001
    α2 1 (0.0659, 0.1276) (0.0923, 0.1731) (0.0925, 0.1458) (0.0292, 0.4916) (0.0155, 0.3231)
    0.0617 0.0808 0.0533 0.4624 0.3077
    2 (0.0050, 0.1495) (0.0775, 0.1713) (0.0775, 0.1255) (0.0285, 0.2011) (0.0184, 0.1684)
    0.1445 0.0956 0.048 0.1726 0.1500
    3 (0.1268, 0.9028) (0.3407, 0.6385) (0.3412, 0.4848) (0.1029, 2.7150) (0.0489, 2.0678)
    0.776 0.2978 0.1436 2.6120 2.0189
    β 1 (0.1191, 20.52) (1.5804, 4.5806) (1.5783, 2.9936) (0.1183, 18.94) (0.0257, 12.82)
    20.401 3.0002 1.4153 18.8205 12.80
    2 (0.1602, 17.6309) (1.7368, 4.4798) (1.7507, 2.8638) (0.2671, 10.846) (0.0912, 8.287)
    17.4707 2.743 1.1131 10.579 8.1962
    3 (0.0488, 0.3839) (0.1373, 0.3387) (0.1376, 0.2714) (0.0087, 1.0988) (0.0051, 0.8157)
    0.3351 0.2014 0.1338 1.0900 0.8105
    (0.5) 1 (0.9431, 1.003) (0.9276, 0.9647) (0.9116, 0.9650) (0.9159, 0.9914) (0.9273, 0.9943)
    0.0599 0.0371 0.0534 0.0755 0.0670
    2 (0.9431, 1.0021) (0.9231, 0.9673) (0.9171, 0.9671) (0.9264, 0.9904) (0.9341, 0.9932)
    0.059 0.0442 0.05 0.0640 0.0591
    3 (0.9774, 1.0022) (0.9708, 0.9887) (0.9519, 0.9883) (0.9690, 09957) (0.9739, 0.9967)
    0.0249 0.0179 0.0364 0.0267 0.0228
    (1.5) 1 (0.6470, 0.8635) (0.5546, 0.7127) (0.3798, 0.6750) (0.6459, 0.8577) (0.6562, 0.8638)
    0.2165 0.1581 0.2952 0.2118 0.2076
    2 (0.6540, 0.8623) (0.5590, 0.7299) (0.5688, 0.7302) (0.6537, 0.8580) (0.6631, 0.8660)
    0.2083 0.1709 0.1614 0.2043 0.2028
    3 (0.6460, 0.9440) (0.5743, 0.7764) (0.2904, 0.7625) (0.6607, 0.8934) (0.6749, 0.9015)
    0.2980 0.1065 0.2633 0.2327 0.2266
    (0.5) 1 (0.0018, 0.2980) (0.1973, 0.3822) (0.1859, 0.3759) (0.0508, 0.3388) (0.0394, 0.3133)
    0.2962 0.1849 0.19 0.2880 0.2739
    2 (0.0068, 0.2972) (0.1798, 0.3877) (0.1791, 0.3872) (0.0563, 0.3306) (0.0447, 0.3066)
    0.2904 0.2079 0.2081 0.2742 0.2618
    3 (0.0124, 0.1343) (0.0675, 0.1739) (0.2904, 0.7625) (0.0258, 0.1785) (0.0196, 0.1515)
    0.1219 0.1064 0.4721 0.1527 0.1318
    (1.5) 1 (0.0657, 0.4051) (0.2891, 0.5050) (0.2828, 0.5181) (0.1072, 0.4887) (0.0414, 0.3160)
    0.3394 0.2159 0.2353 0.3815 0.2746
    2 (0.0942, 0.3932) (0.2733, 0.4883) (0.2721, 0.5078) (0.1216, 0.4052) (0.0515, 0.3160)
    0.299 0.215 0.2357 0.2836 0.2646
    3 (0.1924, 0.4551) (0.0675, 0.1740) (0.4148, 0.6781) (0.2144.0.5378) (0.0249, 0.1690)
    0.2628 0.1065 0.2633 0.3234 0.1441
    π1 1 (0.1521, 0.6479) (0.3333, 0.6) (0.2953, 0.6505) (0.1760, 0.6498) (0.1721, 0.6445)
    0.4958 0.2667 0.3552 0.4738 0.4724
    2 (0.2333, 0.7079) (0.3333, 0.6) (0.2581, 0.6371) (0.2463, 0.7006) (0.2381, 0.6915)
    0.4746 0.2667 0.379 0.4543 0.4533
    3 (0.2454, 0.6346) (0.36, 0.56) (0.3450, 0.5533) (0.2555, 0.6323) (0.2552, 0.6317)
    0.3892 0.2 0.2083 0.3768 0.3765
    π2 1 (0.3521, 0.8479) (0.4, 0.6667) (0.3495, 0.7047) (0.3501, 0.8239) (0.3555, 0.8279)
    0.4958 0.2667 0.3552 0.4737 0.4724
    2 (0.2921, 0.7667) (0.4, 0.6667) (0.3629, 0.7419) (0.2994, 0.7536) (0.3086, 0.7618)
    0.4746 0.2667 0.379 0.4542 0.4533
    3 (0.3654, 0.7545) (0.44, 0.64) (0.4467, 0.6550) (0.3677, 0.7445) (0.3683, 0.7448)
    0.3892 0.2 0.2083 0.3768 0.3765

     | Show Table
    DownLoad: CSV
    Table B.18.  The results concerning the real data and SER when γ0=3 and (n,m,k)=(60,25,15).
    Cases ML Bayesian (uniform prior)
    BS BL BL BG BG
    (h=1.5) (h=1.5) (c=0.5) (c=0.5)
    1 ˆα1 0.0611(0.0370) 0.0836(0.1177) 0.07612(0.1180) 0.1010(0.1190) 0.0520(0.1220) 0.0687(0.1187)
    ˆα2 0.0917(0.0511) 0.1261(0.1702) 0.1121(0.1708) 0.1744(0.1769) 0.0820(0.1758) 0.1051(0.1715)
    ˆβ 1.5631(1.6424) 3.4600(5.2310) 1.1057(5.7364) 49.410(46.25) 1.0826(5.7459) 2.4572(5.3263)
    ˆ(0.5) 0.9731(0.0153) 0.9673(0.0198) 0.9670(0.0198) 0.9676(0.0199) 0.9670(0.0198) 0.9672(0.0198)
    ˆ(1.5) 0.7552(0.0552) 0.7610(0.0541) 0.7588(0.0542) 0.7631(0.0542) 0.7580(0.0542) 0.7600(0.0542)
    ˆ(0.5) 0.1499(0.0756) 0.1639(0.0775) 0.1596(0.0777) 0.1686(0.0777) 0.1368(0.0822) 0.1550(0.0781)
    ˆ(1.5) 0.2570(0.0976) 0.2547(0.1338) 0.2478(0.0985) 0.2623(0.0986) 0.2279(0.1019) 0.2456(0.0987)
    ˆπ1 0.4(0.1265) 0.399(0.1226) 0.3879(0.1231) 0.4104(0.1232) 0.3675(0.1266) 0.3891(0.1230)
    ˆπ2 0.6(0.1265) 0.601(0.1226) 0.5896(0.1232) 0.6121(0.1231) 0.5800(0.1244) 0.5944(0.1228)
    2 ˆα1 0.0687(0.0338) 0.0730(0.0422) 0.0717(0.0422) 0.0744(0.0422) 0.0600(0.0441) 0.0682(0.0424)
    ˆα2 0.0772(0.0369) 0.0824(0.0465) 0.0808(0.0465) 0.0841(0.0465) 0.0684(0.0485) 0.0773(0.0467)
    ˆβ 1.6807(1.5547) 2.7852(2.717) 1.3028(3.0955) 17.69(15.147) 1.4983(3.0068) 2.2997(2.7605)
    ˆ(0.5) 0.9726(0.0150) 0.9679(0.0168) 0.9677(0.0168) 0.9681(0.0168) 0.9677(0.0168) 0.9679(0.0168)
    ˆ(1.5) 0.7581(0.0531) 0.7624(0.0524) 0.7603(0.0524) 0.7644(0.0524) 0.7596(0.0524) 0.7615(0.0524)
    ˆ(0.5) 0.1520(0.0741) 0.1656(0.0722) 0.1618(0.0723) 0.1697(0.0723) 0.1422(0.0759) 0.1579(0.0726)
    ˆ(1.5) 0.2480(0.0785) 0.2408(0.1047) 0.2370(0.0730) 0.2449(0.0730) 0.2246(0.0747) 0.2354(0.0731)
    ˆπ1 0.4706(0.1211) 0.4699(0.1165) 0.4598(0.1170) 0.4802(0.1170) 0.4463(0.1189) 0.4624(0.1168)
    ˆπ2 0.5294(0.1211) 0.5301(0.1165) 0.5198(0.1170) 0.5402(0.1170) 0.5089(0.1184) 0.5233(0.1167)
    3 ˆα1 0.2659(0.2318) 0.4510(0.5585) 0.3281(0.5720) 1.3421(1.0517) 0.2458(0.5950) 0.3570(0.5664)
    ˆα2 0.3384(0.2913) 0.5750(0.7032) 0.3992(0.7248) 2.0700(1.6521) 0.3186(0.7485) 0.4571(0.7130)
    ˆβ 0.1368(0.1947) 0.2622(0.4002) 0.2007(0.4049) 1.0029(0.8419) 0.0825(0.4388) 0.1880(0.4071)
    ˆ(0.5) 0.9898(0.0063) 0.9877(0.0076) 0.9876(0.0076) 0.9877(0.0076) 0.9876(0.0076) 0.9877(0.0076)
    ˆ(1.5) 0.7975(0.0760) 0.7922(0.0617) 0.7893(0.0618) 0.7951(0.0618) 0.7885(0.0619) 0.7910(0.0617)
    ˆ(0.5) 0.0610(0.0374) 0.0725(0.0424) 0.0712(0.0424) 0.0739(0.0424) 0.0592(0.0444) 0.0676(0.0427)
    ˆ(1.5) 0.3818(0.0966) 0.3613(0.007) 0.3561(0.0840) 0.666(0.08401) 0.3465(0.0851) 0.3564(0.0840)
    ˆπ1 0.44(0.0993) 0.4397(0.0975) 0.4326(0.0977) 0.4468(0.0977) 0.4224(0.0990) 0.4341(0.0976)
    ˆπ2 0.56(0.0993) 0.5603(0.0975) 0.5532(0.0977) 0.5674(0.0977) 0.5468(0.0984) 0.5560(0.0976)

     | Show Table
    DownLoad: CSV


    [1] S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181. doi: 10.4064/fm-3-1-133-181
    [2] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. doi: 10.1090/S0002-9939-07-09110-1. doi: 10.1090/S0002-9939-07-09110-1
    [3] R. P. Kelisky, T. J. Rivlin, Iterates of Bernstein polynomials, Pac. J. Math., 21 (1967), 511–520. doi: 10.2140/pjm.1967.21.511. doi: 10.2140/pjm.1967.21.511
    [4] M. Samreen, T. Kamran, Fixed point theorems for integral G-contractions, Fixed Point Theory Appl., 2013 (2013), 149. doi: 10.1186/1687-1812-2013-149. doi: 10.1186/1687-1812-2013-149
    [5] J. Tiammee, S. Suantai, Coincidence point theorems for graph-preserving multivalued mappings, Fixed Point Theory Appl., 2014 (2014), 70. doi: 10.1186/1687-1812-2014-70. doi: 10.1186/1687-1812-2014-70
    [6] A. Nicolae, D. O. Regan, A. Petrusel, Fixed point theorems for single-valued and multivalued generalized contractions in metric spaces endowed with a graph, Georgian Math. J., 18 (2011), 307–327. doi: 10.1515/gmj.2011.0019. doi: 10.1515/gmj.2011.0019
    [7] F. Bojor, Fixed point of ϕ-contraction in metric spaces endowed with a graph, Ann. Univ. Craiova Mat., 37 (2010), 85–92.
    [8] F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal., 75 (2012), 3895–3901. doi: 10.1016/j.na.2012.02.009. doi: 10.1016/j.na.2012.02.009
    [9] F. Bojor, Fixed points of Kannan mappings in metric spaces endowed with a graph, An. St. Univ. Ovidius Constanta, 20 (2012), 31–40.
    [10] J. H. Asl, B. Mohammadi, S. Rezapour, S. M. Vaezpour, Some fixed point results for generalized quasi-contractive multifunctions on graphs, Filomat, 27 (2013), 311–315. doi: 10.2298/FIL1302311A. doi: 10.2298/FIL1302311A
    [11] S. M. A. Aleomraninejad, S. Rezapour, N. Shahzad, Some fixed point result on a metric space with a graph, Topol. Appl., 159 (2012), 659–663. doi: 10.1016/j.topol.2011.10.013. doi: 10.1016/j.topol.2011.10.013
    [12] M. R. Alfuraidan, M. A. Khamsi, Fixed points of monotone nonexpansive mappings on a hyperbolic metric space with a graph, Fixed Point Theory Appl., 2015 (2015), 44. doi: 10.1186/s13663-015-0294-5. doi: 10.1186/s13663-015-0294-5
    [13] M. R. Alfuraidan, Fixed points of monotone nonexpansive mappings with a graph, Fixed Point Theory Appl., 2015 (2015), 49. doi: 10.1186/s13663-015-0299-0. doi: 10.1186/s13663-015-0299-0
    [14] J. Tiammee, A. Kaewkhao, S. Suantai, On Browder's convergence theorem and Halpern iteration process for G-nonexpansive mappings in Hilbert spaces endowed with graphs, Fixed Point Theory Appl., 2015 (2015), 187. doi: 10.1186/s13663-015-0436-9. doi: 10.1186/s13663-015-0436-9
    [15] O. Tripak, Common fixed points of G-nonexpansive mappings on Banach spaces with a graph, Fixed Point Theory Appl., 2016 (2016), 87. doi: 10.1186/s13663-016-0578-4. doi: 10.1186/s13663-016-0578-4
    [16] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. doi: 10.1006/jmaa.2000.7042.
    [17] R. Glowinski, P. L. Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanic, Society for Industrial and Applied Mathematics, 1989.
    [18] S. Haubruge, V. H. Nguyen, J. J. Strodiot, Convergence analysis and applications of the Glowinski Le Tallec splitting method for finding a zero of the sum of two maximal monotone operators, J. Optimiz. Theory App., 97 (1998), 645–673. doi: 10.1023/a:1022646327085. doi: 10.1023/a:1022646327085
    [19] P. Sridarat, R. Suparaturatorn, S. Suantai, Y. J. Cho, Covergence analysis of SP-iteration for G-nonexpansive mappings with directed graphs, Bull. Malays. Math. Sci. Soc., 42 (2019), 2361–2380. doi: 10.1007/s40840-018-0606-0. doi: 10.1007/s40840-018-0606-0
    [20] R. Johnsonbaugh, Discrete mathematics, Prentice Hall, 1997.
    [21] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. doi: 10.1090/S0002-9904-1967-11761-0. doi: 10.1090/S0002-9904-1967-11761-0
    [22] S. Shahzad, R. Al-Dubiban, Approximating common fixed points of nonexpansive mappings in Banach spaces, Georgian Math. J., 13 (2006), 529–537. doi: 10.1515/GMJ.2006.529
    [23] N. V. Dung, N. T. Hieu, Convergence of a new three-step iteration process to common fixed points of three G-nonexpansivemappings in Banach spaces with directed graphs, RACSAM, 114 (2020), 140. doi: 10.1007/s13398-020-00872-w. doi: 10.1007/s13398-020-00872-w
    [24] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, B. Aust. Math. Soc., 43 (1991), 153–159. doi: 10.1017/S0004972700028884. doi: 10.1017/S0004972700028884
    [25] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 331 (2005), 506–517. doi: 10.1016/j.jmaa.2005.03.002. doi: 10.1016/j.jmaa.2005.03.002
    [26] D. Yambangwai, S. Aunruean, T. Thianwan, A new modified three-step iteration method for Gnonexpansive mappings in Banach spaces with a graph, Numer. Algor., 20 (2019), 1–29. doi: 10.1007/s11075-019-00768-w. doi: 10.1007/s11075-019-00768-w
    [27] M. G. Sangago, Convergence of iterative schemes for nonexpansive mappings, Asian-Eur. J. Math., 4 (2011), 671–682. doi: 10.1142/S1793557111000551. doi: 10.1142/S1793557111000551
    [28] R. L. Burden, J. D. Faires, Numerical analysis: Cengage learning, Brooks/Cole, 2010.
    [29] W. Phuengrattana, S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (2011), 3006–3014. doi: 10.1016/j.cam.2010.12.022. doi: 10.1016/j.cam.2010.12.022
    [30] H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2011.
    [31] J. J. Moreau, Proximitˊe et dualitˊe dans un espace hilbertien, B. Soc. Math. Fr., 93 (1965), 273–299.
    [32] H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375–380. doi: 10.1090/S0002-9939-1974-0346608-8. doi: 10.1090/S0002-9939-1974-0346608-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2322) PDF downloads(79) Cited by(0)

Figures and Tables

Figures(32)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog